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Abstract—Location based social networks (LBSNs) are becom-
ing increasingly popular with the fast deployment of broadband
mobile networks and the growing prevalence of versatile mobile
devices. This success has attracted great interest in studying and
measuring the characteristics of LBSNs, such as Facebook Places,
Yelp, and Google+ Local. However, it is often prohibitive, and
sometimes too costly, to obtain a detailed and complete snapshot
of a LBSN due to its usually massive scale. In this work, taking
Foursquare as an example, we focus on sampling and estimating
restricted geographic regions in LBSNs, such as a city or a
country. By exploiting the application programming interfaces
(APIs) provided by Foursquare for geographic search, we first
introduce how to obtain the “ground truth”, namely, a complete
set of all venues (i.e., places) in a specified region. Then, we pro-
pose random region sampling algorithms that allow us to draw
representative samples of venues, and design unbiased estimators
of regional characteristics of venues. We validate the efficiency of
our sampling algorithms on Foursquare using complete datasets
obtained from 12 regions, such as Switzerland, New York City
and Los Angeles. Our results are applicable to perform sampling
and estimation in all GeoDatabases, such as Facebook Places,
Yelp, and Google+ Local, which have similar venue search APIs
as Foursquare. These location service providers can also benefit
from our results to enable efficient online statistic estimation.

I. INTRODUCTION

The fast development of broadband mobile networks and the
increasing prevalence of versatile mobile devices, e.g., smart
phones and tablets, help to boost the popularity of location
based services. For example, Foursquare [2], one of the most
popular location based social networks (LBSNs), had more
than 10 million registered users with 1 billion check-ins in
September 2011 [8], and the number of check-ins doubled to
2 billion in only half a year [5]. Location based services have
also been embedded into other leading online social networks,
such as Facebook Places [1] and Google+ Local [7], as an
important feature.

This success of LBSNs has generated great interest in
studying and measuring their characteristics, e.g.,[28], [31],
[32], [34], [24], [13]. By collecting and investigating large
scale datasets, these studies provide useful insights into the
understanding of different aspects of LBSNs, such as popular
route discovery and user mobility prediction. The datasets
used in these investigations are collected either by performing
exhaustive search from geographic regions, e.g., a few US
cities, or random walk (or breath first search, in short BFS)

to traverse the entire network via users’ friendship relations
and check-ins to venues. However, exhaustive search is in
general costly, and thus can only be applied to relatively
small regions. On the other hand, random walk and BFS
type of traversal sampling algorithms have no control of the
locality of the sampled users and venues. Therefore it would
cause inefficiency when the objective is to sample restricted
regions instead of entire networks. For example, if the region
being sampled is California, random walk or BFS would
waste many sampling steps to visit non-California venues or
users. Moreover, the users and venues are often disconnected,
which further limits the capability of these traversal sampling
techniques.

In this paper, we make the first attempt to study sampling
and estimation in LBSNs, and aim to obtain a representative
sample set of venues (i.e., places) in a restricted region from
a large scale geospatial dataset of a LBSN. The obtained
sample dataset can be used in many applications to estimate
various statistics, including total number of venues, check-in
distributions, etc.

Taking Foursquare as an example, we study the functionality
of its application programming interfaces (APIs) for venue
search, and develop an exhaustive search algorithm that can
extract a complete list of venues from a geographic region.
The exhaustive search algorithm as a building block allows
us to design random region sampling algorithms and unbiased
estimators for many venue properties, such as total number of
venues and the distributions of the number of check-ins, tips
and users. We highlight and summarize our contributions as
follows.
• Foursquare provides a venue search API that returns a list
of venues in a given geographic region (Section III). However,
the rate limit (500 API queries per hour per authorized user)
and the return limit (up to 50 venues per query) restrict the
query capacity of the venue search API and make large scale
searches costly. By exploiting the unique properties of this
API, we develop an exhaustive search algorithm that allows
us to efficiently obtain a complete list of venues within a
geographic bounding box. (Section IV.)
• Utilizing the exhaustive search mechanism as a building
block, we first develop a simple random region sampling
algorithm, where the objective region is divided into pre-
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determined equal-sized boxes, and the sampling process uni-
formly at random chooses from these boxes to draw samples
via the exhaustive search. The unbiasedness of the simple
sampling algorithm allows us to design unbiased estimators
for various regional characteristics, such as number of venues,
check-in and tip distributions. (Section V.)
• By taking the venue density distribution into consideration,
we introduce a dynamic random region sampling algorithm
that can adaptively adjust the sizes of the sampled boxes
based on the obtained samples so as to achieve more accurate
estimation results under the same query budget constraints.
(Section VI.)

• We run these two random region sampling algorithms on
12 regions all over the world. By comparing their estimation
results with the “ground truth” obtained via exhaustive search
algorithm, our random region sampling algorithms exhibit
outstanding performance for estimating the total number of
venues and label distribution. (Section VII.)

• Our results are applicable to all GeoDatabases, such as
Facebook Places, Yelp, and Google+ Local, which have similar
venue search APIs as Foursquare, and these location service
providers can also benefit from our estimation to enable
efficient online statistic estimation (Section VIII.)

II. RELATED WORK

To the best of our knowledge, we are the first to study the
geographic sampling and estimation in LBSNs. In this section,
we discuss two topics that are closely related to our work,
including (1) location-based social networks and (2) network
sampling techniques.

Location-based social networks. LBSNs have attracted great
interest to investigate and analyze such large-scale data and
their implications in improving the location-based online ser-
vices, e.g., user mobility prediction, friendship recommenda-
tions, etc. In [31], [32], the authors studied the correlation be-
tween the friendship relations and the user location relevance,
and designed social link prediction system by incorporating
the users’ location information. In [21], [35], the authors used
location history to infer user similarity. In [37], [36], the
authors developed efficient algorithms for personalized loca-
tion recommendation and advertising in location based social
networks. In [13], [24], [34], [11], [38], the authors examined
large-scale (uncertain) trajectory data, with applications in
revealing user mobility patterns and providing personalized
routes recommendations. All these efforts rely on mining and
understanding massive LBSN data, and the representativeness
(or biasedness) of the dataset may significantly impact the
results. As we will discuss in this paper, it is challenging to
retrieve a representative sample set from large scale LBSNs,
due to various practical constraints, e.g., query rate limit
and unknown API return principle. Below we provide a
comprehensive introduction on the state-of-the-art network
sampling techniques and illustrate why they are not applicable
to sampling in LBSNs.
Network sampling techniques. There is a wide range of sam-
pling algorithms in the literature [40], [29], [16], [19], [30],

[10], [15], [27]. Here, we present them in three categories, i.e.,
non-probability sampling, random vertex/edge sampling, and
random walk sampling [25].
(i) The non-probability sampling including breadth-first search
(BFS) [20] and snow ball sampling[9], is easy to implement,
but due to the uncontrollable sampling bias to high degree
nodes, it is hard to obtain unbiased estimates of network
statistics.

(ii) Considering the online social network (OSN) as a graph,
where vertices and edges represent users and friendship re-
lations, respectively, random vertex (resp. edge) sampling
technique [30] chooses each vertex (resp. edge) uniformly at
random, thus enables unbiased estimations of network proper-
ties, such as total number of users, distribution of number
of friends. These techniques require known vertex/edge id
spaces, e.g., user id. In LBSNs, the id space is often unknown,
e.g., hashed id space, or the id space is very sparse, namely,
too costly to generate a valid id. As we observed, the venue
id in Foursquare consists of 24 characters, in [0 − 9] and
[a−f ], which generates a huge and sparse id space, making it
impossible to apply random vertex/edge sampling due to the
high cost of generating a valid venue id. Recently, the authors
in [40] propose a random prefix sampling to estimate the total
number of YouTube videos, which relies on the random prefix
search API provided by Google. Unfortunately, LBSNs do not
offer such public interface for random prefix search.

(iii) Random walk sampling performs as if a random walker
wanders via links between OSN users, with the probability
of each vertex being visited equal to its stationary proba-
bility. This property enables designing unbiased estimators
for network statistics, such as network size [18] and degree
distribution [30], [16]. There are many variations of random
walk sampling techniques. For example, Metropolis-Hastings
random walk (MHRW) [39], [12] realizes sampling with uni-
form stationary distribution. In [30], [16], the authors utilized
multiple parallel random walks to alleviate the problem of
disconnectedness in OSNs to prevent the walker from being
trapped in a local community. Directed Unbiased Random
Walk (DURW) [29] is designed to realize unbiased out-degree
estimation in OSNs with both bi- and uni-directional links.
Random walk is a simple and powerful sampling tool in many
scenarios. In LBSNs, however, when the objective is to sample
and estimate a restricted geographic region, the random walk
would be very costly and inefficient, due to the frequent visits
to entities outside the objective region.

In summary, none of the existing sampling techniques are
applicable to collect representative samples from a restricted
region in LBSNs. In this paper we provide a systematic study
on how to efficiently collect data from LBSNs that preserve
the network statistics, such as network size and check-in
distributions, with unbiased estimators.

III. PRELIMINARIES

In this section, we first describe the geosocial objects in a
LBSN (using Foursquare [2] as an example). After that, we
introduce the search API we used in our sampling framework.
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A. GeoSocial Data

Venue: A Foursquare venue is a physical location. It can be a
place of business office or private residence where Foursquare
users can check in, e.g., a restaurant, train station or movie
theater. Foursquare venues are all generated by Foursquare
users, and each venue is assigned with a unique venue id,
consisting of 24 characters in [0−9] and [a−f ]. When creating
a venue, the user is required to provide a few attributes of
the venue, such as the venue’s location, name, address, and
category. Other attributes, such as zip code, cross street, twitter
contact, and phone number, are optional.

House Rules: Since all the venue information is generated
by users, people may create venues with inaccurate or wrong
information. The Foursquare community establish the House
Rules [4] to guide users’ behaviors. For example, it suggests
“don’t check in when you’re not at a place” and “don’t create
venues that do not exist.”

Venue location: When creating a venue, a user needs to
specify the venue’s location by both dropping a pin on the
map and providing the address, including street number, city,
state, and country.

Venue Category: Foursquare defines a 3-level hierarchical
structure of categories that are applied to venues. There are
nine top level categories: Arts & Entertainment, College &
University, Food, Professional & Other Places, Nightlife Spot,
Great Outdoors, Shop & Service, Travel & Transport and
Residence. Users need to specify one of these nine categories
and a subcategory when creating a venue. Foursquare launched
the category feature on March 10th 2010. Hence, venues
created before that date may not have any category infor-
mation. A special case is “Home (Private)” category, which
is a subcategory of Residence. Venues in this category are
privacy sensitive, and it can creep people out to see non-friends
checking in at these venues. Hence, the House Rules [4]
suggest “Don’t check into someone else’s home if you’re
not there” and “Only create a Foursquare venue for someone
else’s home if you have the permission of the resident/owner.”
Moreover, Foursquare ensures that the sensitive details of a
Home (Private) venue will be visible only to its owner and her
friends, for example, a zoomed out view on the map instead of
its real location will be shown to any non-owner or non-friend.
When a home venue is included in the results returned by the
Foursquare venue search API, its location field is fuzzed to
an approximate area to protect the users privacy, i.e., many
“Home (Private)” venues in the same vicinity could exhibit
the same location information in API query results. Thus,
in our study, we only focus on those venues not in “Home
(Private)” category, namely, “non-home” venues, by simply
filtering out those venues from our search results. We will use
venues instead of “non-home” venues for simplicity.

Check-in: Via web or a mobile application, Foursquare allows
registered users to explicitly post their presence at a venue that
will be displayed on their connected friends’ Foursquare sites.
Users will be awarded with points and coupons at check-ins.

Tip: Foursquare users can add “Tips” to venues that other

users can read, which serve as suggestions for great things to
do, see or eat at the location.

B. Foursquare search API

Foursquare provides an application programming interface
(API) [3] for the application developers to access the data
in Foursquare. Most importantly, the venue search API is
able to post location-aware requests, which takes a rectan-
gular geographic region as an input (specified by the south-
west and north-east corners in latitude and longitude), and
returns a list of venues in that region, with rich information,
including venue name, geo-location (in latitude and longitude),
address, contact, venue category, check-ins, tips, and number
of past users. In our study, we use the Google Geocoding
API [6] to retrieve a bounding box (i.e., the south-west
and north-east corners) for an objective geographic region,
e.g., New York City as ne = 40.917577,−73.700272 and
sw = 40.477399,−74.25909.

However, the Foursquare API is subject to a querying ratio
constraint, i.e., 500 queries per hour per authenticated account,
and a result size constraint, i.e., up to 50 venues returned for
a query. Moreover, the results obtained from the venue search
API are repeatable, namely, if there is no venue changes in a
bounding box, the return of querying for that bounding box is
consistent.

IV. EXHAUSTIVE REGION SEARCH

As seen from last section, the constraints of the Foursquare
venue search API limit its capability to complete some much
wanted tasks, e.g. returning all venues (potentially a large
number) in an arbitrary region. These constraints are in fact
not unique to Foursquare, and are supported by justified
operational or business rationales, which will be discussed
more in later sections. In this section, however, we strive
to explore the unique features of this API and design an
exhaustive search algorithm to retrieve a complete set of
venues from a given geographic region.

A. Smallest resolution

The Foursquare venue search API requires a pair of south-
west and north-east locations, i.e.,sw = (lats, lngw) and
ne = (latn, lnge), to specify the bounding box for the search.
Although not specified by Foursquare, by applying the venue
search API to different regions all over the world, we observe
that there exists a minimal size of the bounding box that
the API can handle. To be precise, we define the size of
the bounding box as (latn − lats) × (lng

e
− lng

w
). By

performing venue search queries for 1 million bounding boxes
with different sizes, we observe that when the bounding box
is as small as aq = s2q , where sq = (4.8828× 10−5)◦, queries
on any sub-boxes inside the objective box will return the same
set of venues as that of the objective box. This indicates that
the smallest resolution that the venue search API can handle is
about aq , equivalent to roughly 4.82m2 at equator, and 2.42m2

at 60◦ latitude.
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Given such smallest resolution, any (rectangular) region can
be “tessellated” into a grid of the smallest squares. The number
of such squares is a function of the area of the region. This
yields a baseline venue search algorithm to obtain all the
venues that can be returned by the venue search API, by
completely scanning the region with boxes of side length sq .

B. Exhaustive venue search algorithm

The baseline scanning algorithm is in fact very costly, due
to the query rate limits, and potentially a large number of
queries with no venues returned. Taking New York City as an
example, in total 2.5378×107 queries are needed to complete,
equivalent to 2, 203 days.

We propose a top-to-down exploration algorithm to collect
venues by two dimensional binary division, which works as
follows. Let G0 be a geographic region, and its size does
not exceed the maximum size of venue search API, namely,
ā = 10, 000km2, equivalent to roughly 0.81 lat-lng area.
At level 0, an API query is performed on G0 directly, and
it returns a venue set V0(G0), where |V0(G0)| ≤ b̄ = 50
venues, because it cannot exceed the return limit. Then, at
level 1, we divide G0 into four equal size boxes G1, · · · , G4,
with latitudinal and longitudinal side lengths half of G0, and
perform four individual API queries on them. At the following
steps, the bounding boxes are divided in the same fasion.
We stop dividing a (sub-)bounding box, when the returned
venue set on it satisfies the two stopping conditions: the API
space limitation and the smallest resolution. To be precise,
when (1) the number of returned venues in a bounding box
is less than 50; or (2) the size of the bounding box hits the
smallest resolution, we know that a complete list of venues in
the bounding box is returned, and no further division on the
box is needed.

We call the above exhaustive venue search algorithm, which
enables us to collect all venues in G0. The pseudo-code is
presented in Algorithm. 1, where it is a recursive process with
input as G0, the objective region, and V0(G0), the returned
venue list by querying directly on G0. Its output includes
all venues collected from G0 and the number of queries
performed.

Algorithm 1 InSearch(G0, V0(G0))

1: INPUT: G0 with size less than ā, and V0(G0);
2: OUTPUT: V (G0) and # of queries B0;
3: V (G0) = ∅ and B0 = 1;
4: if s(G0) ≤ sq or |V0(G0)| < b̄ = 50; then
5: Return V0(G0) and B0;
6: Divide G0 = G1 ∪G2 ∪G3 ∪G4 in equal size;
7: Perform 4 API searches to retrieve V0(G1), V0(G2), V0(G3),

V0(G4);
8: for i = 1 : 4 do
9: [V (Gi), Bi] = InSearch(Gi, V0(Gi));

10: B0 = B0 +Bi;
11: V (G0) = ∪4

i=1V (Gi);

12: Return V (G0) and B0;

Comparing to the simple scanning method, it significantly
reduces the number of queries needed. Taking again New York

TABLE I
COMPLETENESS OF EXHAUSTIVE VENUE SEARCH ALGORITHM

Regions Total Collected Missing Missing
venues venues venues ratio

Orlando 46945 46516 429 0.91%
Cairo 3391 3364 27 0.80%
NYC 453070 449284 3786 0.84%

Singapore 400520 397088 3432 0.85%
Colorado 166190 164908 1282 0.77%
Slovenia 66155 65632 523 0.79%
Sydney 12721 12617 104 0.82%

Switzerland 141565 140595 970 0.69%
Seoul 329120 326253 2867 0.87%
Paris 96147 95353 794 0.83%

Los Angeles 193262 191727 1535 0.79%
Wyoming 14179 14079 100 0.71%

City as an example, only 248, 860 queries are needed, equiv-
alent to 21.6 days, reducing the running time by two orders
of magnitude compared to the simple scanning approach.

Completeness of exhaustive venue search algorithm. We
applied the exhaustive venue search algorithm on 12 geo-
graphic regions listed in Table I, and we compare the venues
collected using Algorithm 1 vs the simple scanning method (on
40 clusters). We can see at the worst case, there are 0.91%
missing venues observed when using Algorithm 1, where all
the missing venues are due to the reasons, such as a) it is a
very new venue; b) the venue is reported and removed. Hence,
the exhaustive venue search algorithm can retrieve a complete
list of venues.

V. SIMPLE RANDOM REGION SAMPLING

The exhaustive venue search algorithm developed in Sec-
tion IV enables us to collect a complete set of venues for a
given geographic region. However, it is still very costly to
perform such an exhaustive search. For example, as stated
earlier, crawling New York City requires about 21 days, while
going over a larger area such as a US state or a European
country needs a few months. Hence, this method is not suitable
to timely learn and estimate the statistics of LBSN properties,
i.e., the total number of venues, check-in distributions, etc.
Sampling is a more efficient and practical alternative. In
this section, we present a simple random region sampling
algorithm for LBSN built on top of Foursquare’s venue search
API, and design unbiased estimators for the total number of
venues and venue label distributions.

A. Model of simple random region sampling

Given a large geographic region, denoted by G, it represents
a “rectangular” area bounded by the south-west location
(lats, lngw), and north-east location (latn, lnge). The total
number of venues in it is denoted as N . The simple random
region sampling algorithm (SRRS) works as follows.

Initial stage. Given an initial side length s0 in lat-lng degree,
G is partitioned into n non-overlapping equal-sized boxes, i.e.,
G = G1 ∨ · · · ∨Gn and Gi ∧Gj = φ, for ∀i '= j, 1 ≤ i, j ≤
n. Let G = {G1, · · · , Gn} denote the set of all boxes, with
N1, · · · , Nn venues, respectively, where

∑n
i=1 Ni = N .
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Sampling stage. At each sampling step t ≥ 1, a box Xt ∈ G
is chosen uniformly at random. Xt is thus considered as a
sample of G, where various statistics of Xt are represented as
functions on Xt. For instance, the number of venues can be
viewed as a mapping f : G → R from each region Xt ∈ G to
the number of venues in Xt, namely Nt = f(Xt). The value of
Nt can be obtained by using LBSN’s query API. For example,
when a box Xt is chosen from G, an exhaustive search on Xt

as described in Section IV is performed to collect all venues
located in Xt. Each such exhaustive search incurs a cost, i.e.,
a certain number of API queries, and we are given a sampling
budget B as the maximum number of API queries allowed.
In our analysis, we assume that B is always sufficiently large,
and we defer the detailed discussion on the actual cost B to
Section V-C. If Xt has been chosen before, we simply keep
this sample by copying previous sampled results for the same
box, without performing another exhaustive search.

Tabulating stage. The sampling stage repeats until the sam-
pling budget B is exhausted. If the budget runs out while
exhaustively searching the last box, that box will be ignored.
Then, a total of m independent samples are obtained, i.e.,
X1, · · · , Xm, with each Xt ∈ G. Estimators discussed in next
subsection will then be applied to these m samples to generate
corresponding estimates of LBSN properties.

The SRRS algorithm has a very nice property that the
samples drawn are unbiased, namely, every individual venue
in the population has an equal chance of being selected, as
stated in Theorem 1.

Theorem 1 (Unbiased Sample). The probability Pr(v) of

each venue v ∈ G being sampled using SRRS sampling is

equal, i.e., Pr(v) = 1/n.

Proof: Each box Gi (1 ≤ i ≤ n) has an equal probability
Pr(Gi) = 1/n to be chosen. The conditional probability
of each venue v being sampled given that Gi is sampled is
Pr(v|Gi) = 1, if v ∈ Gi; and Pr(v|Gi) = 0 otherwise.
Applying the law of total probability yields the probability of
v being sampled as Pr(v) =

∑n
i=1 Pr(Gi)Pr(v|Gi) =

1
n .

Given the unbiased simple random region sampling algo-
rithm, in the next subsection we will introduce estimators for
various characteristics of a geographic region G.

B. Estimators

An estimator is a function of a sequence of observations
that outputs an estimate of an unknown population parameter.
Using the unbiased samples obtained by SRRS, in this section,
we present unbiased estimators of the characteristics of the
objective geographic region G, such as the total number of
venues, the check-in distribution, and the tip distribution.

Total number of venues. We aim to estimate the total number
of venues N in a geographic region G. Given a total of n
non-overlapping partitions G1∨ · · ·∨Gn of G, we propose an
estimator N̂ to estimate N in Theorem 2.

Theorem 2 (Estimator of the total number of venues). With

a sampling budget B, SRRS collects m samples X1, · · · , Xm,

where each Xt ∈ G (1 ≤ t ≤ m). Then, N̂ in eq.(1) is an

unbiased estimator of N .

N̂ =
n

m

m
∑

t=1

f(Xt). (1)

Proof: Since each Xt is chosen independently and uni-
formly at random from the same population space G, f(Xt)’s
are all independent and follow the same distribution, and thus
have the same expectation as E[f(Xt)] = µ = N/n. Using
the linearity of the expectation, we prove E[N̂ ] = N .

Label distribution. We estimate the label distributions of
venues in a geographic region G. The label of a venue could
be any property, such as the number of check-ins, the number
of users who have checked in the venues, the number of
tips. Denote L as the label set and " ∈ L each individual
label. Indicator function 1(", v) denotes if " is venue v’s
label or not, namely, 1(", v) = 1, if " is v’s label, and
1(", v) = 0, otherwise. The label distribution is represented
by p! = 1

N

∑

v∈G 1(", v), with " ∈ L. Recall that G is
divided into n non-overlapping boxes G = G1 ∨ · · · ∨ Gn.
Define g! : G → R to be the mapping from each box
Xt ∈ G to the number of venues with label " in Xt, i.e.,
g!(Xt) =

∑

v∈Gt
1(", v). To estimate the label distribution,

we introduce an estimator p̂! in Theorem 3, which can be
proven by the ratio form of the law of large numbers (Theorem
17.2.1 on p.426 in [26]). The complete proof is omitted here
for brevity.

Theorem 3 (Estimator of label distribution). With a sam-

pling budget B, SRRS collects m samples, X1, · · · , Xm, each

of which represents a box Xt ∈ G. p̂! in eq.(2) is an

(asymptotically) unbiased estimator of p!.

p̂! =

∑m
t=1 g!(Xt)

∑m
t′=1 f(Xt′)

. (2)

C. Practical challenges

Although we have established the theoretical foundation for
SRRS above, in practice, SRRS’ actual sampling cost and es-
timation performance are complicated by resource constraints
and parameter selections. We thus explore these practical
challenges in this subsection.

Sampling cost. With enough physical computing power and
network bandwidth, resource constraints of sampling processes
such as SRRS mainly stem from the limitations of the LBSNs’
query APIs. To avoid unsustainable heavy load on their server
infrastructure and to protect themselves from being abused or
attacked via computationally costly requests, LBSN providers,
including Foursquare, often limit the maximum number of
API queries allowed per time unit for each API user (a time
constraint), and limit the number of total venues returned per
API query (a space constraint). Although the actual numerical
values of these constraints may vary from LBSN to LBSN,
or even from user to user (e.g., developer vs. normal user) on
the same LBSN, it is unlikely that any LBSN would remove
these limits completely.
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TABLE II
VENUE DENSITY VARIATIONS FOR DIFFERENT s0 AT NYC. THE LATITUDINAL AND LONGITUDINAL LENGTH OF NYC ARE 0.44◦ AND 0.55◦ .

s0 0.4◦ 0.2◦ 0.1◦ 0.05◦ 0.01◦ 0.005◦ 0.001◦ 0.0005◦

n 4 9 30 108 2520 9968 246960 985839
max f(X) 380176 275207 168222 104153 10045 3309 254 164
E[f(X)] 111401 49512 14853.7 4126.07 176.85 44.71 1.81 0.45

V ar[f(X)] 2.43× 1010 6.56× 109 9.32 × 108 1.22× 108 3.70 × 105 2.68× 104 58.99 4.88

These constraints have direct impacts on the sampling costs.
As discussed in Section III, due to the API space constraint–
result limit b̄ of each API call–obtaining a sample (i.e., all
venues of a sampled box) may take different numbers of
API queries (or amount of time accordingly), depending on
the size and the density of the sample box. Therefore, each
sample should not be counted equally as incurring one unit of
cost. The actual cost of each sample and the total sampling
budget B should use the number of API queries. As a result,
choosing the right s0 for SRRS becomes critical. Oversized
or undersized s could either incur extra API queries for
performing the binary division traversal in dense sample boxes
or result in less efficient use of API queries on a large number
of mostly empty sample boxes.

Estimation performance. With the same sampling budget
B, a better estimation performance simply means smaller
estimation errors. Since choosing s0 impacts the cost of
each sample in SRRS, and more samples usually lead to
better estimation, s0 selection certainly plays an important
role on SRRS estimation performance. To see how s0 affects
the sampling accuracy and cost, in Fig. 1, we show the
normalized mean square error (NMSE) between our estimation
results using SRRS and the “ground truth” in the New York
City region, where the “ground truth” was obtained by our
exhaustive venue search algorithm. NMSE [30] is defined as

NMSE(N̂) =

√

E[(N̂ −N)2]

N
. (3)

There are in total 453, 070 venues in New York City. We
observe that in SRRS, there exists an optimal initial box side
length s0 ≈ 0.1◦ that leads to the lowest estimation error. This
can be explained as follows. Big boxes often lead to large
variances in the number of venues inside them (See Table II).
When a sample box is big, it may consume a lot of API queries
through the binary division traversal to perform the exhaustive

venue search. On the other hand, when s0 is too small, a huge
number of boxes with no venues are sampled, making SRRS
less efficient due to the large number of API queries spent on
empty boxes. However, it is in general hard to determine this
optimal side length s0 in advance. Even for the optimal side
length s0, the estimation error can still be high, due to the high
venue density variations across G. For instance, in New York
City, the downtown area has a much higher venue density than
suburb areas, which in turn are denser than remote areas like
the ocean or mountains. Fig.2-Fig.3 and Table II illustrate how
the venue density varies in NYC.

Given these practical challenges, the estimation performance
can greatly benefit from the following two scenarios: 1) each
sample box should have roughly the same number of venues
to keep the estimation variance small, and 2) the number of
venues per box should be close to but not exceed the API
return limit to maximize the utilization of each API query.
Without any knowledge of the region G, it is impossible for
SRRS to choose an optimal s0 The above analysis raises
the following question: Is it possible to design a dynamic

random region sampling algorithm that gradually builds up
the knowledge of the density of the objective region with

the cumulative sample information and adaptively calibrates

sample boxes to achieve better estimation performance?

VI. DYNAMIC RANDOM REGION SAMPLING

In this section, we will present a dynamic random region
sampling algorithm that provides a novel and promising so-
lution to address the question posted in the last section. The
basic idea behind the dynamic random region sampling is that
at every step, a location, denoted by ll, is chosen uniformly
at random from G, and then the size of the sample box around
ll is determined by two criteria as follows.

• Box size selection using venue density prediction: The
venue density d′ around ll is predicted as the weighted
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Fig. 4. Illustration of the DRRS algorithm in New York City. (Areas with darker color have higher venue densities as shown on the colorbar.
The red point represents the current chosen location, where the red boxes represent the sample boxes generated.) (a) The llsw, llne as two
starting points are assigned with an initial side length s0 = 0.02◦ and density d0 = 50/0.022 . Hence, the predicted density for the first
chosen location ll1 will be d′1 = (dis−1(ll1, llsw)d0 + dis−1(ll1, llne)d0)/(dis

−1(ll1, llsw) + dis−1(ll1, llne)) = d0, and the side
length will be s1 = 0.02◦. As seen from the background color, ll1 locates in a venue sparse area, the actual number of returned venues is 5,
indicating its true density as d1 = 5/0.022 ; (b) The second location ll2 is closer to ll1 and llne, with distance dis(ll2, ll1) = 0.08◦ and
dis(ll2, llne) = 0.40◦. Its density is predicted as d′2 = (dis−1(ll2, ll1)d1+dis−1(ll2, llne)d0)/(dis

−1(ll2, ll1)+dis−1(ll2, llne)) =
50/0.042 , thus it chooses side length as s2 = 0.04◦ . The exhaustive search over this box returns 39 venues. (c) The fifth location is chosen
between two nearby sampled boxes, and with the predicted side length, it overlaps with ll3 and ll4. Hence, it is cut to be non-overlapping
with other boxes. (d) Over steps, a sequence of sample boxes are formed with more and more accurate predicted densities. Note that some
locations falling into already sampled boxes will trigger the corresponding boxes to be re-sampled.

average of the venue densities of its closest sampled boxes.
Then, the side length s of a new box centered at ll is
computed as

√

b̄/d′, to keep the expected number of venues
in this new box close to the API return limit b̄. (Section VI-A.)

• Non-overlapping boxes: Check whether the new box ob-
tained above collides with any already sampled box, and cut
the new box if necessary to keep it containing ll and non-
overlapping with those sampled boxes. (Section VI-B.)

Using the above two criteria, a non-overlapping new box
Gll is determined based on the best knowledge to have an
expected total number of venues close to the API return limit.
Then, an exhaustive search is performed on this box, and the
area it covers is considered as a sampled box. Later if a random
location is chosen that falls into this box, it is considered
that this box is sampled again, and no actual API queries
are needed. Note that keeping the sampled boxes to be non-
overlapping ensures each box has an invariant probability to
be sampled again once the box has been established in one
sampling process. This probability is proportional to the size of
its area, and it is an important quantity in designing unbiased
estimators for the objective region. Until running out of the
API budget B, m samples, X1, · · · , Xm are drawn from n
non-overlapped boxes G1, · · · , Gn, with m ≥ n. If the budget
runs out while exhaustively searching the last box, that box
will be ignored.

A. Dynamic box size selection

We observe that the venue densities are changing gradually
across a geographic region, which means that the closer two
nearby regions are to each other, their venue densities are more
similar. Hence the venue density d′ around ll is predicted
based on the venue densities of its closest sampled boxes,
where the distance is measured by the Euclidean distance in
latitude and longitude.

Given an unknown objective region G, we do not have
any knowledge of its venue density. To bootstrap a sampling
process, initially the south-west (llsw) and north-east (llne)

corners of G are assigned with a density d0 = b̄/s20, namely,
a square area of side length s0 with exactly b̄ venues. Note
that the selection of s0 certainly has some impacts on the
estimation performance, but unlike affecting all boxes in
SRRS, s0 here serves as an initial estimation on two boxes
and its importance fades gradually with more sampled boxes.
These two locations as two starting points are used to start the
venue density prediction. When the first location ll1 is chosen
uniformly at random from G, it will be assigned with a side
length of s1 =

√

b̄/d′1 to form a potential box G1 centered
at ll1, where the predicted venue density d′1 is the weighted
average of densities dsw and dne, thus d′1 = d0. Then, the
returned exhaustive venue search result on G1 establishes the
first true venue density in G as d1 = |V in(G1)|/a(G1),
which in turn affects the size selection of following boxes.
As the number of sample boxes increases, more true venue
densities are collected, gradually improving the accuracy of
venue density predictions.

B. Non-overlapping sample boxes

Every box Gi is always chosen to be non-overlapping with
already sampled boxes, which enables us to iteratively build
up a partition of the objective region G. If a newly selected
location falls into a sampled box, it is considered that this
sampled box is sampled again. In this way, it keeps locations
in each sampled box having an invariant probability to be sam-
pled through the entire sampling process, where the probability
Pr(Gi) of each Gi being sampled is Pr(Gi) = a(Gi)/a(G),
where a : G → R represents the area of the box in term of
latitude and longitude, i.e., the product of the latitudinal and
longitudinal side lengths.

C. Dynamic random region sampling

Given G, each run of DRRS algorithm corresponds to a par-
tition of G, i.e., G = {G1, · · · , Gn∗}, with G = G1∨· · ·∨Gn∗

and n∗ as the total number of subgraphs. This partition G
is actually built on-the-fly, which thus forms the population
space of each sampling process. The population space G is
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Algorithm 2 Dynamic random region sampling algorithm

1: INPUT: API budget B, initial side length s0, API return limit b̄,
G bounded by llsw = (lats, lngw) and llne = (latn, lnge)

2: OUTPUT: Sample list X = [X1, · · · , Xm], where Xt = V in
t .

3: G0 = ∅; c = 0; m = 0; X = ∅
4: Map M = {(llsw, dsw), (llne, dne)}, dsw = dne = b̄/s20;
5: while c < B do
6: Choose ll = (lat, lng) uniformly at random from G;
7: if ll is in any box Gj ∈ G0 then
8: m = m+1; X = [X , Xj ], (Xj : InSearch return on Gj);
9: Continue;

10: Choose ll1 and ll2 in M with smallest distance to ll;
11: Predict the density around ll as

d′ =
∑2

i=1 dis
−1(ll, lli)di/

∑2
i=1 dis

−1(ll, lli);
12: s =

√

b̄/d′;
13: Create Gll with center (lat, lng) and side length s;
14: if Gll overlaps with any box in G0 then
15: Cut Gll to be non-overlapping;
16: Directly query Gll and obtain V in

0 (Gll) and V0(Gll);
17: [V in

m , Vm, Bm] = InSearch(Gll, V
in
0 (Gll), V0(Gll));

18: Xm = V in
m ; d = |V in

m |/a(Gll);
19: G0 = G0∪{Gll};c = c+Bm+1;m = m+1;X = [X , Xm];
20: M = M ∪ {(ll, d)};

iteratively established during the sampling process and may
vary for different sampling processes, which depends on the
sequence of the randomly selected locations, as well as the
initial side length s0. Note that given a population space, i.e.,
a partition G of G, the corresponding sampling process is
performed equivalently to running the sampling process on
G with predetermined partition G.

At the beginning, let the partition set G(0) = ∅. When the
first box G1 is formed at step 1, G(1) = {G1}. At every step
t, G(t) = G(t−1)∪{Gt}. In a particular sampling process, with
a limited budget B, a total of m sampled boxes X1, · · · , Xm

(which in general may have duplications) are drawn repre-
senting n ≤ m unique non-overlapping boxes G1, · · · , Gn,
which together form a box set G(m) = {G1, · · · , Gn}, with
G(m) ⊆ G. When it goes through a sufficient number of steps,
namely, having a large enough budget B, limm→∞ G(m) = G.
Note that the non-overlapping box selection criterion ensures
that each box once formed has an invariant probability being
sampled again during that sampling process.

The detailed DRRS algorithm is summarized in Algo-
rithm 2, and Fig. 4 visualizes the sampling process. DRRS
takes the inputs as the total API budget B, an initial side
length s0, the API return limit b̄, and the objective region G
bounded by llsw = (lats, lngw) and llne = (latn, lnge). It
outputs a list of returned venues obtained from the exhaustive
venue search on sampled boxes.

Besides the sampled venues, DRRS maintains a set of
already sampled boxes, denoted by G0, and their densities,
denoted by M. At every step, a location ll in G is chosen
uniformly at random (line 6). Then, if ll is within one of
the already sampled boxes Gj ∈ G0, Gj is considered being
sampled again, and no API budget is spent (line 7–9). If not, a
new box Gll is created based on the two criteria (line 10-15)
in Section VI-A and Section VI-B, and an exhaustive search is

performed on Gll (line 16-17). Theorem 4 shows that DRRS
is an importance sampling algorithm, where the probability
of every individual venue being selected in the population is
proportional to the box size it belongs to.

Theorem 4 (Importance Sampling). For a DSSR sampling

process, the probability Pr(v) of each venue v ∈ G being

sampled is Pr(v) = a(Gv)/a(G), where v ∈ Gv ∈ G.

Proof: In DRRS, each location ll has an equal prob-
ability of being chosen, thus each box Gv has a(Gv)/a(G)
probability to be selected. Using the law of total probability,
we prove that the probability of a venue v being sampled using
DRRS is

Pr(v) =
∑

Gv∈G

Pr(Gv)Pr(v|Gv) =
a(Gv)

a(G)
, (4)

where the conditional probability of v being sampled given
the box Gv is chosen, is 1 is v ∈ Gi, and 0 otherwise.

D. Estimators

We use the venues sampled with DRRS to estimate the
characteristics of objective region G, such as the total number
of venues, the check-in distribution and tips distribution.

1) Total number of venues: Theorem 5 below presents the
estimator N̂ to estimate N .

Theorem 5 (Estimator of the total number of venues).

Using DRRS with budget B, we obtain m sampled boxes

X1, · · · , Xm, with each Xt ∈ G. Then, N̂ in eq.(5) is an

(asymptotically) unbiased estimator of N .

N̂ =
a(G)

m

m
∑

t=1

f(Xt)

a(Xt)
. (5)

Proof: Define the random variable of the venue density
of Xt as d(Xt) = f(Xt)/a(Xt). Each d(Xt) independently
follows the same distribution. Applying the linearity of the
expectation and the ratio form of the law of large numbers
(Theorem 17.2.1 on p.426 in [26]) gives

lim
m→∞

N̂
a.s.
−−→ a(G)

∑

X∈G
f(X)
a(X)Pr(X)

∑

X∈G Pr(X)
=

∑

X∈G

f(X) = N,

Hence, E[N̂ ] = N holds for all values of m > 0.

2) Label distribution: Theorem 6 introduces the unbiased
estimator of the label distribution in terms of the DRRS
samples, which can be proven by applying the ratio form of
the law of large numbers (Theorem 17.2.1 on p.426 in [26]).

Theorem 6 (Estimator of label distribution). Given a budget

B, DRRS collects m samples, X1, · · · , Xm, each of which

represents a sample box Xt ∈ G. p̂! in eq.(6) is an unbiased

estimator of p!.

p̂! =

∑m
t=1 g!(Xt)/a(Xt)

∑m
t′=1 f(Xt′)/a(Xt′)

. (6)

1103



3) Convergence analysis: To further understand the esti-
mators, namely, to determine the stopping condition of the
sampling process with an ensured estimation accuracy, in this
section, we derive the variance and confidence interval of our
proposed estimators, including N̂ and p̂!. We start with the
introduction of the confidence interval inequality in Lemma 1
and the ratio form confidence interval in Lemma 2. We then
use these lemmas to derive the sufficient conditions to achieve
the desired confidence interval of our proposed estimators.

Lemma 1 (Confidence interval inequality). Given a random

variable Y , V ar[Y ] ≤ αε2E2[Y ] is the sufficient condition to

ensure the following confidence interval

Pr(E[Y ](1− ε) ≤ Y ≤ E[Y ](1 + ε)) ≥ 1− α, (7)

where 0 < α ≤ 1 and 0 < ε ≤ 1.

Proof: (Sketch) Comparing the Chebyshev’s inequality
for Y and the confidence interval (eq.(7)) completes the
proof.

Lemma 2 below presents the sufficient condition to ensure
a confidence interval of a ratio form random variable.

Lemma 2 (Confidence interval of a ratio form random

variable). Given two random variables Y and Z (Z '= 0
and E[Z] '= 0), if E[Y/Z] = E[Y ]/E[Z] holds1, V ar[Y ] ≤
αε2E2[Y ]/18 and V ar[Z] ≤ αε2E2[Z]/18 together is the

sufficient condition to ensure the following confidence interval

Pr
(

E
[Y

Z

]

(1− ε) ≤
Y

Z
≤ E

[Y

Z

]

(1 + ε)
)

≥ 1− α, (8)

where 0 < α ≤ 1 and 0 < ε ≤ 1.

Proof: By applying Lemma 1, the sufficient conditions
to guarantee an ε/3 approximation to Y ’s and Z’s expected
values with probability at least 1− α/2 are

V ar[Y ] ≤ αε2E2[Y ]/18, V ar[Z] ≤ αε2E2[Z]/18. (9)

Since the probability of random variable Y or Z for deviating
from their expected values is at most α/2, the probability
of one or both of them deviating is at most α (the union
bound). This gives us that with probability at least 1 − α/2
both variables are 1−ε/3 close to their respective expectations.

Then using the facts that Y/Z
E[Y/Z] ≤ (1+ε/3)/(1−ε/3)≤ 1+ε

and Y/Z
E[Y/Z] ≥ (1 − ε/3)/(1 + ε/3) ≥ 1 − ε, we prove that

0 ≤ ε ≤ 1.
Convergence analysis of the total number of venues. Theo-
rem 7 below presents the confidence interval of the estimator
N̂ for DRRS algorithm.

Theorem 7. The estimator N̂ (eq.(5)) guarantees that for any

0 < ε ≤ 1 and 0 < α ≤ 1,

Pr(N(1 − ε) ≤ N̂ ≤ N(1 + ε)) ≥ 1− α, (10)

when m ≥ mo ∈ O(a
2(G)σ2

d

αε2N2 ). σ2
d is the variance of venue

density d(Xt) = f(Xt)/a(Xt), and is an constant for the

1Note that in general this does not necessarily hold for a ratio form random
variable.

population space—the partition G, governed by a sampling

process of DRRS.

Proof: (Sketch) Computing the variance and expectation
of N̂ and applying Lemma 1 complete the proof.

Convergence analysis of the label distribution. Theorem 8
discusses the confidence interval of the estimator p̂! when
using DRRS.

Theorem 8. The estimator p̂! (eq.(6)) guarantees that for any

0 < ε ≤ 1 and 0 < α ≤ 1,

Pr(p!(1 − ε) ≤ p̂! ≤ p!(1 + ε)) ≥ 1− α, (11)

when m ≥ m! ∈ O
{a2(G)σ2

d

αε2N2 ,
a2(G)σ2

d,!

αε2N2

!

}

. σ2
d,! is the variance

of venue density d!(Xt) = g!(Xt)/a(Xt) for venues with label

". It is an constant for the population space—the partition G,

governed by a sampling process of DRRS.

Proof: (Sketch) The label distribution estimator is a
ratio form random variable p̂! = Dm,!/Dm, where Dm =
∑m

t=1 d(Xt) and Dm,! =
∑m

t=1 g!(Xt)/a(Xt) denote the
random variables of the total sum of the venue densities and
the density sum of venues with label " from the collected
regions. Computing the expectations and variances for Dm,!

and Dm and applying Lemma 2 complete the proof.

VII. EXPERIMENTAL RESULTS

For the evaluation, we compare our DRRS with a simple
static random region sampling algorithm (SRRS). We apply
both DRRS and SRRS on 12 geographic regions, with the
initial side length s0 ranging from the smallest resolution
4.8×10−5◦ to 0.9◦, i.e., the largest side length that the search
API allowed. We take the venue set obtained by exhaustive
venue search algorithm as the “ground truth” and compare the
estimation accuracy of the total number of venues, and their
check-in and tip distributions. Note that the results obtained
for all 12 geographic regions are qualitatively similar, and we
only present the results of Switzerland and Colorado here for
brevity. Moreover, we ran each sampling algorithm 600 times
and took the average to remove the impacts of the randomness.
We ran our experiments in parallel using 40 machines with
quad-core CPUs.

A. Total number of venues

Fig. 5 shows the errors (in NMSE) of estimating the total
number of venues in Switzerland and Colorado. We make the
following two observations. First of all, we observe that at the
early stage of sampling, DRRS does not perform as well as
SRRS, where after a certain number of queries, the cumulated
venue density information increases the estimation accuracy
of DRRS rapidly and generates much better performance than
SRRS. This happens because for DRRS, no pre-knowledge
is initially available, and the early estimation errors depend
heavily on the selections of the first few locations. As more
samples are obtained, DRRS can predict more precise venue
densities of the following selected locations, thus significantly
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saving sampling budgets and improving the estimation accu-
racy. Moreover, we found that the estimation errors of SRRS
are more sensitive than that of DRRS. For example, when
changing the initial side length s for Switzerland from 0.005◦

to 0.001◦, NMSE of SRRS increases from 0.0015 to 0.0040,
where NMSEs of DRRS are almost the same. This happens
because after a few samples, DRRS in fact does not rely on
the initial side length any more, where unlike SRRS, a slight
change to the side length s may have a significant impact on
the accuracy of the estimators. Hence, the above observations
also indicate that it is a good idea to combine SRRS and DRRS
to take the advantages of both of them by performing SRRS at
the early stage and switch to DRRS after a sufficient number
of samples are cumulated. We leave this for future work.
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Fig. 5. NMSE of estimating total number of venues in Switzerland and
Colorado

B. Venue label distributions

Now, we are in a position to analyze the estimation results
of venue label distributions, such as the distribution of the
number of check-ins, the number of users and the number of
tips. In this section, we focus on the comparisons and analysis
of the overall estimated distributions given a certain initial
side length and a sampling budget B. We use B = 2000 and
s = 0.005◦ for the following results. In Fig 6, we present
the results of estimating the distributions of the number of
check-ins, users, and tips for Switzerland. Fig 6(a)–Fig 6(c)
present comparisons between the “ground truth” distribution
and estimated distributions by SRRS and DRRS, respectively.
We can see that the estimated label distributions by DRRS
match the “ground truth” distributions much better than that by
SRRS. Using NMSE, Fig 6(d)–Fig 6(f) quantitatively measure
the estimation errors by SRRS and DRRS. An interesting phe-
nomenon we observed is that for smaller label values, SRRS
and DRRS exhibit similar estimation accuracies, whereas for
higher label values, SRRS performs much worse than DRRS,
i.e., NMSE by DRRS on high label venues is smaller than that
of SRRS by four orders of magnitude. Moreover, apparently
SRRS estimates lower label distributions with higher accuracy
than that of higher label distributions. This happens because
there are far more lower label venues than higher label venues,
and SRRS samples each venue with equal probability, thus
lower label venues have higher chances of being sampled. On
the other hand, DRRS estimates higher label distributions with
better overall accuracies than that of lower label distributions.

This happens because DRRS judiciously adjusts the box
sizes, which saves many sampling budgets from getting empty
returns or querying a region with too many venues, and thus
collect far more sampled venues than SRRS. In our evaluation,
SRRS and DRRS draw 1995 and 253 sampled boxes per run
on average, with 772 and 38443 sampled venues, respectively.
These observations suggest that to estimate the low label
distribution, DRRS and SRRS perform equally well, while
to get better estimation of high label distribution, DRRS is
preferred. Fig 7(a)–Fig 7(f) show comparison results for the
distribution estimation of the total number of checkins, users,
and tips in Colorado, which echo the observations obtained
from Switzerland dataset.

VIII. DISCUSSION

The static and dynamic random region sampling algorithms
as building blocks enable us to retrieve representative samples
from LBSNs. They can be easily generalized to realize more
sampling purposes as follows.

Firstly, our sampling algorithms can be generalized to
sample and estimate the dynamics of LBSNs, namely, how the
statistics of LBSNs evolve over time. The sampling algorithms
can be performed periodically to extract snapshots of the
LBSNs, and the samples obtained earlier can be utilized for
the following snapshot sampling. For example, SRRS can
partition the graph with respect to the venue densities inferred
from the earlier samples, while DRRS can use the previous
samples as initial starting points instead of the two corner
points. Moreover, SRRS can be used to sample and estimate
statistics of active users, by collecting all users who left tips to
or checked in to locations in a sampled box. The probability of
each user being sampled is proportional to the user’s degree,
i.e., the number of tips or check-ins he left. Thus, the unbiased
estimators of the total number of active users or the user’s label
distributions can be obtained by quantitatively removing such
bias.

Secondly, all LBSNs, e.g., Foursquare, Yelp, and Google+
Local, provide similar regional venue search APIs (as shown
in Table III), with either a square or circle bounding box,
a return limit on the number of venues returned per query,
and a limit on the number of queries allowed per day. In this
paper we develop and utilize an exhaustive search mechanism
for Foursquare to design our sampling algorithms. Exhaustive
search mechanisms for other LBSNs may have to be designed
in a different way depending on their API return principles.
Our sampling algorithms, however, are independent of a
specific LBSN.

TABLE III
REGIONAL VENUE SEARCH APIS FROM LEADING LBSNS.

LBSNs Bounding Specified by Return Max query
box limit rate (a day)

Yelp API 2.0 Rectangle sw & ne locations 20 10,000
Yelp API 1.0 Circle location & radius 20 10,000
Foursquare Rectangle sw & ne locations 50 12,000

Google+ local Circle location & radius 60 100,000
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Fig. 6. Label distribution estimation (Switzerland)

Last but not the least, the location service providers, e.g.,
Foursquare, Yelp, and Google+ Local, can also benefit from
our sampling and estimation algorithm to enable efficient on-
line statistic estimation for regions. Currently, location services
expedite the range queries to retrieve a complete venues set,
by indexing the GeoSocial data with data structures such as
B-tree, R-tree, or R+-Tree, etc [14], [17], [33]. However,
when the geographic region being estimated is large, e.g.,
a city or a state, the range query will be too costly to
be implemented online. Instead of completely examining the
region, our algorithms allow the location service providers
to estimate the real-time regional statistics with controllable
execution time and estimation accuracy.

IX. CONCLUSION

In this paper, we study how to sample and estimate charac-
teristics of location based social networks. Taking Foursquare
as an example, we first study the functionality of the venue
search API, and develop an exhaustive venue search algorithm,
that can extract a complete set of venues for a restricted geo-
graphic region. The exhaustive search algorithm as a building
block allows us to design random region sampling algorithms
and unbiased estimators for many venue properties, such as
total number of venues and the distributions of the number of
check-ins, tips and users.

We run our random region sampling algorithms on 12
regions all over the world, and compare their estimation
results with the “ground truth” obtained by the exhaustive
search algorithm. The comparison results show that SRRS

algorithm performs well for a small sample budget; it is
however outperformed by DRRS algorithm when more budget
is available. In LBSNs, most venues have few check-ins and
users and only few venues have many check-ins and users.
Since SRRS samples each venue with equal probability, the
popular venues are very unlikely to be sampled by SRRS.
Therefore, SRRS performs much worse than DRRS when
estimating the distributions of very popular venues.

Our proposed region sampling algorithms enable study-
ing large-scale location based social networks via sampled
datasets [22], [23]. In the future, we are interested in improving
users’ experience in LBSN, by developing efficient algorithms
for location recommendation, location popularity prediction.
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