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High Dimensional Data

+ Given a cloud of data points we want
to understand its structure



The Problem of Clustering

% Given a set of points, with a notion of
distance between points, group the points
into some number of clusters, so that

= Members of a cluster are close/similar to each other
= Members of different clusters are dissimilar
+» Usually:
®* Points are in a high-dimensional space
= Similarity is defined using a distance measure

* Euclidean, Cosine, Jaccard distance, ...

J. Leskovec, A. Rajaraman, J. Ullman: Mining of 3
Massive Datasets, http://www.mmds.org



Example: Clusters & Outliers
/ -

Outlier Cluster
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Clustering is a hard problem!

J. Ulman: 5
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Why is it hard?

% Clustering in two dimensions looks easy
% Clustering small amounts of data looks easy
% And in most cases, looks are not deceiving

+ Many applications involve not 2, but 10 or
10,000 dimensions

+ High-dimensional spaces look
different:

% Almost all pairs of points are at about the
same distance

J. Leskovec, A. Rajaraman, J. Ullman: 6
Mining of Massive Datasets, http://



Clustering Problem: Music CDs

+ Intuitively: Music divides into categories,
and customers prefer a few categories

" But what are categories really!?
% Represent a CD by a set of customers who

bought it:

+ Similar CDs have similar sets of customers,
and vice-versa

J. Leskovec, A. Rajaraman, J. Ullman: Mining of 7
Massive Datasets, http://www.mmds.org



Clustering Problem: Music CDs

Space of all CDs:

% For each customer
®* Values in a dimension may be 0 or | only

= A CD is a point in this space (x|, Xy,..., X;),
where x; = | iff the i *" customer bought the CD

+ For Amazon, the dimension is tens of millions

+ Task: Find clusters of similar CDs

J. Leskovec, A. Rajaraman, J. Ullman: 8
Mining of Massive Datasets, http://



Clustering Problem: Documents

Finding topics:

% Represent a document by a vector
(X,s Xy,..., X,), Where x. = | iff the i " word
appears in the document

" |t actually doesn’t matter if k is infinite; i.e., we
don’t limit the set of words

+ Documents with similar sets of words
may be about the same topic

J. Leskovec, A. Rajaraman, J. Ullman: 9
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Cosine, Jaccard, and Euclidean

<+ As with CDs we have a choice when
we think of documents as sets of
words:

= Sets as vectors: Measure similarity by the

cosine distance A.B .E AiB;
similarity = cos(fl) = TATIB] = =
Z A Z B?

= Sets as sets: Measure similarity by the

Jaccard distance
d_](fl.B) — 1 — ](:LB) =

AU B| - |ANB|
AuB]
" Sets as points: Measure similarity by

Euclidean dist nce _
P, Q)= V(g —p1)? + (g2 = p2)? + - + (g — )’

= Z(q,; — pi)®. 1. Leskovec, A. Rajaraman, J. Ullman: 10
\ i—1 Mining of Massive Datasets, http://



Overview: Methods of Clustering

<+ Hierarchical:

08}

" (bottom up):

o

* Initially, each point is a cluster

* Repeatedly combine the two | ‘ ‘

“nearest” clusters into one O r|1r_r|-| IJ;IW ’ile h Jﬁ
0 (top dOWn)3 )
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* Start with one cluster and recursively split it

+ Point assignment:
" Maintain a set of clusters
" Points belong to “nearest” cluster

3. Leskovec, A. Rajaraman, 3. Uliman: Mining of
Massive Datasets, http://www.mmds.org



Hierarchical Clustering

+~ Key operation: M ‘ |
Repeatedly combine ol
two nearest clusters iRt TY Ty
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+» Three important questions:

* 1) How do you represent a cluster of more
than one point!

* 2) How do you determine the “nearness” of
clusters?

" 3) When to stop combining clusters!?

J. Leskovec, A. Rajaraman, J. Ullman: 12
Mining of Massive Datasets, http://



Hierarchical Clustering

+ Key operation: Repeatedly combine two
nearest clusters

% (1) How to represent a cluster of many
points?
= Key problem: As you merge clusters, how do you

represent the “location” of each cluster, to tell which
pair of clusters is closest!?

* Euclidean case: each cluster has a
centroid = average of its (data)points

+ (2) How to determine ‘“‘nearness” of
clusters?

" Measure cluster distances by distances of centroids

J. Leskovec, A. Rajaraman, J. Ullman: 13
Mining of Massive Datasets, http://



Example: Hierarchical clustering

0 ...I(:j):ttaa:point Eﬁ I_lj

X ... centroid Dendrogram



“Closest” Point!

% (1) How to represent a cluster of many
points?
° — ° ¢ ’» o
clustroid = point “closest” to other points
+ Possible meanings of “closest’’:
" Smallest maximum distance to other points
" Smallest average distance to other points
" Smallest sum of squares of distances to other points

* For distance metric d clustroid ¢ of cluster C is: ,
Centroid min E d(x, C)

Datapoint
xeC
Centroid is the avg. of all (data)points
in the cluster. This means centroid is
Clustroid

an “artificial” point.
Cluster on Clustroid is an existing (data)point
3 datapoints that is “closest” to all other pointg.in
the cluster.



Defining “Nearness” of Clusters

% (2) How do you determine the
‘““nearness’’ of clusters?

= Approach I:
Intercluster distance = minimum of the
distances between any two points, one from
each cluster

= Approach 2:
Pick a notion of “cohesion” of clusters, e.g,,
maximum distance in the cluster

* Merge clusters whose union is most cohesive

J. Leskovec, A. Rajaraman, J. Ullman: 16
Mining of Massive Datasets, http://



Cohesion

+» Approach 2.1: Use the diameter of the
merged cluster = maximum distance
between points in the cluster

% Approach 2.2: Use the average
distance between points in the cluster

%~ Approach 2.3: Use a density-based

approach

= Take the diameter or avg. distance, e.g., and
divide by the number of points in the cluster

J. Leskovec, A. Rajaraman, J. Ullman: 17
Mining of Massive Datasets, http://
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Implementation

+» Naive implementation of hierarchical
clustering:

= At each step, compute pairwise distances
between all pairs of clusters O(N?), with up to
N steps.

* Then merge with in total O(N3)

* Too expensive for really big datasets
that do not fit in memory

J. Leskovec, A. Rajaraman, J. Ullman: 18
Mining of Massive Datasets, http://



k-means clustering



k—means Algorithm(s)

% Assumes Euclidean space/distance
<+ Start by picking k, the number of clusters

< Initialize clusters by picking one point per
cluster
= Example: Pick one point at random, then k-1

other points, each as far away as possible from
the previous points

J. Leskovec, A. Rajaraman, J. Ullman: 20
Mining of Massive Datasets, http://



Populating Clusters

% 1) For each point, place it in the cluster whose
current centroid it is nearest

% 2) After all points are assigned, update the
locations of centroids of the k clusters

% 3) Reassign all points to their closest centroid
" Sometimes moves points between clusters

<+ Repeat 2 and 3 until convergence

* Convergence: Points don’t move between clusters
and centroids stabilize

J. Leskovec, A. Rajaraman, J. Ullman: 21
Mining of Massive Datasets, http://



Example: Assigning Clusters

X ... data point

D -+ centroid Clusters after round 1

J. Leskovec, A. Rajaraman, J. Ullman: 22
Mining of Massive Datasets, http://



Example: Assigning Clusters

X ... data point

D -+ centroid Clusters after round 2

J. Leskovec, A. Rajaraman, J. Ullman: 23
Mining of Massive Datasets, http://



Example: Assigning Clusters

X ... data point

D -+ centroid Clusters at the end

J. Leskovec, A. Rajaraman, J. Ullman: 24
Mining of Massive Datasets, http://



Getting the k right

How to select k?

+ Try different k, looking at the change in the
average distance to centroid as k increases

% Average falls rapidly until right k, then
changes little

Best value
of k
Average l
distance to
centroid

J. Leskovec, A. Rajaraman, J. Ullman: Mining of 25
Massive Datasets, http://www.mmds.org



Example: Picking k=2

Too few;

many long
distances
to centroid.

J. Leskovec, A. Rajaraman, J. Ullman: 26
Mining of Massive Datasets, http://



Example: Picking k=3

Just right;
distances
rather short.

J. Leskovec, A. Rajaraman, J. Ullman: 27
Mining of Massive Datasets, http://



Example: Picking k

Too many;
little improvement
In average
distance.

J. Leskovec, A. Rajaraman, J. Ullman: 28
Mining of Massive Datasets, http://



Populating Clusters

% 1) For each point, place it in the cluster whose
current centroid it is nearest

% 2) After all points are assigned, update the
locations of centroids of the k clusters

% 3) Reassign all points to their closest centroid
" Sometimes moves points between clusters

<+ Repeat 2 and 3 until convergence

* Convergence: Points don’t move between clusters
and centroids stabilize

J. Leskovec, A. Rajaraman, J. Ullman: 29
Mining of Massive Datasets, http://



The BFR Algorithm

Extension of k-means to large data



Gaussian or
"normal”
distribution

fo(x)

.0214

00135_>¢1.1359 |.3413 | 3413 |.1359 < .00135

% BFR [Bradley-Fayyad-Reina] isa =~ 7+ ==
variant of k-means designed to
handle very large (disk-resident) data sets

+» Assumes that clusters are normally distributed
around a centroid in a Euclidean space

= Standard deviations in different
dimensions may vary Q

* Clusters are axis-aligned ellipses

+» Efficient way to summarize clus
(want memory required O(clusters) and not O(data))

J. Leskovec, A. Rajaraman, J. Ullman: 31
Mining of Massive Datasets, http://



BFR Algorithm

% Points are read from disk one main-memory-
full at a time

+» Most points from previous memory
loads are summarized by simple
statistics

% To begin, from the initial load we select the
initial k centroids by some sensible approach:

d

d
d

ke k random points
<e a small random sample and cluster optimally

<e a sample; pick a random point, and then

k=1 more points, each as far from the previously
selected points as possible

J. Leskovec, A. Rajaraman, J. Ullman: 32
Mining of Massive Datasets, http://



Three Classes of Points

3fsets of points which we keep track
of:

+» Discard set (DS):

* Points close enough to a centroid to be
summarized

+» Compression set (CS):

* Groups of points that are close together but
not close to any existing centroid

* These points are summarized, but not
assigned to a cluster

+ Retained set (RS):

" |solated points waiting to be assigned to a
compression set

J. Leskovec, A. Rajaraman, J. Ullman: 33
Mining of Massive Datasets, http://



BFR: “Galaxies” Picture

Points in
©<+— the RS

Compressed sets.
‘\ Their points are in \.@
the CS.

A cluster. Its points

are in the DS. The centroid

Discard set (DS): Close enough to a centroid to be summarized
Compression set (CS): Summarized, but not assigned to a cluster
Retained set (RS): Isolated points 34



Summarizing Sets of Points

For each cluster, the discard set (DS) is
summarized by:

% The number of points, N

+ The vector SUM, whose i component is
the sum of the coordinates of the points in
the it" dimension

+ The vector SUMSQ: i*" component = sum
of squares of coordinates in i" dimension

A cluster. @

All its points are in the DS. The Ce3r;troid




Summarizing Points: Comments

+» 2d + | values represent any size cluster
*d = number of dimensions

% Average in each dimension (the centroid)
can be calculated as SUM./ N

= SUM. = it component of SUM
% Variance of a cluster’s discard set in dimension
iis: (SUMSQ,/ N) - (SUM./ N)?
* And standard deviation is the square root of that
+» Next step: Actual clustering

Note: Dropping the “axis-aligned” clusters assumption would require
storing full covariance matrix to summarize the cluster. So, instead of
SUMSAQ being a d-dim vector, it would be a d x d matrix, which is too
big!



The “Memory-Load” of Points

Processing the “Memory-Load” of points

(1):

+ 1) Find those points that are “sufficiently

close” to a cluster centroid and add t
points to that cluster and the DS

" These points are so close to the centroic
they can be summarized and then discard

hose

that
ed

% 2) Use any main-memory clustering a
cluster the remaining points and the o
= Clusters go to the CS; outlying points to

Discard set (DS): Close enough to a centroid

gorithm to
Ild RS

the RS

to be summarized.

Compression set (CS): Summarized, but not assigned to a cluster

Retained set (RS): Isolated points

37



The “Memory-Load” of Points

Processing the “Memory-Load” of points
(2):
+ 3) DS set: Adjust statistics of the clusters to
account for the new points
= Add Ns, SUMs, SUMSQs

+ 4) Consider merging compressed sets in the CS

+ 5) If this is the last round, merge all compressed
sets in the CS and all RS points into their
nearest cluster

Discard set (DS): Close enough to a centroid to be summarized.
Compression set (CS): Summarized, but not assigned to a cluster

Retained set (RS)L4sioketed Bajamman, J. Ullman: 38
Mining of Massive Datasets, http://



BFR: “Galaxies” Picture

Points in
©<+— the RS

Compressed sets.
‘\ Their points are in \.@
the CS.

A cluster. Its points

are in the DS. The centroid

Discard set (DS): Close enough to a centroid to be summarized
Compression set (CS): Summarized, but not assigned to a cluster

Retained set (RS){dsg(Rlef. RYEMMan, 1. Uliman: 39
Mining of Massive Datasets, http://



A Few Details...

+» Q1) How do we decide if a point is
“close enough” to a cluster that we
will add the point to that cluster?

+» Q2) How do we decide whether two
compressed sets (CS) deserve to be
combined into one?

J. Leskovec, A. Rajaraman, J. Ullman: 40
Mining of Massive Datasets, http://



How Close is Close Enough!?

+» Ql) We need a way to decide whether to
put a new point into a cluster (and discard)

+» BFR suggests two ways:
= The Mahalanobis distance is less than a threshold

* High likelihood of the point belonging to
currently nearest centroid

Gaussian or
"normal”
distribution

fo(x)

0214 | | | 0214
00135_>¢7|.1359 |.3413 | 3413 | 1359 {00135
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X 41




Mahalanobis Distance

Normalized Euclidean distance from centroid

For point (xy, ..., x;) and centroid (c,, ..., ¢,)
Normalize in each dimension: y; = (x; - ¢;) / o
Take sum of the squares of the y,

Take the square root

d
d(x,c) = z (xi; Ci)

N =1

o; ... standard deviation of points in the
cluster in the ™ dimension

J. Leskovec, A. Rajaraman, J. Ullman: 42
Mining of Massive Datasets, http://



Mahalanobis Distance

% If clusters are normally distributed in d
dimensions, then after transformation, one

standard deviation = vVd

" j.e., 68% of the points of the cluster will
have a Mahalanobis distance <vd

+ Accept a point for a cluster if
its M.D. is < some threshold,
e.g. 2 standard deviations

Gaussian or
"normal"
distribution

fy(x)

0214 ‘ . ‘
00135_>¢7|.1359 | .3413 | .3413 | .1359 " »<{__.00135
-C‘fo -éo -éT 0 cLT 2L0 310
J. Leskovec, A. Rajaramén, J. Ullman: 43
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Should 2 CS clusters be combined?

Q2) Should 2 CS subclusters be
combined?

+» Compute the variance of the combined
subcluster

" N, SUM, and SUMSQ allow us to make that

calculation quickly @

<+ Combine if the combined variance is
below some threshold

J. Leskovec, A. Rajaraman, J. Ullman: 44
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Summary

+» Clustering: Given a set of points, with a
notion of distance between points, group the
points into some number of clusters

+» Algorithms:
= Agglomerative hierarchical clustering:
* Centroid and clustroid

= k-means:

* Initialization, picking k

* BFR

J. Leskovec, A. Rajaraman, J. Ullman: 45
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Any Questions?



