Welcome to

DS504/CS586: Big Data Analytics Application I

Prof. Yanhua Li

Time: 6:00pm –8:50pm R Location: AK 232 Fall 2016

- 18 critiques & Next Thur we have the last critique.
 - Already graded 8 of them.
 - Plan to grade 1-2 more.

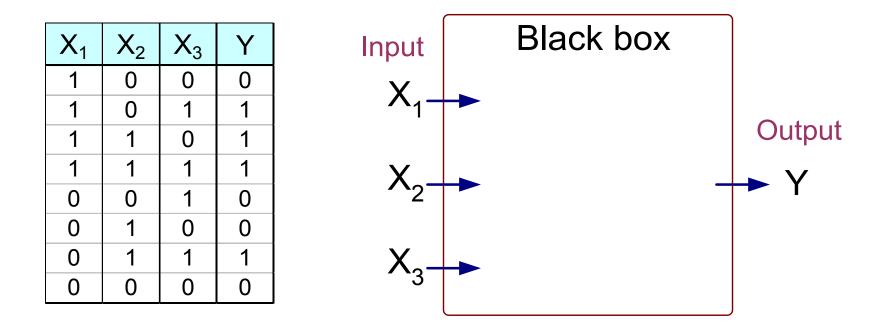
- Grading
 - Projects (40%)
 - Project 1 (10%)
 - Project 2 (30%)
 - Final reports in the discussion forum (by 11:59pm 12/13);
 - Self-and-peer evaluation form for project 2 (by 11:59PM 12/13);
 - Written work (30%):
 - Critiques + Project reports (20%)
 - Quiz (10%, with 5% each)
 - Oral work (30%):
 - Presentation

- Final Project Presentation
 - 22 minutes each group (including Q&A)
 - Schedule:
 - 12/15 Thu

Next Class: Summary and Discussion

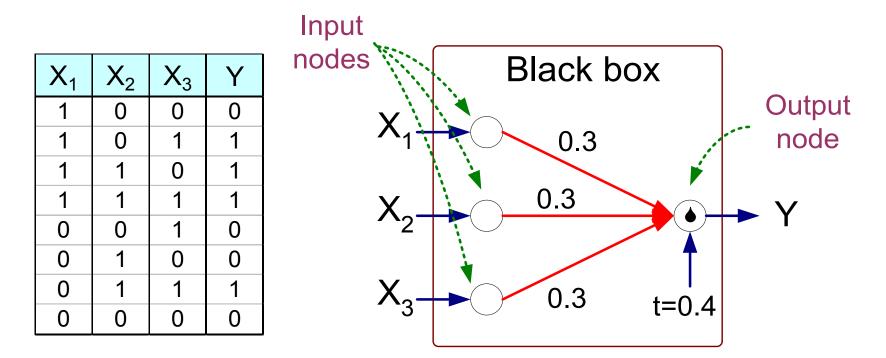
- Review of the semester
- Plus the last critique/review

Artificial Neural Networks (ANN)



Output Y is 1 if at least two of the three inputs are equal to 1.

Artificial Neural Networks (ANN)

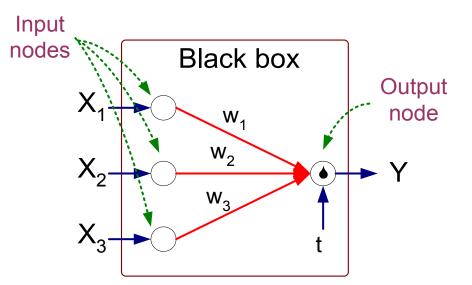


$$Y = I(0.3X_{1} + 0.3X_{2} + 0.3X_{3} - 0.4 > 0)$$

where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

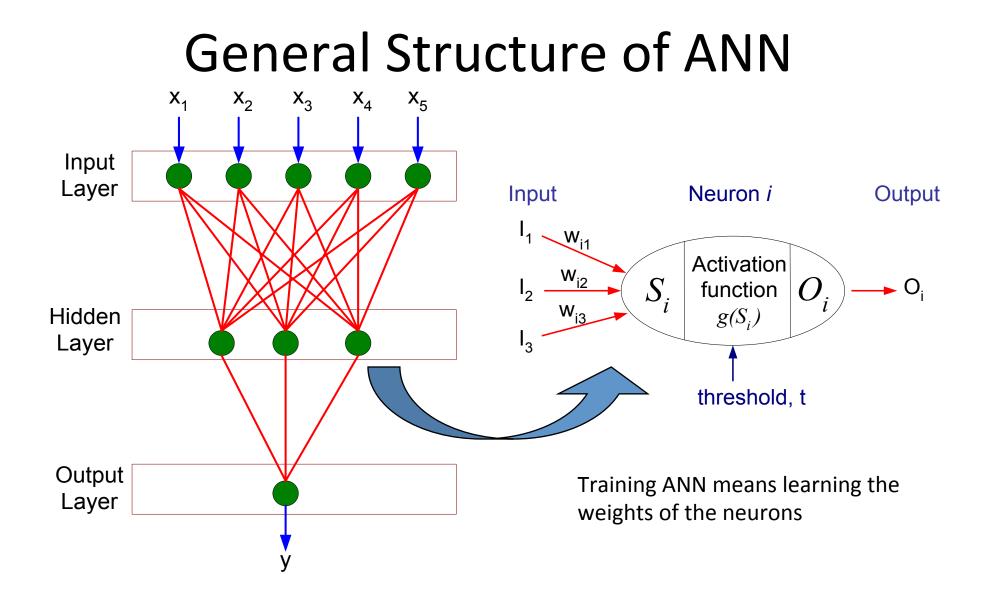
Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t



Perceptron Model

$$Y = I(\sum_{i} w_{i}X_{i} - t) \quad \text{or}$$
$$Y = sign(\sum_{i} w_{i}X_{i} - t)$$



Real-world problems are always messy

- Multiple models
- Key features
- Data Sparsity

- What do we do to solve a classification/inference/ prediction problem?
 - Data Cleaning
 - Feature selection
 - Inference model
 - Evaluation
- An example of how to solve real world application problem

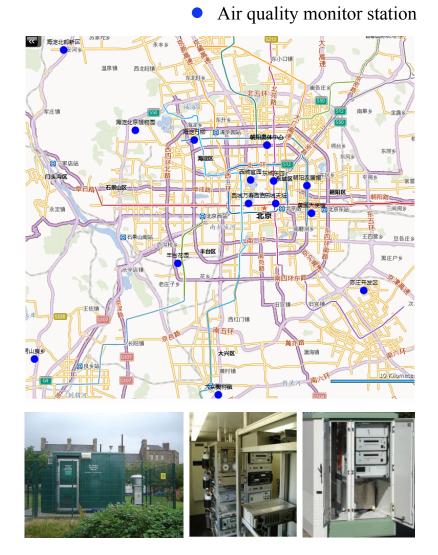
U-Air: When Urban Air Quality Meets Big Data

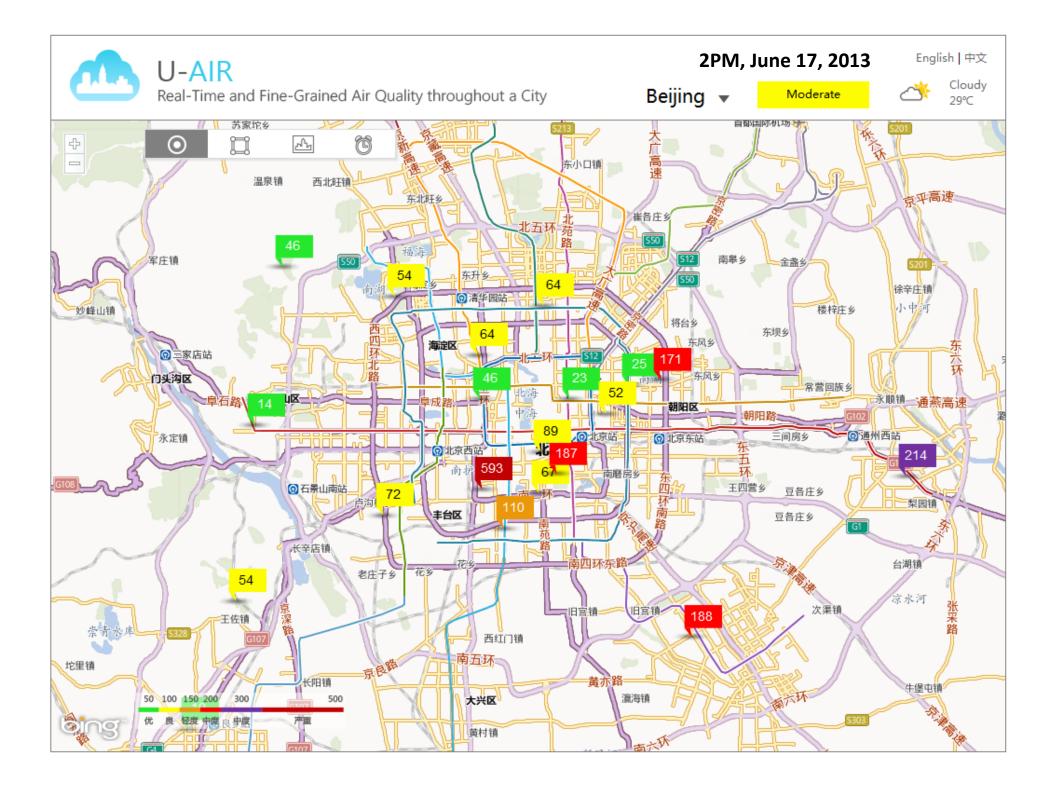
Authors: Yu Zheng, Microsoft Research Asia

Background

- Air quality
 - NO2, SO2
 - Aerosols: PM2.5, PM10
- Why it matters
 - Healthcare
 - Pollution control and dispersal
- Reality
 - Building a measurement station is not easy
 - A limited number of stations (poor coverage)

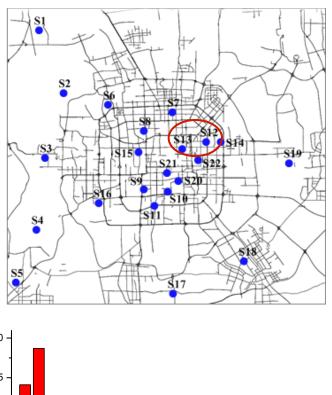
Beijing only has 22 air quality monitor stations in its urban areas (50kmx40km)

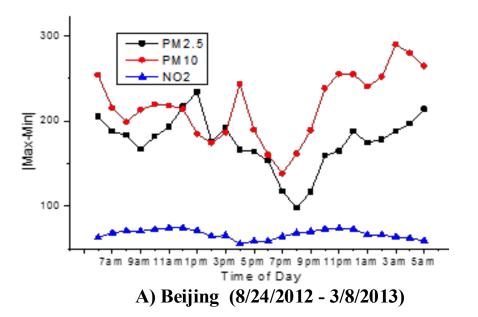


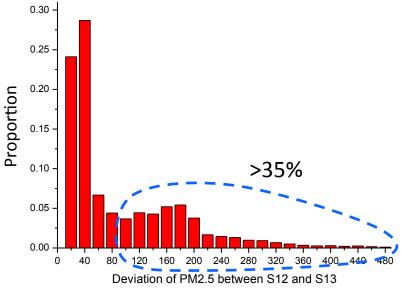


Challenges

- Air quality varies by locations non-linearly
- Affected by many factors
 - Weathers, traffic, land use...
 - Subtle to model with a clear formula



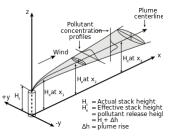




We do not really know the air quality of a location without a monitoring station!

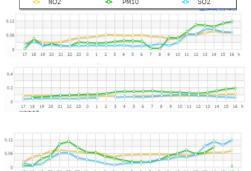
Challenges

- Existing methods do not work well
 - Linear interpolation
 - Classical dispersion models
 - Gaussian Plume models and Operational Street Canyon models
 - Many parameters difficult to obtain: Vehicle emission rates, street geometry, the roughness coefficient of the urban surface...
 - Satellite remote sensing
 - Suffer from clouds
 - Does not reflect ground air quality
 - Vary in humidity, temperature, location, and seasons
 - Outsourced crowd sensing using portable devices
 - Limited to a few gasses: CO2 and CO
 - Sensors for detecting aerosol are not portable: PM10, PM2.5
 - A long period of sensing process, 1-2 hours



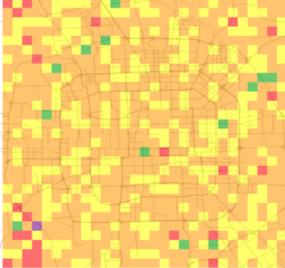
30,000 + USD, 10ug/m³ 202×85×168 (mm)

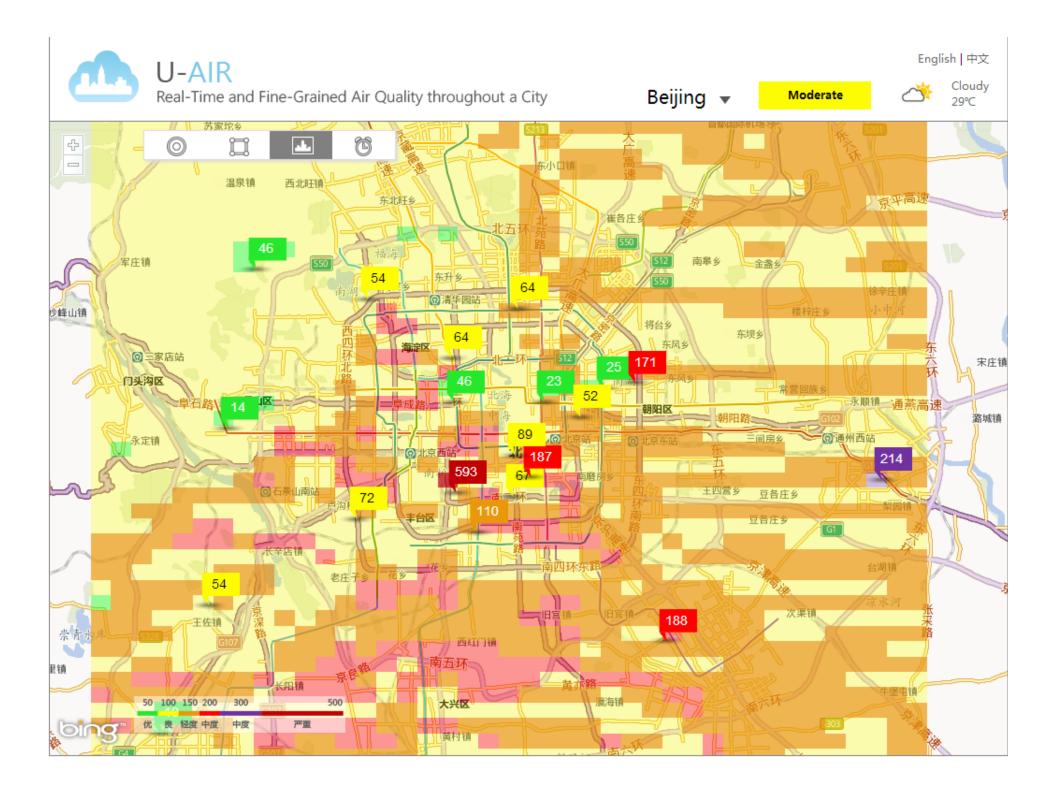
Inferring **Real-Time** and **Fine-Grained** air quality throughout a city using **Big Data**



Historical air quality data

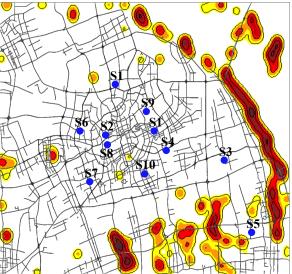
Real-time air quality reports





Applications

- Location-based air quality awareness
 - Fine-grained pollution alert
 - Routing based on air quality
- Deploying new monitoring stations
- A step towards identifying the root cause of air pollution

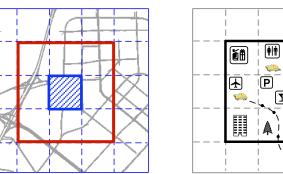


Difficulties

- 1. How to identify features from each kind of data source
- 2. Incorporate multiple heterogeneous data sources into a learning model
 - Spatially-related data: POIs, road networks
 - Temporally-related data: traffic, meteorology, human mobility
- 3. Data sparseness (little training data)
 - Limited number of stations
 - Many places to infer

Methodology Overview

- Partition a city into disjoint grids •
- Extract features for each grid from its affecting region •
 - Meteorological features
 - Traffic features
 - Human mobility features
 - POI features
 - Road network features



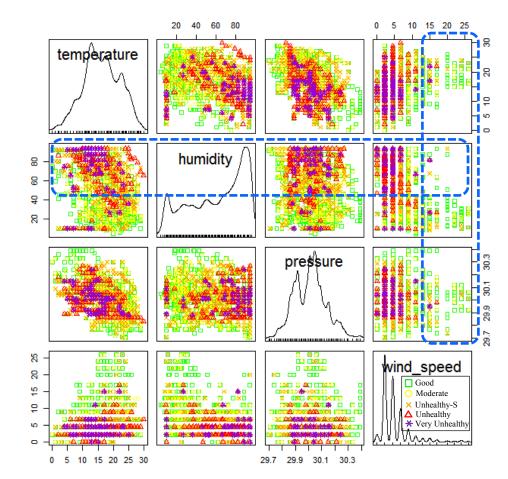
T

- Co-training-based semi-supervised learning model for each • pollutant
 - Predict the AQI labels
 - Data sparsity
 - Two classifiers

AQI	Values Levels of Health Concern	Colors
0-50	Good (G)	Green
51-100	Moderate (M)	Yellow
101-150	Unhealthy for sensitive groups (U-S)	Orange
151-200	Unhealthy (U)	Red
201-300	Very unhealthy (VU)	Purple
301-500	Hazardous (H)	Maroon

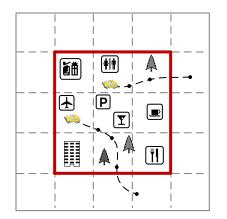
Meteorological Features: F_m

- Rainy, Sunny, Cloudy, Foggy
- Wind speed
- Temperature
- Humidity
- Barometer pressure

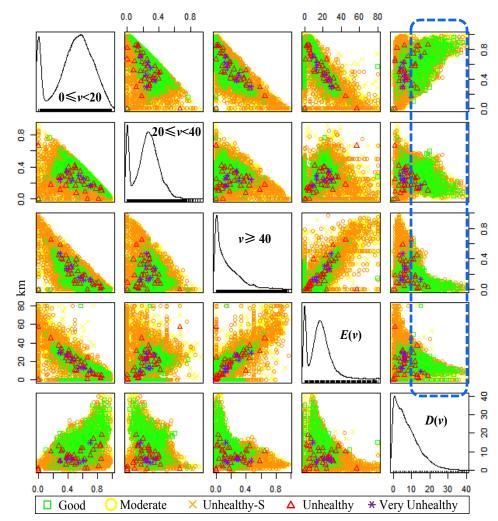


Traffic Features: F_t

- Distribution of speed by time: F(v)
- Expectation of speed: E(V)
- Standard deviation of Speed: D

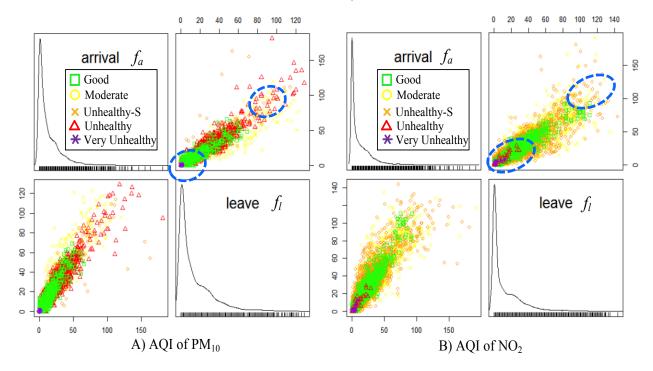


GPS trajectories generated by over 30,000 taxis From August to Dec. 2012 in Beijing



Human Mobility Features: F_h

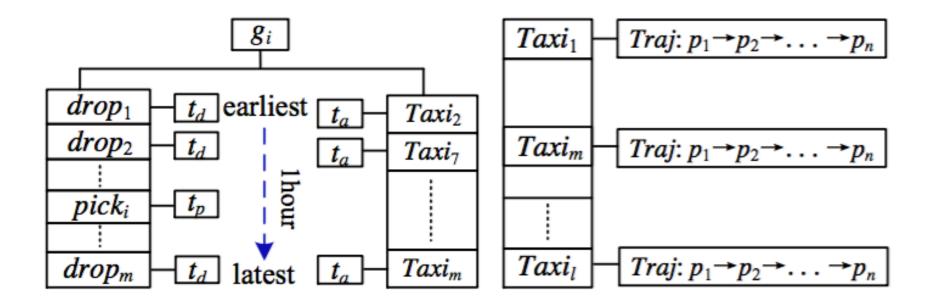
- Human mobility implies
 - Traffic flow
 - Land use of a location
 - Function of a region (like residential or business areas)
- Features: Number of arrivals f_a and leavings (departures) f_l



Parks vs factories

Extracting Traffic/Human Mobility Features

- Offline spatio-temporal indexing
- t_a : arrival time
- *Traj*: traj ID
- *I_i*: the index of the first GPS point (in the trajectory) entering a grid
- I_o : the index of the last GPS point (in the trajectory) entering the grid



POI Features: F_p

- Why POI
 - Indicate the land use and the function of the region
 - the traffic patterns in the region
- Features
 - Numbers of POIs over categories
 - Portion of vacant places
 - The changes in the number of POIs
 - Factories, shopping malls,
 - hotel and real estates
 - Parks, decoration and furniture markets

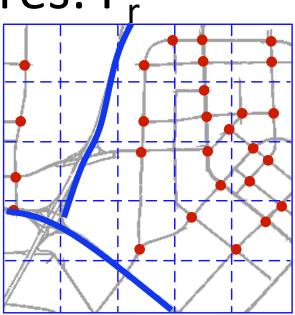


C1: Vehicle Services (gas stations, repair)	C ₇ : Sports	
C ₂ : Transportation spots	C ₈ : Parks	
C ₃ : Factories	C ₉ : Culture & education	
C ₄ : Decoration and furniture markets	C ₁₀ : Entertainment	
C ₅ : Food and beverage	C ₁₁ :Companies	
C ₆ : Shopping malls and Supermarkets	C ₁₂ :Hotels and real estates	

Road Network Features: F_r

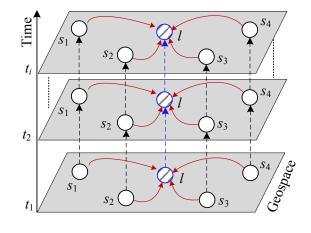
- Why road networks
 - Have a strong correlation with traffic flows
 - A good complementary of traffic modeling
- Features:
 - Total length of highways f_h
 - Total length of other (low-level) road segments f_r
 - The number of intersections f_s

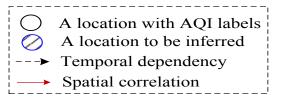
in the grid's affecting region

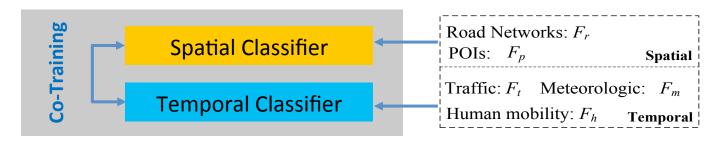


Semi-Supervised Learning Model

- Philosophy of the model
 - States of air quality
 - Temporal dependency in a location
 - Geo-correlation between locations
 - Generation of air pollutants
 - Emission from a location
 - Propagation among locations
 - Two sets of features
 - Spatially-related
 - Temporally-related







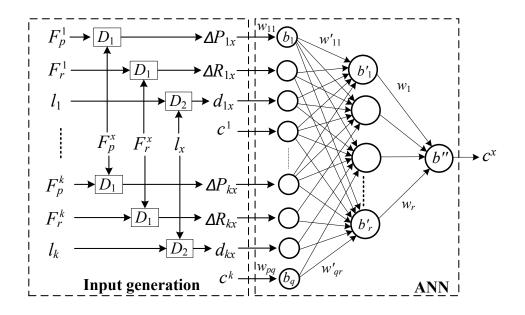
Co-Training-Based Learning Model

• Spatial classifier

- Model the spatial correlation between AQI of different locations
- Using spatially-related features
- Based on a BP neural network

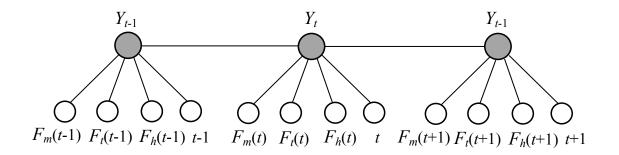
Input generation

- Select *n* stations to pair with
- Perform *m* rounds

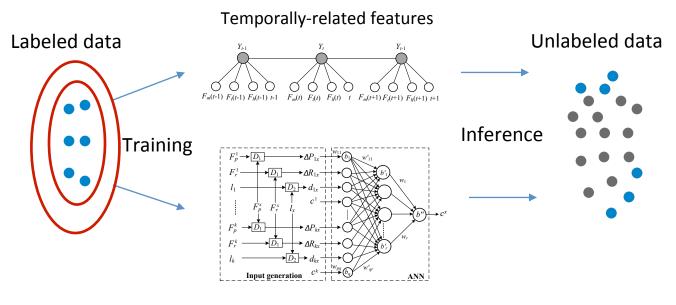


Co-Training-Based Learning Model

- Temporal classifier
 - Model the temporal dependency of the air quality in a location
 - Using temporally related features
 - Based on a Linear-Chain Conditional Random Field (CRF)

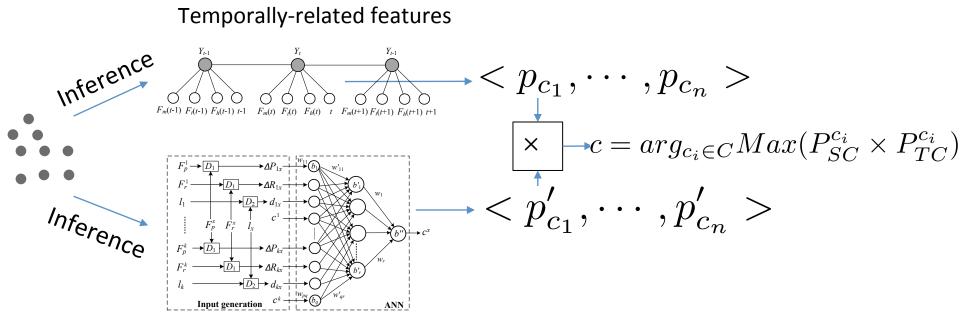


Learning Process



Spatially-related features

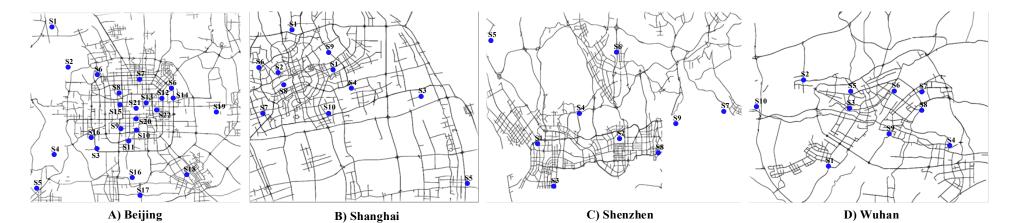
Inference Process



Spatially-related features

• Datasets

Data sources		Beijing	Shanghai	Shenzhen	Wuhan
POI	2012 Q1 2012 Q3	271,634 272,109	321,529 317,829	107,061 107,171	102,467 104,634
	#.Segments	162,246	171,191	45,231	38,477
	Highways	1,497km	1,963km	256km	1,193km
Road	Roads	18,525km	25,530km KM	6,100km	9,691km
	#. Intersec.	49,981	70,293	32,112	25,359
	#. Station	22	10	9	10
AQI	Hours	23,300	8,588	6,489	6,741
	Time spans	8/24/2012-3/8/201 3	1/19/2013-3/8/20 13	2/4/2013-3/8/201 3	2/4/2013-3/8/2013
Urban Size (grids)		5050km (2500)	5050km (2500)	5745km(2565)	4525km (1165)



• Ground Truth

- Remove a station
- Cross cities

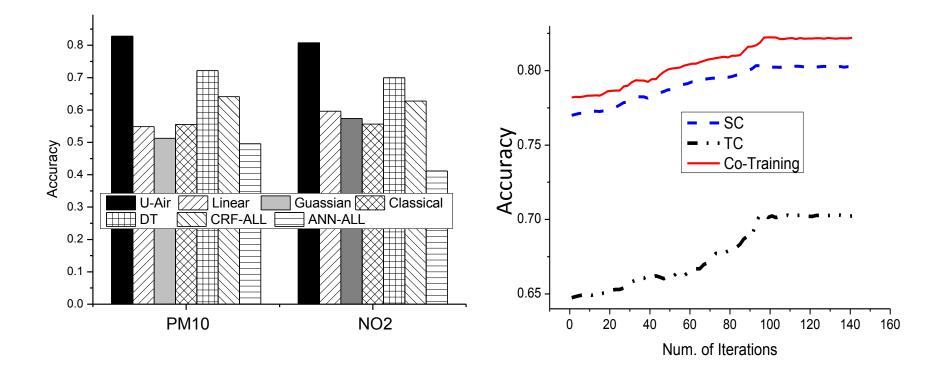
• Baselines

- Linear and Gaussian Interpolations
- Classical Dispersion Model
- Decision Tree (DT):
- CRF-ALL
- ANN-ALL

• Does every kind of feature count?

	PM10		NO2	
Features	Precision	Recall	Precision	Recall
Fm	0.572	0.514	0.477	0.454
Ft	0.341	0.36	0.371	0.35
Fh	0.327	0.364	0.411	0.483
Fp+Fr	0.441	0.443	0.307	0.354
Fm+Ft	0.664	0.675	0.634	0.635
Fm+Ft+Fp+Fr	0.731	0.734	0.701	0.691
Fm+Ft+Fp+Fr+Fh	0.773	0.754	0.723	0.704

Overall performance of the co-training



• Confusion matrix of Co-Training on PM₁₀

Ground Truth	Predictions					
	G	М	S	U		
G	3789	402	102	0	0.883	
М	602	3614	204	0	0.818	Recall
S	41	200	532	50	0.646	Ľ
U	0	22	70	219	0.704	
	0.855	0.853 Pre	0.586 ecision	0.814	0.82	28

• Performance of Spatial classifier

Cities	PM2.5		PM10		NO2	
	Prec.	Rec.	Prec.	Rec.	Prec.	Rec.
Beijing	0.764	0.763	0.762	0.745	0.730	0.749
Shanghai	0.705	0.725	0.702	0.718	0.715	0.706
Shenzhen	0.740	0.737	0.710	0.742	0.732	0.722
Wuhan	0.727	0.723	0.731	0.739	0.744	0.719

- Efficiency study
- Single grid 131s
- Inferring the AQIs for entire Beijing in 5 minutes

Procedures		Time(ms)	Procedures		Time(ms)
Feature extraction (per grid) Fr	Ft&Fh	53.2	Inference	SC	21.5
	Fp	28.8	(per grid)	ТС	13.1
	Fr	14.4	Total		131

Conclusion

- Infer fine-grained air quality with
 - Real-time and historical air quality readings from existing stations
 - Other data sources: meteorology, POIs, road network, human mobility, and traffic condition
- Co-Training-based semi-supervised learning approach
 - Deal with data sparsity by learning from unlabeled data
 - Model the spatial correlation among the air quality of different locations
 - Model the temporal dependency of the air quality in a location
- Results
 - 0.82 with traffic data (co-training)
 - 0.76 if only using spatial classifier

Questions?