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What is DS504/CS586 about?

» A second Level DS/CS course (primarily) for graduates

«+ CS/DS Ph.D students in big data analytics and related areas;
« then other Ph.D students or MS students with

« Experience in databases and/or in data mining, or equivalent
knowledge.

« Sufficient programming experience is expected so that you
are comfortable to undertake a course project.




Big Data Analytics

techniques and tools for managing,
analyzing and extracting knowledge
from “big data”




Introduction ’@

What is “Big Data”?




Big Data — What is it?

* A "big” buzzword ...
* No single standard definition...

 Talk to 1000 people, there will be 1000
“definitions” ...

“‘Big Data” is data whose scale, diversity,
complexity, and/or quality require new
architectures, techniques, algorithms, analytics,
and interfaces to manage it and extract value and
hidden knowledge from it...




Big Data and Big Challenges



Big Data

* Volume
* Variety

* Velocity
* Veracity
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The New York Stock Exchange

captures

1 TB OF TRADE
INFORMATION

during each trading session

By 2016, it is projected
there will be

18.9 BILLION
NETWORK
CONNECTIONS

— almost 2.5 connections
per person on earth

b, ®cE

Velocity

ANALYSIS OF
STREAMING DATA

Modern cars have close to

100 SENSORS

that monitor items such as
fuel level and tire pressure
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don’t trust the information
they use to make decisions

in one survey were unsure of
how much of their data was
inaccurate

Veracity

UNCERTAINTY
OF DATA

Poor data quality costs the US
economy around




Data at Rest

Terabytes to
exabytes of existing
data to process

Data in Motion

Streaming data,
milliseconds to
seconds to respond

Data in Many
Forms

Structured,
unstructured, text,
multimedia

12

Data in Doubt

Uncertainty due to
data inconsistency
& incompleteness,
ambiguities, latency,
deception, model
approximations




The Model Has Changed...

Old Model of Generating/Consuming Data has
Changed

Old Model:
Few privileged companies are generating and “owning” data,
all others are consuming data (in controlled packages)




The Model Has Changed...

* New Model of Generating/Consuming Data has
Changed
Producers :
* Everyone - Man, Woman and Child, and Devices

Consumers:
 Professionals
 Businesses 14

e Scientists
e And us

. E@ﬁﬁ@ Qz‘sjants a piece of this pie ...
— il —




What Sectors Can Benefit?

Businesses
Transportation
Science & Engineering
Governments

Energy

Healthcare

Education
Entertainment

Utilize data to improve people’s life quality




Done with the high level
Introduction

Begin with application
stories




Big Challenges in Big Cities







Service Providing
Improve urban planning, Ease Traffic Congestion, Save Energy, Reduce

Air Pollution, ...

A

Urban Data Analytics

Data Mining, Machine Learning, Visualization

A

Urban Data Management

Spatio-temporal index, streaming, trajectory, and graph data management,...

A
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Human Traffic Air Meteorolo Social ergy Road
mobility Quality gy Media Netwo rks

A

Urban Sensing & Data Acquisition
Participatory Sensing, Crowd Sensing, Mobile Sensing

People

The Environment

!

Urban
Computing

Cities OS

Tackle the Big
challenges

in Big cities
using Big data!

Urban Computing: concepts, methodologies, and applications.
Zheng, Y., et al. ACM transactions on Intelligent Systems and Technology.
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Zheng, Y., et al. Urban Computing: concepts, methodologies, and applications. ACM transactions on Intelligent Systems and Technology.



Urban Sensing

A sample of data = An entire dataset

- Biased distribution » Data sparsity and missing

Taxi flow Entire traffic flow
Air quality monitoring stations
Inferring Gas Consumption and Pollution Zheng, Y., et al. U-Air: when urban air quality
Emission of Vehicles throughout a City. KDD inference meets big data. KDD 2013

2014.



Urban Sensing
A limited resource (budget, labors, land...)

« Static sensing: Where to « Crowdsensing: How to arrange
deploy sensor to maximize the the incentives dynamically?
gain?

{ T ol it

Suggesting locations for monitoring stations, KDD 2015



Improving Medical Emergency Services using Big Data

DISpatChlng Center P IA Ambulancestationl

(a) Original ambulance stations in Tianjin

Patients Ambulance stations
A 6 [~ Ambulance station|
ooy A AI’ Y K Save 30+% time!
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Hospital

* Select locations for Ambulance Stations e
* Dynamic ambulance allocation s

(‘i)) New ambulance stations in Tianjin

Yilun Wang, Yu Zheng, et al. .. KDD 2014
Location Selection for Ambulance Stations: A Data-Driven Approach, ACM SIGSPATIAL 2015



Service Providing
Improve urban planning, Ease Traffic Congestion, Save Energy, Reduce

Air Pollution, ...
A

Urban Data Analytics

Data Mining, Machine Learning, Visualization
A

Urban Data Management

Spatio-temporal index, streaming, trajectory, and graph data management,...
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* Management in spatio-temporal spaces
*  Multi-modality data
*  Dynamic, high velocity and volume

Urban Sensing & Data Acquisition
The Environment Participatory Sensing, Crowd Sensing, Mobile Sensing
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Zheng, Y., et al. Urban Computing: concepts, methodologies, and applications. ACM transactions on Intelligent Systems and Technology.



Urban Data Management

Managing multi-modality data « Dynamic and big volume

— Categorical and numeric data — Group query strategy
— Different scales, densities, — Computing in parallel
updating frequency, and ST
properties
Spatio-temporal Spatial Static Spatio-Temporal
Static Data Temporal Dynamic Data Dynamic Data
~
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Yu Zheng. . ACM Transactions on Intelligent Systems and Technology (ACM TIST).
2015



» Texts and images > Service Providing
spatial and spatio-temporal data; Improve urban planning, Ease Traffic Congestion, Save Energy, Reduce
A single data source > Air Pollution, ...
Data cross different domains N
¢ Separate data mining algorithms = x Urban Data Analytics
machine learning + data management Data Mining, Machine Learning, Visualization
A
Urban Data Management
Spatio-temporal index, streaming, trajectory, and graph data management,...
A
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Zheng, Y., et al. Urban Computing: concepts, methodologies, and applications. ACM transactions on Intelligent Systems and Technology.



Data Integration vs Knowledge Fusion
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Multi-View-Based Learning




Urban Computing for Urban
Planning

Best Paper Nominee Award at UbiComp 2011
The Most Cited Paper




City-\Wide Traffic Modeling

@ Partition a city into regions with major roads
@ Regions are root causes of the problem
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Yu Zheng, et al. , In Proc. Of UbiComp 2011



Yu Zheng, et al. Urban Computing with Taxicabs, In Proc. Of UbiComp 2011



Data Hotpot Restaurant
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When Urban Air Meets Big
Data

KDD 2013




Air Pollution: A Global Concern !

PM2.5, PM10, NO,, SO,, CO, O, ® Air quality monitor station
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We do not really know the air quality of a location

without a monitoring station!
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Inferring Real-Time and Fine-Grained air quality
throughout a city using Big Data
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Zheng, Y., et al. U-Air: when urban air quality inference meets big data. KDD 2013



Urban Air System

UrbanAir
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Multi-View Learning Framework

* Features: Non-overlapping features providing different views
* Models: Model extrapolation and trend regression respectively
* Training: Combination of small models vs. a big model

Spatial View Temporal View
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Data-Driven Kernel Learning
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A
Mf\}\p&\ Air Quality Data

1¢ . NO,, SO,, O;, CO, PM2.5 and PM10
) - About 2,000 stations in 330 Chinese cities, Hourly updates =~
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Revisit Big Data

NOT a single data source * Data across different

which is very big domains
NOT mean full data * Sample of (label) data
« Data sparsity always exists

NOT mean very dense
data * More understanding of data

itself and data science

May need less domain
* Many unsolved problems

knowledge
Tools are ready
Big Data # Mining Single Dataset # Simple Statistics
Big Data # Machine learning # Deep Learning
Big Data # Cloud Computing # Hadoop

Big Data needs comprehensive capabilities to deliver end-to-end services!
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Take Away Messages

« 3B: Big city, Big challenges, Big data
« 3M: Data Management, Mining and Machine learning
« 3W: Win-Win-Win: people, city, and the environment

3-BMW

Zheng, Y., et al. Urban Computing: concepts, methodologies, and applications.
ACM transactions on Intelligent Systems and Technology.

Yu Zheng. . ACM Transactions on Intelligent Systems and Technology. 2015

2015.




\What data available in our course?




Road Map in Shenzhen
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20,656 Road Segments



Subway Lines

’..or.....:’ Line 5

A
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5 subway lines and 118 Subway Stations



Bus Routes

8,875 Buses serve 814 Bus Routes



Bus Stop Distribution




- Shenzhen Taxicab Visualization
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22,803 Taxis







Urban Issues
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Urban Issues (cont.)
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Questions?




