Welcome to

DS504/CS586: Big Data Analytics Big Data Clustering Prof. Yanhua Li

Time: 6:00pm –8:50pm Thu Location: AK 232 Fall 2016

High Dimensional Data

Given a cloud of data points we want to understand its structure

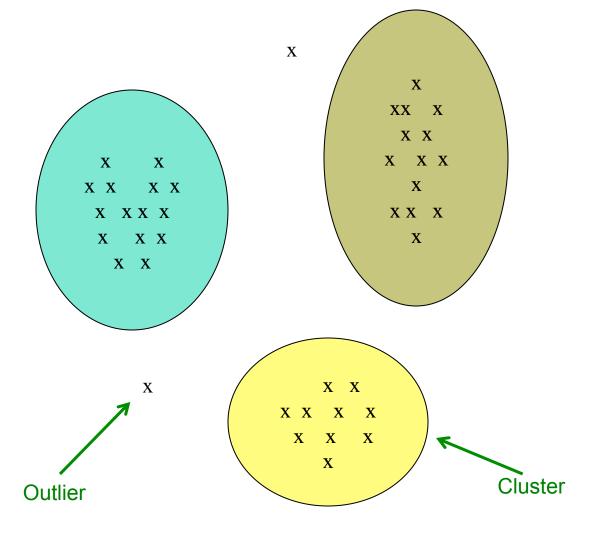
The Problem of Clustering

- Given a set of points, with a notion of distance between points, group the points into some number of clusters, so that
 - Members of a cluster are close/similar to each other
 - Members of different clusters are dissimilar

Usually:

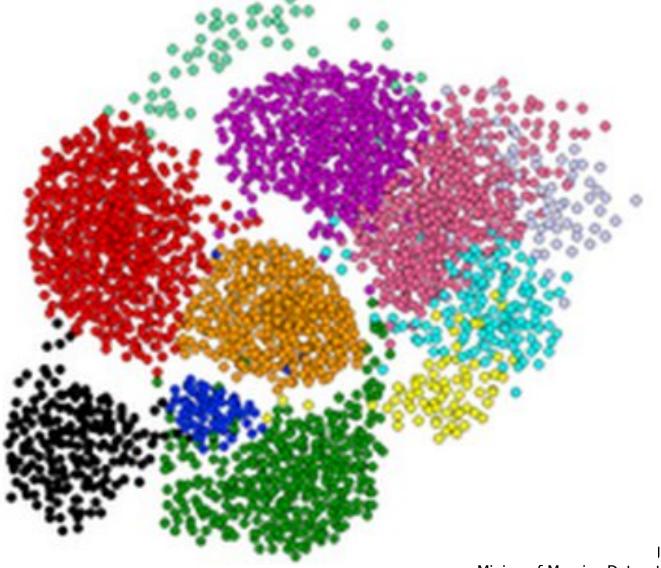
- Points are in a high-dimensional space
- Similarity is defined using a distance measure
 - Euclidean, Cosine, Jaccard distance, ...

Example: Clusters & Outliers



J. Leskovec, A. Rajaraman, J. Ullman: 4 Mining of Massive Datasets, http://

Clustering is a hard problem!



Why is it hard?

- Clustering in two dimensions looks easy
- Clustering small amounts of data looks easy
- And in most cases, looks are not deceiving
- Many applications involve not 2, but 10 or 10,000 dimensions
- * High-dimensional spaces look different:
- Almost all pairs of points are at about the same distance

Clustering Problem: Music CDs

Intuitively: Music divides into categories, and customers prefer a few categories

But what are categories really?

Represent a CD by a set of customers who bought it:

 Similar CDs have similar sets of customers, and vice-versa

> J. Leskovec, A. Rajaraman, J. Ullman: Mining of 7 Massive Datasets, http://www.mmds.org

Clustering Problem: Music CDs Space of all CDs:

- For each customer
 - Values in a dimension may be 0 or 1 only
 - A CD is a point in this space $(x_1, x_2, ..., x_k)$, where $x_i = 1$ iff the *i*th customer bought the CD
- For Amazon, the dimension is tens of millions
- Task: Find clusters of similar CDs

Clustering Problem: Documents

Finding topics:

- * Represent a document by a vector $(x_1, x_2, ..., x_k)$, where $x_i = 1$ iff the *i*th word appears in the document
 - It actually doesn't matter if k is infinite; i.e., we don't limit the set of words

Documents with similar sets of words may be about the same topic

Cosine, Jaccard, and Euclidean

- * As with CDs we have a choice when we think of documents as sets of words:
 - Sets as vectors: Measure similarity by the cosine distance $similarity = cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$
 - Sets as sets: Measure similarity by the Jaccard distance $|A \cup B| |A \cap B|$

$$d_J(A,B) = 1 - J(A,B) = \frac{|A \cup B| - |A \cap B|}{|A \cup B|}$$

• Sets as points: Measure similarity by Euclidean distance $d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2}$

$$= \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}.$$
 J. Leskovec, A. Rajaraman, J. Ullman: 10
Mining of Massive Datasets, http://

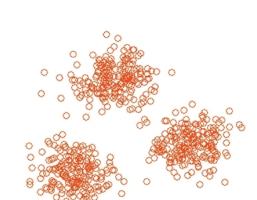
Overview: Methods of Clustering

* Hierarchical:

- (bottom up):
 - Initially, each point is a cluster
 - Repeatedly combine the two "nearest" clusters into one
- (top down):
 - Start with one cluster and recursively split it

* Point assignment:

- Maintain a set of clusters
- Points belong to "nearest" cluster

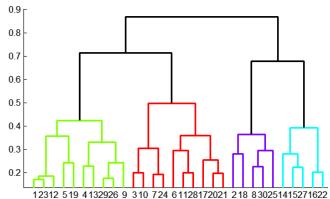


J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Hierarchical Clustering

 Key operation: Repeatedly combine two nearest clusters



*** Three important questions:**

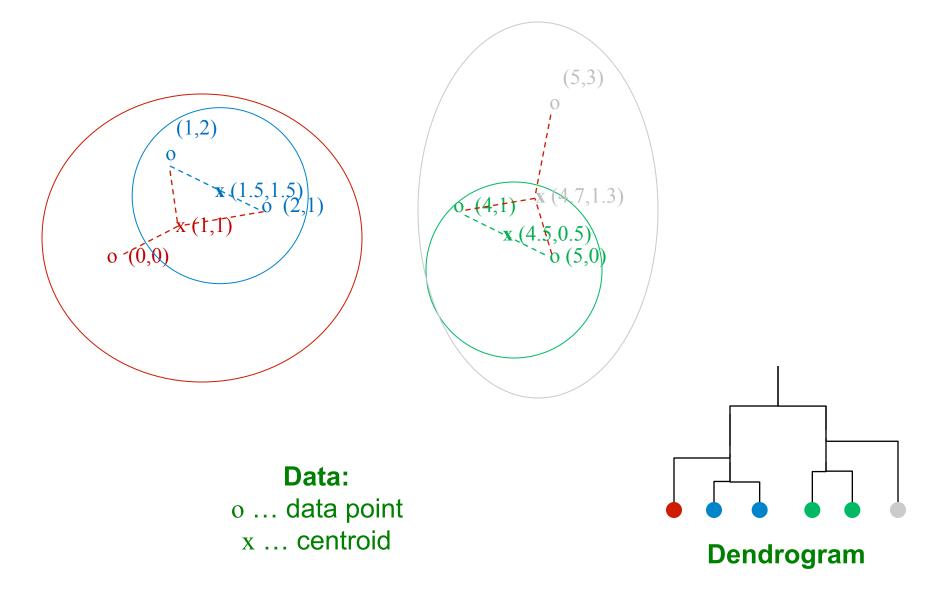
- I) How do you represent a cluster of more than one point?
- 2) How do you determine the "nearness" of clusters?
- **3)** When to stop combining clusters?

Hierarchical Clustering

- * Key operation: Repeatedly combine two nearest clusters
- * (I) How to represent a cluster of many points?
 - Key problem: As you merge clusters, how do you represent the "location" of each cluster, to tell which pair of clusters is closest?
 - Euclidean case: each cluster has a centroid = average of its (data)points
- * (2) How to determine "nearness" of clusters?
 - Measure cluster distances by distances of centroids

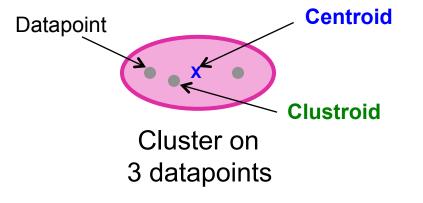
J. Leskovec, A. Rajaraman, J. Ullman: 13 Mining of Massive Datasets, http://

Example: Hierarchical clustering



"Closest" Point?

- * (I) How to represent a cluster of many points?
 - **clustroid** = point "<u>closest</u>" to other points
- * Possible meanings of "closest":
 - Smallest maximum distance to other points
 - Smallest average distance to other points
 - Smallest sum of squares of distances to other points
 - For distance metric **d** clustroid **c** of cluster **C** is: $\min_{c} \sum_{c} d(x,c)^{2}$



Centroid is the avg. of all (data)points in the cluster. This means centroid is an "artificial" point.

Clustroid is an **existing** (data)point that is "closest" to all other points in the cluster. 15

Defining "Nearness" of Clusters

* (2) How do you determine the "nearness" of clusters?

Approach I:

Intercluster distance = minimum of the distances between any two points, one from each cluster

Approach 2:

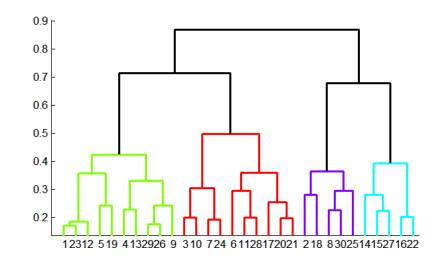
Pick a notion of "**cohesion**" of clusters, e.g., maximum distance in the cluster

• Merge clusters whose *union* is most cohesive

Cohesion

- Approach 2.1: Use the diameter of the merged cluster = maximum distance between points in the cluster
- Approach 2.2: Use the average distance between points in the cluster
- * Approach 2.3: Use a density-based approach
 - Take the diameter or avg. distance, e.g., and divide by the number of points in the cluster

Implementation



* Naïve implementation of hierarchical clustering:

- At each step, compute pairwise distances between all pairs of clusters O(N²), with up to N steps.
- Then merge with in total $O(N^3)$

Too expensive for really big datasets that do not fit in memory

J. Leskovec, A. Rajaraman, J. Ullman: 18 Mining of Massive Datasets, http://

k-means clustering

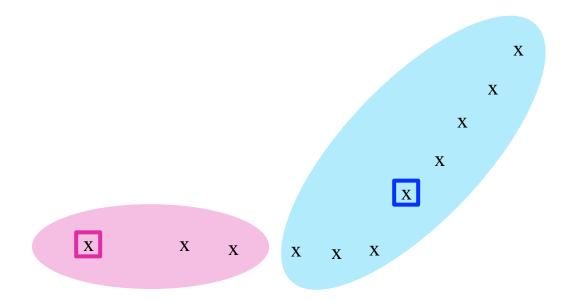
k-means Algorithm(s)

- Assumes Euclidean space/distance
- Start by picking k, the number of clusters
- Initialize clusters by picking one point per cluster
 - Example: Pick one point at random, then k-l other points, each as far away as possible from the previous points

Populating Clusters

- I) For each point, place it in the cluster whose current centroid it is nearest
- After all points are assigned, update the locations of centroids of the k clusters
- 3) Reassign all points to their closest centroid
 Sometimes moves points between clusters
- * Repeat 2 and 3 until convergence
 - Convergence: Points don't move between clusters and centroids stabilize

Example: Assigning Clusters

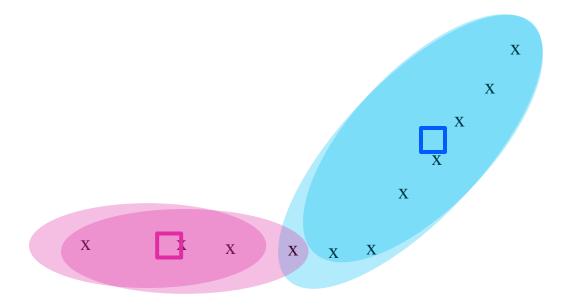


x ... data point ... centroid

Clusters after round 1

J. Leskovec, A. Rajaraman, J. Ullman: 22 Mining of Massive Datasets, http://

Example: Assigning Clusters

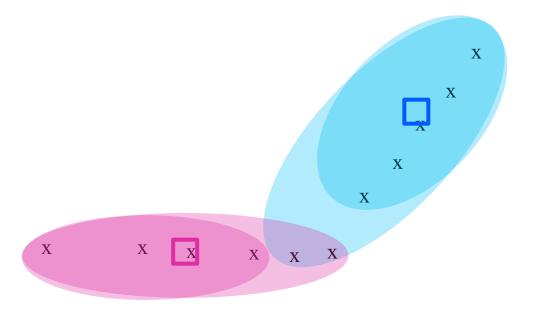


x ... data point ... centroid

Clusters after round 2

J. Leskovec, A. Rajaraman, J. Ullman: 23 Mining of Massive Datasets, http://

Example: Assigning Clusters



x ... data point ... centroid

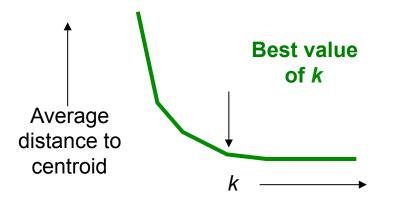
Clusters at the end

J. Leskovec, A. Rajaraman, J. Ullman: 24 Mining of Massive Datasets, http://

Getting the k right

How to select k?

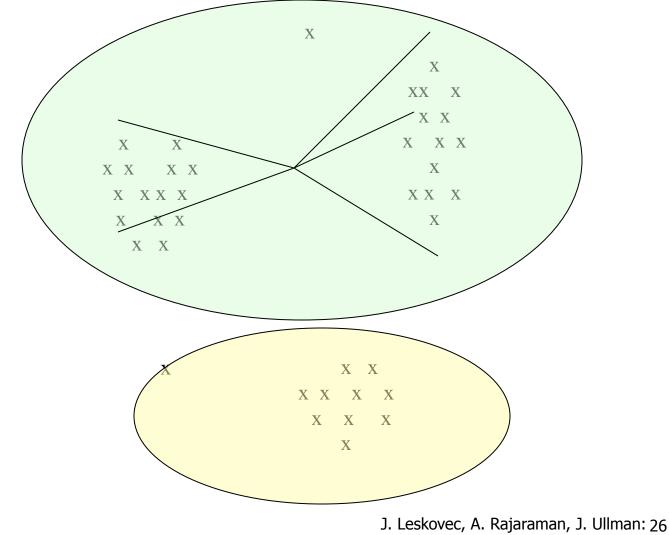
- Try different k, looking at the change in the average distance to centroid as k increases
- Average falls rapidly until right k, then changes little



J. Leskovec, A. Rajaraman, J. Ullman: Mining of 25 Massive Datasets, http://www.mmds.org

Example: Picking k=2

Too few; many long distances to centroid.



Mining of Massive Datasets, http://

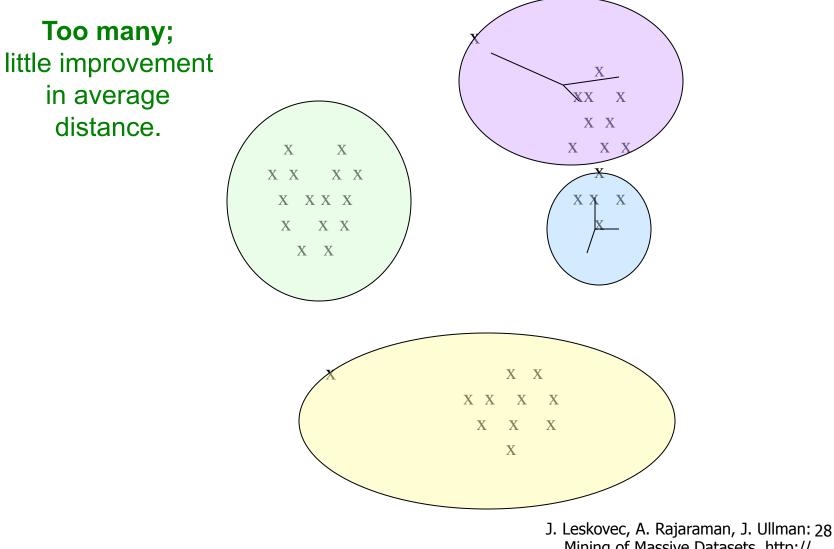
Example: Picking k=3

Х XX X XX X X Х Х XX X Х X X XХ ХХ Х Х XX Х Х Х Х

Just right; distances rather short.

> J. Leskovec, A. Rajaraman, J. Ullman: 27 Mining of Massive Datasets, http://

Example: Picking k



Mining of Massive Datasets, http://

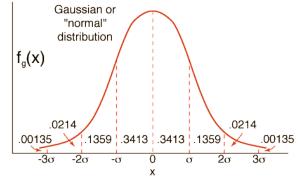
Populating Clusters

- I) For each point, place it in the cluster whose current centroid it is nearest
- After all points are assigned, update the locations of centroids of the k clusters
- 3) Reassign all points to their closest centroid
 Sometimes moves points between clusters
- * Repeat 2 and 3 until convergence
 - Convergence: Points don't move between clusters and centroids stabilize

The BFR Algorithm

Extension of k-means to large data

BFR Algorithm



Solution of k-means designed to handle very large (disk-resident) data sets

- Assumes that clusters are normally distributed around a centroid in a Euclidean space
 - Standard deviations in different dimensions may vary
 - Clusters are axis-aligned ellipses
- Efficient way to summarize clusters
 (want memory required O(clusters) and not O(data))

BFR Algorithm

- Points are read from disk one main-memoryfull at a time
- Most points from previous memory loads are summarized by simple statistics
- To begin, from the initial load we select the initial k centroids by some sensible approach:
 - Take k random points
 - Take a small random sample and cluster optimally
 - Take a sample; pick a random point, and then
 k-1 more points, each as far from the previously selected points as possible

J. Leskovec, A. Rajaraman, J. Ullman: 32 Mining of Massive Datasets, http://

Three Classes of Points

3 sets of points which we keep track of:

* Discard set (DS):

Points close enough to a centroid to be summarized

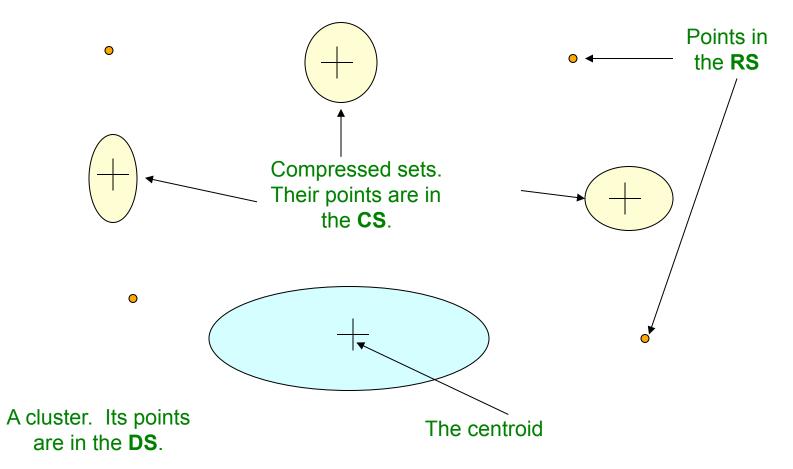
Compression set (CS):

- Groups of points that are close together but not close to any existing centroid
- These points are summarized, but not assigned to a cluster

* Retained set (RS):

Isolated points waiting to be assigned to a compression set

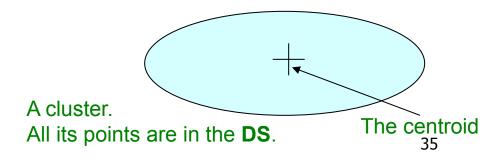
BFR: "Galaxies" Picture



Discard set (DS): Close enough to a centroid to be summarized **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points 34 Summarizing Sets of Points

For each cluster, the discard set (DS) is <u>summarized</u> by:

- The number of points, N
- The vector SUM, whose ith component is the sum of the coordinates of the points in the ith dimension
- The vector SUMSQ: ith component = sum of squares of coordinates in ith dimension

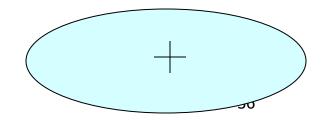


Summarizing Points: Comments

* 2d + I values represent any size cluster

- d = number of dimensions
- Average in each dimension (the centroid) can be calculated as SUM_i / N
 - SUM_i = ith component of SUM
- Variance of a cluster's discard set in dimension i is: (SUMSQ_i / N) – (SUM_i / N)²
 - And standard deviation is the square root of that
- Next step: Actual clustering

Note: Dropping the "axis-aligned" clusters assumption would require storing full covariance matrix to summarize the cluster. So, instead of **SUMSQ** being a *d*-dim vector, it would be a *d x d* matrix, which is too big!



The "Memory-Load" of Points

Processing the "Memory-Load" of points (1):

- Find those points that are "sufficiently close" to a cluster centroid and add those points to that cluster and the DS
 - These points are so close to the centroid that they can be summarized and then discarded
- **2)** Use any main-memory clustering algorithm to cluster the remaining points and the old **RS**
 - Clusters go to the CS; outlying points to the RS Discard set (DS): Close enough to a centroid to be summarized. Compression set (CS): Summarized, but not assigned to a cluster Retained set (RS): Isolated points

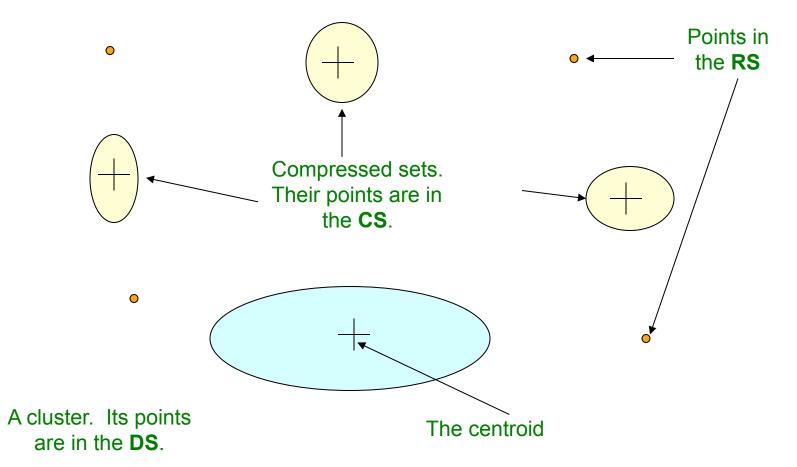
The "Memory-Load" of Points

Processing the "Memory-Load" of points (2):

- **3) DS set:** Adjust statistics of the clusters to account for the new points
 - Add Ns, SUMs, SUMSQs
- 4) Consider merging compressed sets in the CS
- 5) If this is the last round, merge all compressed sets in the CS and all RS points into their nearest cluster

Discard set (DS): Close enough to a centroid to be summarized. Compression set (CS): Summarized, but not assigned to a cluster Retained set (RS): Associated Baimagian, J. Ullman: 38 Mining of Massive Datasets, http://

BFR: "Galaxies" Picture



Discard set (DS): Close enough to a centroid to be summarized Compression set (CS): Summarized, but not assigned to a cluster Retained set (RS): Lisolated, Rajardinan, J. Ullman: 39 Mining of Massive Datasets, http://

A Few Details...

* QI) How do we decide if a point is "close enough" to a cluster that we will add the point to that cluster?

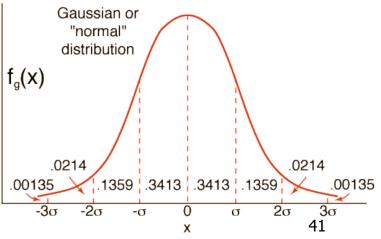
* Q2) How do we decide whether two compressed sets (CS) deserve to be combined into one?

How Close is Close Enough?

* QI) We need a way to decide whether to put a new point into a cluster (and discard)

*** BFR suggests two ways:**

- The Mahalanobis distance is less than a threshold
- High likelihood of the point belonging to currently nearest centroid
 Gaussian or



Mahalanobis Distance

- Normalized Euclidean distance from centroid
- For point (x₁, ..., x_d) and centroid (c₁, ..., c_d)
 - 1. Normalize in each dimension: $y_i = (x_i c_i) / \sigma_i$
 - 2. Take sum of the squares of the y_i
 - 3. Take the square root

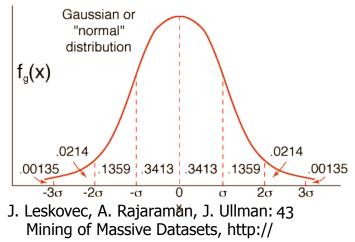
$$d(x,c) = \sqrt{\sum_{i=1}^{d} \left(\frac{x_i - c_i}{\sigma_i}\right)^2}$$

 σ_i ... standard deviation of points in the cluster in the *i*th dimension

J. Leskovec, A. Rajaraman, J. Ullman: 42 Mining of Massive Datasets, http://

Mahalanobis Distance

- * If clusters are normally distributed in **d** dimensions, then after transformation, one standard deviation = \sqrt{d}
 - i.e., 68% of the points of the cluster will have a Mahalanobis distance $<\sqrt{d}$
- Accept a point for a cluster if its M.D. is < some threshold, e.g. 2 standard deviations



Should 2 CS clusters be combined?

Q2) Should 2 CS subclusters be combined?

- Compute the variance of the combined subcluster
 - N, SUM, and SUMSQ allow us to make that calculation quickly
- Combine if the combined variance is below some threshold

Summary

 Clustering: Given a set of points, with a notion of distance between points, group the points into some number of clusters

* Algorithms:

- Agglomerative hierarchical clustering:
 - Centroid and clustroid
- k-means:
 - Initialization, picking k

BFR

J. Leskovec, A. Rajaraman, J. Ullman: 45 Mining of Massive Datasets, http://

Any Questions?