Welcome to

DS504/CS586: Big Data Analytics --Introduction & Logistics

Prof. Yanhua Li

Time: 6:00pm –8:50pm THURSDAY Location: AK 232 Fall 2016

What is DS504/CS586 about?

- A second Level DS/CS course (primarily) for graduates
 - CS/DS Ph.D students in big data analytics and related areas;
 - then other Ph.D students or MS students with
 - Experience in databases and/or in data mining, or equivalent knowledge.
 - Sufficient programming experience is expected so that you are comfortable to undertake a course project.

Big Data Analytics

techniques and tools for managing, analyzing and extracting knowledge from "big data"

Introduction

What is "Big Data"?

Big Data – What is it?

- A "big" buzzword ...
- No single standard definition...
- Talk to 1000 people, there will be 1000 "definitions" ...

"*Big Data*" is data whose scale, diversity, complexity, and/or quality require new architectures, techniques, algorithms, analytics, and interfaces to manage it and extract value and hidden knowledge from it...

Why Now?

Big Data and Big Challenges

Big Data

- Volume
- Variety
- Velocity
- Veracity

-Thanks: http://www-01.ibm.com/software/data/bigdata/images/4-

As of 2011, the global size data in healthcare was estimated to be

150 EXABYTES [161 BILLION GIGABYTES]

By 2014, it's anticipated there will be

420 MILLION WEARABLE, WIRELESS HEALTH MONITORS

Variety DIFFERENT **FORMS OF DATA**

30 BILLION PIECES OF CONTENT

are shared on Facebook every month

4 BILLION+ HOURS OF VIDEO

are watched on YouTube each month

400 MILLION TWEETS

are sent per day by about 200 million monthly active users

Thanks: http://www-01.ibm.com/software/data/bigdata/images/4-Vo of big data ing

(u')² in m²s

POLYTECHNIC BUILD BUILD

The New York Stock Exchange captures

1 TB OF TRADE INFORMATION

during each trading session

Modern cars have close to 100 SENSORS

that monitor items such as fuel level and tire pressure

Velocity ANALYSIS OF

STREAMING DATA

By 2016, it is projected there will be

18.9 BILLION NETWORK CONNECTIONS

 almost 2.5 connections per person on earth

Thanks: http://www-01.ibm.com/software/data/bigdata/images/4-V

Thanks: http://www-01.ibm.com/software/data/bigdata/images/ 4-\/s-of-big-data ing

4Vs

The Model Has Changed...

Old Model of Generating/Consuming Data has Changed

Old Model:

Few privileged companies are generating and "owning" data, all others are consuming data (in controlled packages)

The Model Has Changed...

14

 New Model of Generating/Consuming Data has Changed

Producers :

• Everyone - Man, Woman and Child, and Devices

Consumers:

- Professionals
- Businesses
- Scientists
- And us
- Everyone wants a piece of this pie ...

What Sectors Can Benefit?

- Businesses
- Transportation
- Science & Engineering
- Governments
- Energy
- Healthcare
- Education
- Entertainment

Utilize data to improve people's life quality

Done with the high level introduction

Begin with application stories

Big Challenges in Big Cities

Urban Computing: concepts, methodologies, and applications. Zheng, Y., et al. *ACM transactions on Intelligent Systems and Technology*.

Zheng, Y., et al. Urban Computing: concepts, methodologies, and applications. ACM transactions on Intelligent Systems and Technology.

Urban Sensing

A sample of data \rightarrow An entire dataset

Biased distribution

• Data sparsity and missing

Air quality monitoring stations

Inferring Gas Consumption and Pollution Emission of Vehicles throughout a City. KDD 2014. Zheng, Y., et al. U-Air: when urban air quality inference meets big data. KDD 2013

Urban Sensing

A limited resource (budget, labors, land...)

- Static sensing: Where to deploy sensor to maximize the gain?
- Crowdsensing: How to arrange the incentives dynamically?

Suggesting locations for monitoring stations, KDD 2015

Improving Medical Emergency Services using Big Data

- Select locations for Ambulance Stations
- Dynamic ambulance allocation

Yilun Wang, **Yu Zheng**, et al. <u>Travel Time Estimation of a Path using Sparse Trajectories</u>.. KDD 2014 Location Selection for Ambulance Stations: A Data-Driven Approach, ACM SIGSPATIAL 2015

Zheng, Y., et al. Urban Computing: concepts, methodologies, and applications. ACM transactions on Intelligent Systems and Technology.

Urban Data Management

- Managing multi-modality data
 - Categorical and numeric data
 - Different scales, densities, updating frequency, and ST properties

- Dynamic and big volume
 - Group query strategy
 - Computing in parallel

Zheng, Y., et al. Urban Computing: concepts, methodologies, and applications. ACM transactions on Intelligent Systems and Technology.

Data Integration vs Knowledge Fusion

Yu Zheng. Methodologies for Cross-Domain Data Fusion: An Overview. IEEE Transactions on Big Data, 1, 1, 2015.

Multi-View-Based Learning

Urban Computing for Urban Planning

Best Paper Nominee Award at UbiComp 2011 The Most Cited Paper

City-Wide Traffic Modeling

- Partition a city into regions with major roads
- Regions are root causes of the problem

Yu Zheng, et al. Urban Computing with Taxicabs, In Proc. Of UbiComp 2011

Shanghai Big Data Hotpot Restaurant

When Urban Air Meets Big Data

KDD 2013

http://urbanair.msra.cn/

Air Pollution: A Global Concern !

PM2.5, PM10, NO₂, SO₂, CO, O₃

• Air quality monitor station

We do not really know the air quality of a location without a monitoring station!

Inferring Real-Time and Fine-Grained air quality throughout a city using Big Data

Zheng, Y., et al. U-Air: when urban air quality inference meets big data. KDD 2013

Urban Air System

Zheng, Y., et al. <u>U-Air: When Urban Air Quality Inference Meets Big Data</u>. KDD

Multi-View Learning Framework

- Features: Non-overlapping features providing different views
- Models: Model extrapolation and trend regression respectively
- Training: Combination of small models vs. a big model

Revisit Big Data

- NOT a single data source which is very big
- NOT mean full data
- NOT mean very dense data
- May need less domain knowledge

•

- Data across different domains
- Sample of (label) data
- Data sparsity always exists
- More understanding of data itself and data science
- Many unsolved problems

Tools are ready Big Data ≠ Mining Single Dataset ≠ Simple Statistics Big Data ≠ Machine learning ≠ Deep Learning Big Data ≠ Cloud Computing ≠ Hadoop

Big Data needs comprehensive capabilities to deliver end-to-end services!

Take Away Messages

- 3B: *B*ig city, *B*ig challenges, *B*ig data
- 3M: Data Management, Mining and Machine learning
- 3W: Win-Win-Win: people, city, and the environment

3-BMW

Zheng, Y., et al. Urban Computing: concepts, methodologies, and applications. ACM transactions on Intelligent Systems and Technology.

Yu Zheng. Trajectory Data Mining: An Overview. ACM Transactions on Intelligent Systems and Technology. 2015

Yu Zheng. Methodologies for Cross-Domain Data Fusion: An Overview. *IEEE Transactions on Big Data*, 1, 1, 2015.

What data available in our course?

Road Map in Shenzhen

20,656 Road Segments

Subway Lines

Bus Routes

8,875 Buses serve 814 Bus Routes

Bus Stop Distribution

Transportation Billing Data

Urban Issues

Regional Weather-Traffic Sensitivity

Traffic Estimation & Prediction

Smart shuttle service

Urban Issues (cont.)

Logistic Planning

Low Sample Rate Map Matching

Questions?