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High Dimensional Data 
v  Given a cloud of data points we want 

to understand its structure 
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The Problem of Clustering 
v  Given a set of points, with a notion of 

distance between points, group the points 
into some number of clusters, so that  
§ Members of a cluster are close/similar to each other 
§ Members of different clusters are dissimilar 

v  Usually:  
§ Points are in a high-dimensional space 
§ Similarity is defined using a distance measure 

•  Euclidean, Cosine, Jaccard distance, … 
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Example: Clusters & Outliers 
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Clustering is a hard problem! 
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Why is it hard? 

v  Clustering in two dimensions looks easy 
v  Clustering small amounts of data looks easy 
v  And in most cases, looks are not deceiving 

v  Many applications involve not 2, but 10 or 
10,000 dimensions 

v  High-dimensional spaces look 
different:  

v  Almost all pairs of points are at about the 
same distance 
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Clustering Problem: Music CDs 
v  Intuitively: Music divides into categories, 

and customers prefer a few categories 
§ But what are categories really? 

v  Represent a CD by a set of customers who 
bought it: 

v  Similar CDs have similar sets of customers, 
and vice-versa 
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Clustering Problem: Music CDs 
Space of all CDs: 
v  For each customer 

§ Values in a dimension may be 0 or 1 only 
§ A CD is a point in this space (x1, x2,…, xk),  

where xi = 1 iff the i th customer bought the CD 

v  For Amazon, the dimension is tens of millions 

v  Task: Find clusters of similar CDs 
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Clustering Problem: Documents 

Finding topics: 
v  Represent a document by a vector   

(x1, x2,…, xk), where xi = 1 iff the i th word  
appears in the document 
§ It actually doesn’t matter if k is infinite; i.e., we 

don’t limit the set of words 

v  Documents with similar sets of words  
may be about the same topic 
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Cosine, Jaccard, and Euclidean 
v  As with CDs we have a choice when 

we think of documents as sets of 
words: 
§ Sets as vectors: Measure similarity by the 

cosine distance 

§ Sets as sets: Measure similarity by the 
Jaccard distance 

§ Sets as points: Measure similarity by 
Euclidean distance 
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Overview: Methods of Clustering 

v  Hierarchical: 
§ (bottom up): 

•  Initially, each point is a cluster 
•  Repeatedly combine the two  

“nearest” clusters into one 
§ (top down): 

•  Start with one cluster and recursively split it 

v  Point assignment: 
§ Maintain a set of clusters 
§ Points belong to “nearest” cluster 
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Hierarchical Clustering 

v  Key operation:  
Repeatedly combine  
two nearest clusters 

v  Three important questions: 
§ 1) How do you represent a cluster of more  

than one point? 
§ 2) How do you determine the “nearness” of 

clusters? 
§ 3) When to stop combining clusters? 
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Hierarchical Clustering 
v  Key operation: Repeatedly combine two 

nearest clusters 
v  (1) How to represent a cluster of many 

points? 
§ Key problem: As you merge clusters, how do you 

represent the “location” of each cluster, to tell which 
pair of clusters is closest? 

§ Euclidean case: each cluster has a  
centroid = average of its (data)points 

v  (2) How to determine “nearness” of 
clusters? 
§ Measure cluster distances by distances of centroids 
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Example: Hierarchical clustering 
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“Closest” Point? 
v  (1) How to represent a cluster of many 

points? 
clustroid  = point “closest” to other points 

v  Possible meanings of “closest”: 
§ Smallest maximum distance to other points 
§ Smallest average distance to other points 
§ Smallest sum of squares of distances to other points 

•  For distance metric d clustroid c of cluster C is: 
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Centroid is the avg. of all (data)points 
in the cluster. This means centroid is 
an “artificial” point. 
Clustroid is an existing (data)point 
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Defining “Nearness” of Clusters 

v  (2) How do you determine the 
“nearness” of clusters?  
§ Approach 1:  

Intercluster distance = minimum of the 
distances between any two points, one from 
each cluster 

§ Approach 2: 
Pick a notion of “cohesion” of clusters, e.g., 
maximum distance in the cluster 

•  Merge clusters whose union is most cohesive 
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Cohesion 

v  Approach 2.1: Use the diameter of the 
merged cluster = maximum distance 
between points in the cluster 

v  Approach 2.2: Use the average 
distance between points in the cluster 

v  Approach 2.3: Use a density-based 
approach 
§ Take the diameter or avg. distance, e.g., and 

divide by the number of points in the cluster 
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Implementation 

v  Naïve implementation of hierarchical 
clustering: 
§ At each step, compute pairwise distances  

between all pairs of clusters O(N2), with up to 
N steps. 

§ Then merge with in total O(N3) 

§ Too expensive for really big datasets  
that do not fit in memory 
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k-means clustering 



k–means Algorithm(s) 

v  Assumes Euclidean space/distance 

v  Start by picking k, the number of clusters 

v  Initialize clusters by picking one point per 
cluster 
§ Example: Pick one point at random, then  k-1 

other points, each as far away as possible from  
the previous points 
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Populating Clusters 
v  1) For each point, place it in the cluster whose 

current centroid it is nearest 

v  2) After all points are assigned, update the 
locations of centroids of the k clusters 

v  3) Reassign all points to their closest centroid 
§ Sometimes moves points between clusters 

v  Repeat 2 and 3 until convergence 
§ Convergence: Points don’t move between clusters 

and centroids stabilize 
J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://
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Example: Assigning Clusters 
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Example: Assigning Clusters 
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Example: Assigning Clusters 
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Getting the k right 

How to select k? 
v  Try different k, looking at the change in the 

average distance to centroid as k increases 
v  Average falls rapidly until right k, then 

changes little 
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Example: Picking k=2 

J. Leskovec, A. Rajaraman, J. Ullman: 
Mining of Massive Datasets, http://

www.mmds.org 

26 

x        x 
x  x      x  x 
x   x x  x      
x     x  x 

x   x 

x 
xx    x 
x  x         

x    x  x    
x 

x x   x 
x 

     x   x 
x  x    x    x 
  x    x     x 

x   

x 

x 

Too few; 
many long 
distances 

to centroid. 



Example: Picking k=3 
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Example: Picking k 
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Populating Clusters 
v  1) For each point, place it in the cluster whose 

current centroid it is nearest 

v  2) After all points are assigned, update the 
locations of centroids of the k clusters 

v  3) Reassign all points to their closest centroid 
§ Sometimes moves points between clusters 

v  Repeat 2 and 3 until convergence 
§ Convergence: Points don’t move between clusters 

and centroids stabilize 
J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://
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The BFR Algorithm 

Extension of k-means to large data 



BFR Algorithm 
v  BFR [Bradley-Fayyad-Reina] is a  

variant of k-means designed to  
handle very large (disk-resident) data sets 

v  Assumes that clusters are normally distributed 
around a centroid in a Euclidean space 
§ Standard deviations in different  

dimensions may vary 
•  Clusters are axis-aligned ellipses 

v  Efficient way to summarize clusters  
(want memory required O(clusters) and not O(data)) 

31 J. Leskovec, A. Rajaraman, J. Ullman: 
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BFR Algorithm 
v  Points are read from disk one main-memory-

full at a time 
v  Most points from previous memory 

loads are summarized by simple 
statistics 

v  To begin, from the initial load we select the 
initial k centroids by some sensible approach: 
§ Take k random points 
§ Take a small random sample and cluster optimally 
§ Take a sample; pick a random point, and then  

k–1 more points, each as far from the previously 
selected points as possible 

32 J. Leskovec, A. Rajaraman, J. Ullman: 
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Three Classes of Points 
3 sets of points which we keep track 
of: 
v  Discard set (DS):  

§ Points close enough to a centroid to be 
summarized 

v  Compression set (CS):  
§ Groups of points that are close together but 

not close to any existing centroid 
§ These points are summarized, but not 

assigned to a cluster 
v  Retained set (RS):  

§ Isolated points waiting to be assigned to a 
compression set 
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BFR: “Galaxies” Picture 
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Summarizing Sets of Points 
For each cluster, the discard set (DS) is 
summarized by: 
v  The number of points, N 
v  The vector SUM, whose ith component is 

the sum of the coordinates of the points in 
the ith dimension 

v  The vector SUMSQ: ith component = sum 
of squares of coordinates in ith dimension 
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Summarizing Points: Comments 

v  2d + 1 values represent any size cluster 
§ d  = number of dimensions 

v  Average in each dimension (the centroid)  
can be calculated as SUMi / N 
§ SUMi = ith component of SUM 

v  Variance of a cluster’s discard set in dimension 
i is: (SUMSQi / N) – (SUMi / N)2 

§ And standard deviation is the square root of that 
v  Next step: Actual clustering 

36 

Note: Dropping the “axis-aligned” clusters assumption would require 
storing full covariance matrix to summarize the cluster. So, instead of 
SUMSQ being a d-dim vector, it would be a d x d matrix, which is too 
big!  



The “Memory-Load” of Points 

Processing the “Memory-Load” of points 
(1): 
v  1) Find those points that are “sufficiently 

close” to a cluster centroid and add those 
points to that cluster and the DS 
§ These points are so close to the centroid that  

they can be summarized and then discarded 
v  2) Use any main-memory clustering algorithm to 

cluster the remaining points and the old RS 
§ Clusters go to the CS; outlying points to the RS 
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Discard set (DS):  Close enough to a centroid to be summarized. 
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The “Memory-Load” of Points 
Processing the “Memory-Load” of points 
(2): 
v  3) DS set: Adjust statistics of the clusters to 

account for the new points 
§ Add Ns, SUMs, SUMSQs 

v  4) Consider merging compressed sets in the CS 

v  5) If this is the last round, merge all compressed 
sets in the CS and all RS points into their 
nearest cluster 

J. Leskovec, A. Rajaraman, J. Ullman: 
Mining of Massive Datasets, http://

www.mmds.org 

38 

Discard set (DS):  Close enough to a centroid to be summarized. 
Compression set (CS):  Summarized, but not assigned to a cluster 

Retained set (RS): Isolated points 



BFR: “Galaxies” Picture 
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A cluster.  Its points 
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Discard set (DS):  Close enough to a centroid to be summarized 
Compression set (CS):  Summarized, but not assigned to a cluster 

Retained set (RS): Isolated points 



A Few Details… 

v  Q1) How do we decide if a point is 
“close enough” to a cluster that we 
will add the point to that cluster? 

v  Q2) How do we decide whether two 
compressed sets (CS) deserve to be 
combined into one? 

40 J. Leskovec, A. Rajaraman, J. Ullman: 
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How Close is Close Enough? 

v  Q1) We need a way to decide whether to 
put a new point into a cluster (and discard) 

v  BFR suggests two ways: 
§ The Mahalanobis distance is less than a threshold 
§ High likelihood of the point belonging to 

currently nearest centroid 
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Mahalanobis Distance 
v 

J. Leskovec, A. Rajaraman, J. Ullman: 
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σi … standard deviation of points in the 
cluster in the ith dimension 



Mahalanobis Distance 

v 
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Should 2 CS clusters be combined? 

Q2) Should 2 CS subclusters be 
combined? 
v  Compute the variance of the combined 

subcluster 
§ N, SUM, and SUMSQ allow us to make that 

calculation quickly 
v  Combine if the combined variance is  

below some threshold 

J. Leskovec, A. Rajaraman, J. Ullman: 
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Summary 
v  Clustering: Given a set of points, with a 

notion of distance between points, group the 
points into some number of clusters 

v  Algorithms: 
§ Agglomerative hierarchical clustering:  

•  Centroid and clustroid 
§ k-means:  

•  Initialization, picking k 
§ BFR 
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Any Questions? 


