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Quiz 1 grading is done

Quiz 2 Week 5 (4/14 R)
Topics: To be announced




Project 1

* Two student presentations today.
* Grading will be available this afternoon at 5pm.



Project 2 due Week 6 (4/18 M)

* Logistic regression
* SVM
* Multi-layer perceptron/Deep learning

* https://github.com/ds3010s22/ds3010 projects/bl
ob/main/Project2.ipynb

» Get started as early as possible, don’t wait for the
last minute.


https://github.com/ds3010s22/ds3010_projects/blob/main/Project2.ipynb

Project 3 due Week 6 (4/18 M)

* Week 5 (4/11 M), Starting date
Week 8 (5/2 M), Due.
https://github.com/ds3010s22/ds3010 projects/bl
ob/main/Project3 Business.ipynb

e Team work 2-4 student in a team.

* Start teaming up on Canvas


https://github.com/ds3010s22/ds3010_projects/blob/main/Project3_Business.ipynb

Data pipeline

Service Providing
Improve urban planning, Ease Traffic Congestion, Save Energy, Reduce

Air Pollution, ...
A

“Urhan Data Analytics

Data Mining, Machine Learning, Visualization
A

n Data Management

Spatio-temporal index, streaming, trajectory, and graph data management,...
A

88888800

Human Air Meteorolo Social Road
Ene
mobility Traffic Quality gy Media “ey Networks

A

W Sensing & Data Acquisition
Participatory Sensing, Crowd Sensing, Mobile Sensing

Urban Computing: concepts, methodologies, and applications.
Zheng, Y., et al. ACM transactions on Intelligent Systems and Technology.



Learning Map

Learning Theory

Linear
Model

Deep SVM, decision
Learning tree, K-NN ...




References

Classification
Multi-Layer
Perceptron / Deep
Learning

Bishop: Chapter 5.1



Deep learning
attracts lots of attention.

* | believe you have seen lots of exciting results
before.
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Deep learning trends at Google. Source: SIGMOD 2016/Jeff Dean
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Ups and downs of Deep Learning
1958: Perceptron (linear model)

1969: Perceptron has limitation

1980s: Multi-layer perceptron
* Do not have significant difference from DNN today

1986: Backpropagation
e Usually more than 3 hidden layers is not helpful

1989: 1 hidden layer is “good enough”, why deep?

2006: RBM initialization

2009: GPU

2011: Start to be popular in speech recognition

2012: win ILSVRC image competition

2015.2: Image recognition surpassing human-level performance
2016.3: Alpha GO beats Lee Sedol

2016.10: Speech recognition system as good as humans



Three Steps for Deep Learning

Step 3: pick
the best
function




Neural Network
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“Neuron”

Neural Network

Different connection leads to different network
structures

Network parameter 6: all the weights and biases in the “neurons”



-ully Connect Feedforward

Network
- 0.98

L i}fﬁ X0 S —

-2
-1 * zfvoi ;f_>

1 1

0
i )




-ully Connect Feedforward
Network

. 098 »

———
»
Vj
-




-ully Connect Feedforward
Network
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Given network structure, define a function set
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Deep = Many hidden layers

http://cs231n.stanford.e
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Deep = Many hidden layers

152 layers

Special
structure
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Matrix Operation
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Neural Network
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Neural Network
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Using parallel computing techniques
to speed up matrix operation
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Output Layer
as Multi-Class Classifier

Feature extractor replacing
feature engineering
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Example Application
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Example Application

* Handwriting Digit Recognition

X Y1 is 1
[ : x2 ] .
| . IS 2

_ Neural | Y2

: Network

X256 What is needed is a Yio SRS

function ......
Input: output:

256-dim vector 10-dim vector



Example Application

Layer1 Layer 2

' A function set containing the

EEENE

candidates for

Handwriting Digit Recognition

'-'-' -

You need to decide the network structure to
let a good function in your function set.



FAQ

Input ~— ~  OQutput
Layer Hidden Layers Layer

* Q: How many layers? How many neurons for each

layer?
Trial and Error ks

* Q: Can the structure be automatically determined?
e E.g. Evolutionary Artificial Neural Networks

* Q: Can we design the network structure?

Convolutional Neural Network (CNN)




Three Steps for Deep Learning

Step 2: Step 3: pick

Neural p goodness of . the best
Network function function

Deep Learning is so simple ......




Loss for an Example
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Total Loss:

Total Loss

For all training data ...
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0 H_’ NN — 2 52 Find c.tfunctlon in
function set that

minimizes total loss L

Find the network
parameters 0™ that
minimize total loss L




Three Steps for Deep Learning

Step 2: Step 3: pick

Neural p goodness of . the best
Network function function

Deep Learning is so simple ......




Gradient Descent
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Gradient Descent
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Backpropagation

* Backpropagation: an efficient way to compute dL/0w in
neural network

’Ydtorch theano

Tensor

¥ Microsoft

Caffe CNTK

Deep Learning library produced by Amazon I i b d n n
DSSTNE @xnet




Three Steps for Deep Learning

Step 2: Step 3: pick

Neural p goodness of . the best
Network function function

Deep Learning is so simple ......




Questions



