Welcome to

DS3010: DS-III: Computational Data Intelligence Machine Learning Introduction Prof. Yanhua Li

Time: 11:00am – 12:50pm M & R Location: HL 114 D-term 2022

Data pipeline

Urban Computing: concepts, methodologies, and applications. Zheng, Y., et al. *ACM transactions on Intelligent Systems and Technology*.

Data analytics Data mining, machine learning, etc.

References

PATTERN RECOGNITION AND MACHINE LEARNING CHRISTOPHER M. BISHOP

What is Machine Learning?

What is Machine Learning?

What is Machine Learning?

"monkey"

"cat"

Machine Learning ≈ Looking for a Function

Speech Recognition

f()= "How are you"

Image Recognition

f(

• Playing Go f(

)= "5-5" (next move)

• Dialogue System

f("Hi")= "Hello" (what the user said) (system response)

Image Recognition:

Framework

$$f_{1}(\bigcup) = \text{``cat''} \qquad f_{2}(\bigcup) = \text{``money''}$$
$$f_{1}(\bigcup) = \text{``dog''} \qquad f_{2}(\bigcup) = \text{``snake''}$$

Image Recognition:

Framework

Image Recognition:

Framework

Machine Learning is so simple

It is as simple as putting an elephant into a refrigerator...

Machine learning paradigms

Learning Map

Classification

• Binary Classification

• Multi-class Classification

Binary Classification

Multi-class Classification

Learning Map

Classification - Deep Learning

Classification - Deep Learning

• Playing GO

Training Data

Hard to collect a large amount of labelled data

Training Data: Input/output pair of target function Function output = label

Semi-supervised Learning

For example, recognizing cats and dogs

Labelled data

Unlabeled data

(Images of cats and dogs)

Learning Map

Transfer Learning

For example, recognizing cats and dogs

Labelled data

Data not related to the task considered (can be either labeled or unlabeled)

Learning Map

• Machine Reading: Machine learns the meaning of words from reading a lot of documents

http://top-breaking-news.com/

• Machine Reading: Machine learns the meaning of words from reading a lot of documents

Training data is a lot of text

https://garavato.files.wordpress.com/ 2011/11/stacksdocuments.jpg?w=490

• Machine Drawing

Training data is a lot of images

Learning Map

Learning Map

Reinforcement Learning

Supervised v.s. Reinforcement

Supervised v.s. Reinforcement

• Supervised:

Next move: "5-5"

Next move: "3-3"

• Reinforcement Learning

Alpha Go is supervised learning + reinforcement learning.

http://www.express.co.uk/news/science/651202/First-step-towards-The-Terminatorbecoming-reality-AI-beats-champ-of-world-s-oldest-game

Why we need to learn Machine Learning?

AI will replace some jobs! New job : AI engineer

Al Engineer

Pokemon's can fight, Why do we still need Pokemon trainers?

Al Engineer

Step 1: define a set of function Step 2: goodness of function Step 3: pick the best function

Pokemon trainer

- Trainers need to choose high quality Pokemons to train with good attributes
 - Pokemons have different attributes

Al engineer

- Al engineers need to choose the right model, loss function
 - Different models, loss functions fit different problems

Al Engineer

Step 1: define a set of function Step 2: goodness of function Step 3: pick the best function

Pokemon trainer

- Trainers need to choose high quality Pokemons to train with good attributes
 - Pokemons have different attributes
- Pokemons need to evolve to be stronger, but may not lead to the strongest ones.
 - Needs experienced Pokemon trainer

Al engineer

- Al engineers need to choose the right model, loss function
 - Different models, loss functions fit different problems
- May not find the best function
 - E.g. Deep Learning
 - Need experience from Al engineer

Questions?