
Welcome to

DS504/CS586: Big Data Analytics Data Pre-processing and Cleaning Prof. Yanhua Li

Time: 6:00pm – 8:50pm R Location: AK 232 Fall 2016

Data Quality Dimensions

Accuracy

Errors in data

Example:"Jhn" vs. "John"

Currency

Lack of updated data

Example: Residence (Permanent) Address: out-dated vs. up-to-dated

Consistency

Discrepancies into the data
 Example: ZIP Code and City consistent

Completeness

- Lack of data
- Partial knowledge of the records in a table

What do we mean by 'Data Quality'?

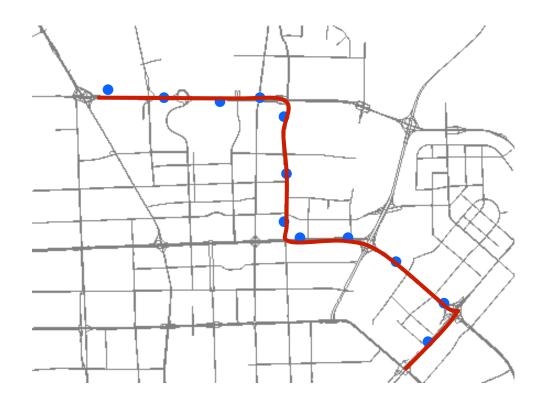
An essential or distinguishing characteristic necessary for data to be <u>fit for use</u>.

SDTS 02/92

The general intent of describing the quality of a particular dataset or record is to describe the <u>fitness</u> of that dataset or record <u>for a particular use</u> that one may have in mind for the data.

Chrisman, 1991

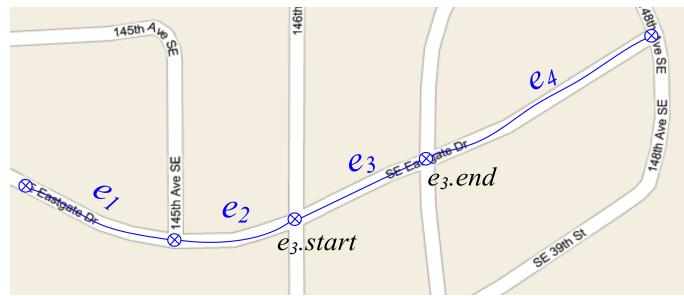
Loss of data quality


Loss of data quality can occur at many stages:

- At the time of collection
- During digitisation
- During documentation
- During storage and archiving
- During analysis and manipulation
- At time of presentation
- And through the use to which they are put

Data Cleaning

- Data cleaning tasks
 - Accuracy: Smooth out noisy data
 - Currency: Update the records
 - Consistency: Correct inconsistent data
 - **Completeness:** Fill in missing values


- Problem: (Sampled data)
 - GPS trajectory = a sequence of GPS locations with time stamps
 - Map a GPS trajectory onto a road network
 - a sequence of GPS points \rightarrow a sequence of road segments

Spatial Data

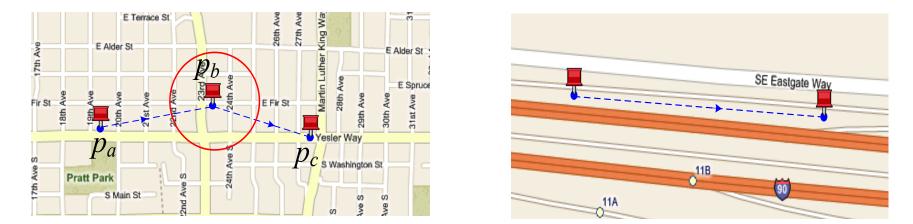
Road network: G=(V, E)

- V is a set of nodes
- E is a set of road segments
- $e \in E$, consists of two terminal nodes and a sequence of intermediate points describing the segment with a polyline
- Properties: e.len, e.dir, e.lanes

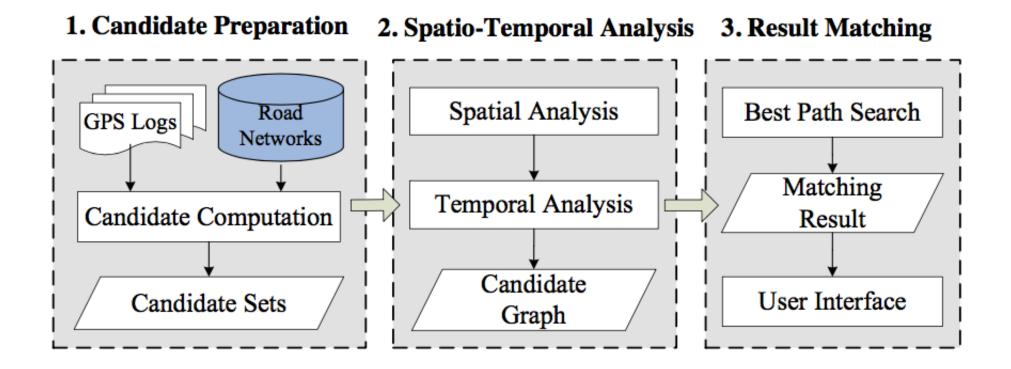
- Why it is important
 - A fundamental step in many transportation applications
 - Navigation and driving
 - Traffic analysis
 - Taxi dispatching and recommendations
 - Examples:
 - Find the vehicles passing Institute Road
 - Calculate the average travel time from WPI campus to MIT campus
 - When will the Bus 3 arrive at stop Highland St & North Ashland St

Simple solution for high-sampling-rate data

Weighted distance

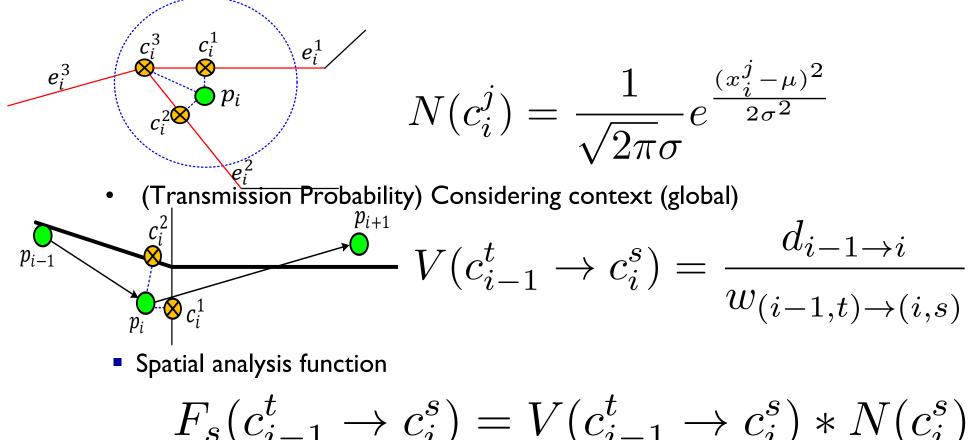

Map-Matching (for low sampling rate) Why difficult (a) Parallel roads b) Overpass c) Spur

- According to the additional information used
 - Geometric
 - Topological
 - Probabilistic
 - Advanced techniques
- According to the range of sampling points
 - Local/incremental
 - Global


Yu Zheng. <u>Trajectory Data Mining: An Overview</u>. ACM Transaction on Intelligent Systems and Technology, 6, 3, 2015.

Insights

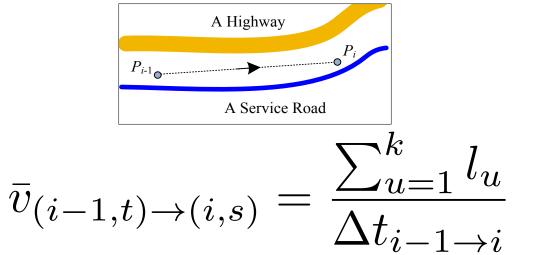
- Consider both local and global information
- Incorporating both spatial and temporal features



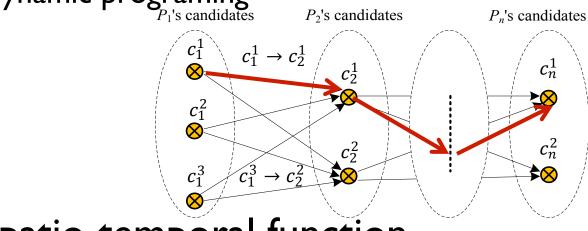
Map-matching framework

Solution (incorporating spatial information)

(Observation Probability) Model local possibility



- Solution (Cosine Similarity)
 - Temporal analysis function (Considering temporal information)


7

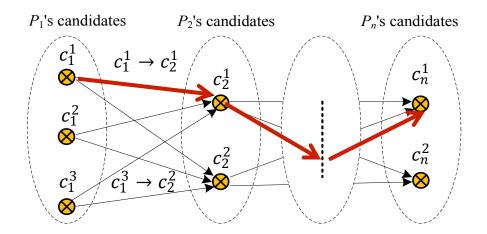
• Shortest path is used.

$$F_t(c_{i-1}^t \to c_i^s) = \frac{\sum_{u=1}^k (e'_u \cdot v \times \bar{v}_{(i-1,t)\to(i,s)})}{\sqrt{\sum_{u=1}^k (e'_u \cdot v)^2} \times \sqrt{\sum_{u=1}^k \bar{v}_{(i-1,t)\to(i,s)}^2}}$$

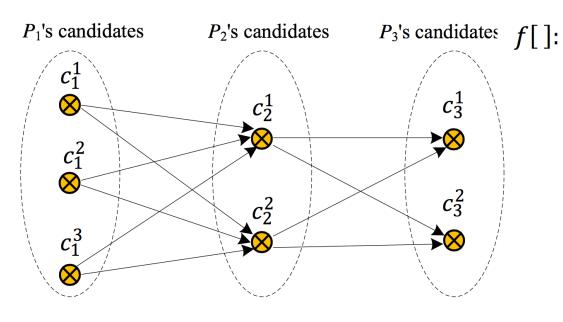
- Aggregating
 - Spatial and temporal information
 - Local and global information
- Dynamic programing *P*₁'s candidates

Spatio-temporal function

$$F(c_{i-1}^t \to c_i^s) = F_s(c_{i-1}^t \to c_i^s) * F_t(c_{i-1}^t \to c_i^s), 2 \le i \le n$$



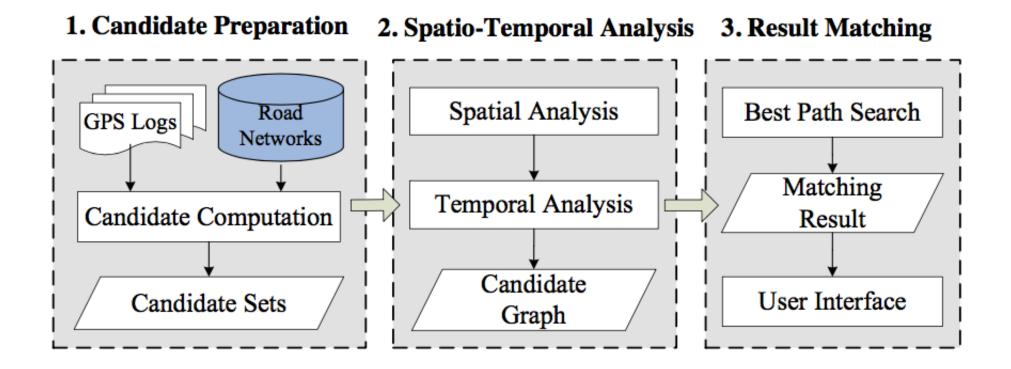
Path Selection


$$F(P_{c}) = N(c_{1}^{s_{1}}) + \sum_{i=2}^{n} F(c_{i-1}^{s_{i-1}} \to c_{i}^{s_{i}})$$
$$P = argmax_{P_{c}}F(P_{c})$$

 \boldsymbol{n}

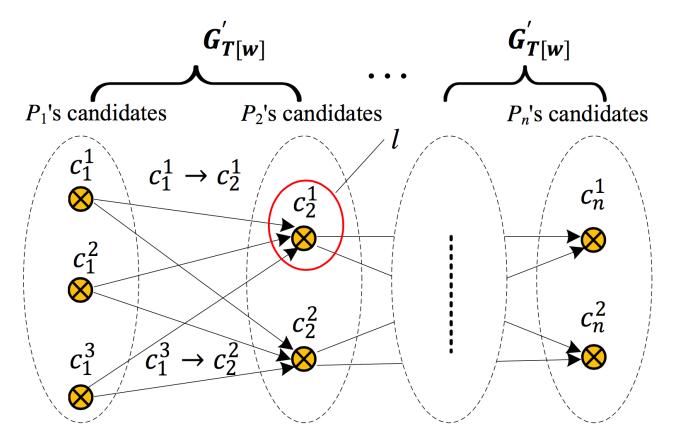
Dynamic programing

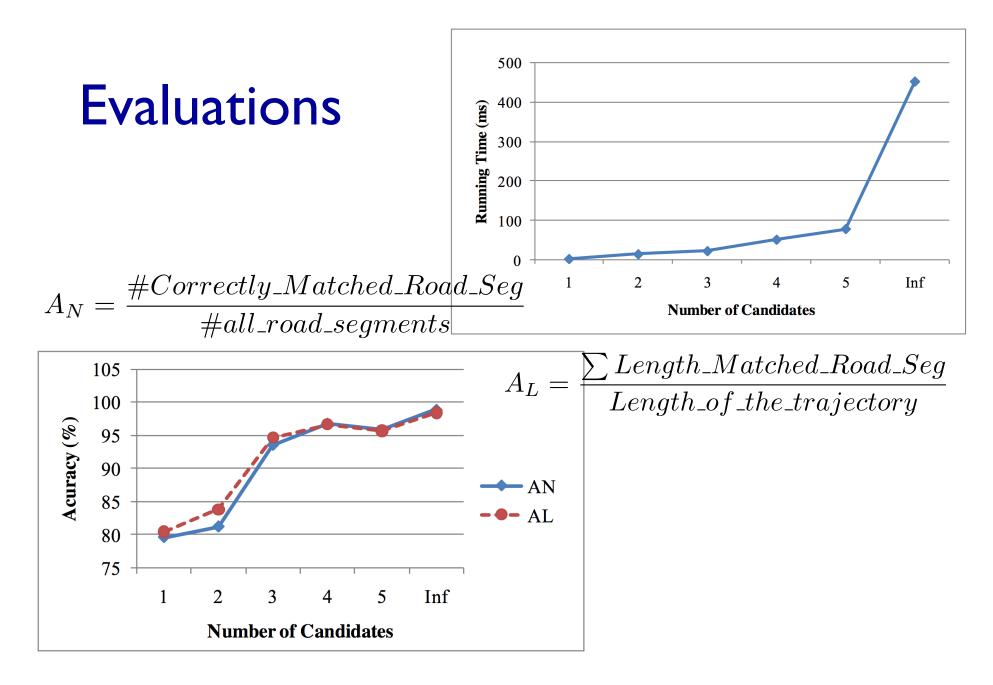
Map-matching Example


c_{1}^{1}	c_{1}^{2}	c_{1}^{3}	<i>c</i> ¹ ₂	c_{2}^{2}	<i>c</i> ₃ ¹	c_{3}^{2}
0.8	0.2	0.5				

<i>N</i> :	c_{1}^{1}	c_{1}^{2}	c_{1}^{3}	c_{2}^{1}	c_{2}^{2}	c_{3}^{1}	c_{3}^{2}
	0.8	0.2	0.5	0.6	0.6	0.4	0.3

c_1^1	(0.5,0.5)	(0.8,0.5)
c_{1}^{2}	(0.3,0.4)	(0.1,0.9)
c_{1}^{3}	(0.4,0.6)	(0.9,0.9)


(V, F_t) :	$\rightarrow c_2^1$	$\rightarrow c_2^2$		$\rightarrow c_3^1$	$\rightarrow c_3^2$
c_1^1	(0.5,0.5)	(0.8,0.5)	c_2^1	(0.2,0.6)	(0.1,0.7)
c_{1}^{2}	(0.3,0.4)	(0.1,0.9)	c_2^2	(0.3,0.3)	(0.5,0.9)


Map-matching framework

Localized ST-Matching Strategy

• Path Selection

Course Project

Project 1 directions

What is your project goal?

- What new story you want to tell?
- New contents to sample?
- New sampling methods via API?
- New statistics of YouTube, view count distribution, dynamics, or # uploaders/active users?
- Analysis on other websites, Twitter, Facebook, Foursquare, Yelp, with API interfaces

Broad impacts? (Keep in mind)

- ✤ How YouTube is evolving?
 - More business or personal videos? How to distinguish the two
 - How special events, e.g., NBA game, breaking news, affect the uploading, viewing behaviors
- Online Marketing, advertising?

A Few Words on Course Project I

Project I: Collecting and Measuring Online Data

- Team work; each team 3-4 students.
- Starting date: Week 3 (9/8 R)
- Proposal Due: Week 4 (9/15 R) 2 pages roughly
- Due date/time: Before Class on Week 8 (10/13 R)
- Presentation date/time: Class on Week 8 (10/13 R)
 - Selected teams only
- Requiring Programming in C/C++, Java, Python, and, etc
- Choose one online site/service with APIs to download data, or use existing datasets.
- Examples:
- (1) estimate site statistics, or
- ♦ (2) applying machine learning methods to predict future trends, or
- ♦ (3) perform time-series analysis to capture dynamic patterns,
- or something else, as long as your work can potentially bring research value to the community.

A Few Words on Course Project I

- Group meeting with Prof Li by appointment)
 - Week 3 (9/8 R), Starting date
 - Week 4 (9/15 R), Proposal Due: 2 pages roughly (upload it to discussion board)
 - Week 5 (9/22 R), Methodology due (upload it to discussion board)
 - Week 6 (9/29 R), Results due (upload it to discussion board)
 - Week 7 (10/6 R), Conclusion due (upload it class discussion board)
 - Week 8 (10/13 R), Final Report due at 11:59pm EST & Self and Cross-evaluation due at 11:59pm EST
 - Week 8 (10/13 R), In-class Presentation (10 min) (Selected teams only)

Course Project II

- Projects will be in groups!
 - 3-5 students per group, depending on enrollment
- Topics on your choice (related to big data analytics)
 Application-driven
 - Fundamental data analytics research
 - Data sources on course website <u>http://wpi.edu/~yli15/courses/DS504Fall16/</u> <u>Resources.html</u>

Talk to me once you have an idea.

Next Class: Data Management

- Do assigned readings before class
 - Be prepared, read and review required readings on your own in advance!
 - ✤ Do literature survey: find and read related papers if any
 - Bring your questions to the class and look for answers during the class.
- Submit reviews/critiques
 - In myWPI before class
 - Bring 2 hardcopies to the class
 - ✤ Hand in one copy, and keep one copy with you.

Review Writing:

http://users.wpi.edu/~yli15/courses/DS504Fall16/Critiques.html

Attend in-class discussions

- Please ask and answer questions in (and out of) class!
- Let's try to make the class interactive and fun!