#### Welcome to

### DS3010: DS-III: Computational Data Intelligence Deep Learning / Multi-Layer Perceptron Prof. Yanhua Li

Time: 11:00am - 12:50pm M & R

Location: HL 114 D-term 2022 Quiz 1 grading is done

Quiz 2 Week 5 (4/14 R) Topics: To be announced

## Project 1

- Two student presentations today.
- Grading will be available this afternoon at 5pm.

## Project 2 due Week 6 (4/18 M)

- Logistic regression
- SVM
- Multi-layer perceptron/Deep learning
- https://github.com/ds3010s22/ds3010\_projects/bl ob/main/Project2.ipynb
- Get started as early as possible, don't wait for the last minute.

## Project 3 due Week 6 (4/18 M)

- Week 5 (4/11 M), Starting date
   Week 8 (5/2 M), Due.
   <a href="https://github.com/ds3010s22/ds3010">https://github.com/ds3010s22/ds3010</a> projects/bl ob/main/Project3 Business.ipynb
- Team work 2-4 student in a team.
- Start teaming up on Canvas

#### **Data pipeline**



**Urban Computing: concepts, methodologies, and applications.** 

Zheng, Y., et al. ACM transactions on Intelligent Systems and Technology.

### **Learning Map**

scenario task method



### References

Classification
Multi-Layer
Perceptron / Deep
Learning



Bishop: Chapter 5.1

# Deep learning attracts lots of attention.

 I believe you have seen lots of exciting results before.



Deep learning trends at Google. Source: SIGMOD 2016/Jeff Dean

### **Ups** and **downs** of Deep Learning

- 1958: Perceptron (linear model)
- 1969: Perceptron has limitation
- 1980s: Multi-layer perceptron
  - Do not have significant difference from DNN today
- 1986: Backpropagation
  - Usually more than 3 hidden layers is not helpful
- 1989: 1 hidden layer is "good enough", why deep?
- 2006: RBM initialization
- 2009: GPU
- 2011: Start to be popular in speech recognition
- 2012: win ILSVRC image competition
- 2015.2: Image recognition surpassing human-level performance
- 2016.3: Alpha GO beats Lee Sedol
- 2016.10: Speech recognition system as good as humans

## Three Steps for Deep Learning



Deep Learning is so simple .....





Different connection leads to different network structures

Network parameter  $\theta$ : all the weights and biases in the "neurons"







This is a function.

Input vector, output vector

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix} \quad f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$$

Given network structure, define a function set



### Deep = Many hidden layers

http://cs231n.stanford.e du/slides/winter1516\_le cture8.pdf



AlexNet (2012)





## Matrix Operation



## Neural Network



### Neural Network



$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

# Output Layer as Multi-Class Classifier

Feature extractor replacing feature engineering



# Example Application



### Input



Ink  $\rightarrow$  1 No ink  $\rightarrow$  0

### **Output**



Each dimension represents the confidence of a digit.

## Example Application

Handwriting Digit Recognition



## Example Application



You need to decide the network structure to let a good function in your function set.

FAQ



 Q: How many layers? How many neurons for each layer?

**Trial and Error** 

+

Intuition

- Q: Can the structure be automatically determined?
  - E.g. Evolutionary Artificial Neural Networks
- Q: Can we design the network structure?

Convolutional Neural Network (CNN)

## Three Steps for Deep Learning



Deep Learning is so simple .....



## Loss for an Example



### Total Loss

For all training data ...



### **Total Loss:**

$$L = \sum_{n=1}^{N} l^n$$



Find *a function in*function set that
minimizes total loss L



Find <u>the network</u>

parameters  $\theta^*$  that minimize total loss L

# Three Steps for Deep Learning



Deep Learning is so simple .....



## **Gradient Descent**



### **Gradient Descent**



## Backpropagation

• Backpropagation: an efficient way to compute  $\partial L/\partial w$  in neural network



















# Three Steps for Deep Learning



Deep Learning is so simple .....



# Questions