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Quiz #1

* Note: Quiz 1 on Canvas

* Week 4 (4/4 M)

* 15 mins at the beginning of the class.
* Topics: Bias and Variance



Project #1

* Due on Week 3 (3/31 R)
e Submitted it on Canvas

* https://github.com/ds3010s22/ds3010 projects/bl
ob/main/Projectl_Twitter.ipynb



Project #2 (Data Analytics and
Machine Learning)

e Starts on Week 3 (3/31 R)
* Due on Week 6 (4/18 M)
* Analysis of Mobile Phone Price/Cost

e Submitted it on Canvas

* https://github.com/ds3010s22/ds3010 projects/bl
ob/main/Project2.ipynb



Data pipeline

Service Providing
Improve urban planning, Ease Traffic Congestion, Save Energy, Reduce

Air Pollution, ...
A

“Urhan Data Analytics

Data Mining, Machine Learning, Visualization
A

n Data Management

Spatio-temporal index, streaming, trajectory, and graph data management,...
A

88888800

Human Air Meteorolo Social Road
Ene
mobility Traffic Quality gy Media “ey Networks

A

W Sensing & Data Acquisition
Participatory Sensing, Crowd Sensing, Mobile Sensing

Urban Computing: concepts, methodologies, and applications.
Zheng, Y., et al. ACM transactions on Intelligent Systems and Technology.



Learning Map

Learning Theory

Linear
Model

Deep SVM, decision
Learning tree, K-NN ...




References

Regression
Bias and variance

Bishop: Chapter 3.2



Where does the error
come from?



Review

250
Average Error on Testing Data
200

150 error due to "bias" and
error due to "variance"

Error

100

50

Model Complexity

A more complex model does not always lead to
better performance on testing data.




Estimator
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From training data, R
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f* is an approximation of f



Bias and Variance of Estimator

* Estimate the mean of a variable x
* assume the mean of xis u
e assume the variance of x is 2

e Estimator of mean u
e Sample N points: {x?!, x?, ..., x™}
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Bias and Variance of Estimator

* Estimate the mean of a variable x
* assume the mean of xis u
e assume the variance of x is 2

e Estimator of mean u
e Sample N points: {x?!, x?, ..., x™}

1
mzﬁzx" + U
n

2 Variance depends
o)
Var[m] = — on the number of
N samples

unbiased

Smaller N Larger N
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Bias and Variance of Estimator

Estimate the mean of a variable x
* assume the mean of xis u
e assume the variance of x is 2

Estimator of variance g*
e Sample N points: {x?!, x?, ..., x™}
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Low Bias

High Bias

Low Vanance

High Variance




Parallel Universes

* In all the universes, we are collecting (catching) 10
Pokémons as training data to find [~
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CP after evoluation

Parallel Universes

* |n different universes, we use the same model, but
obtain different [~
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CP after evoluatio
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Consider the extreme case f(x) =




Bias )

Elf] =

* Bias: If we average all the f*, is it close to f ?
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Black curve: the true function f
Red curves: 5000 f*

Blue curve: the average of 5000 f*
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Bias v.s. Variance

250
—  Error from bias
200

——  Error from variance
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—— Error observed
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Model complexity
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What to do with large bias?

* Diagnosis:
* If your model cannot even fit the training

examples, then you have large bias
* If you can fit the training data, but large error on
testing data, then you probably have large

CIUERISI Overfitting

1400 A

* For bias, redesign your model: _..| large bias
« Add more features as input ¢ ..

* A more complex model ® o

200 A
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What to do with large variance?

800

e More data

Very effective, =

but not always

practical

. Regularlzatlon »

800

200

10 examples

800

600

400 4

200

- 600

T T T T T T
0 100 200 300 400 500 600

100 examples

800

400 4

200 A

700




Model Selection

* There is usually a trade-off between bias and variance.

e Select a model that balances two kinds of error to minimize
total error

* What you should NOT do:

Real Testing

_ Set
Model 1 »Err=0.9

— — Model 2 »Err=0.7

J Model 3 ~Err=0.5 . Err>0.5

(not in hand)




Model Selection

public private
Training Set Testing Set Real Testing
— Set
Model 1 »Err=0.9
—> —  Model 2 »Err=0.7
Model 3 *Err=0.5| — Err>0.5
| beat baseline! No, you don't
TOP 10/IN PUBLIG/LEADERBOARD
What happened? Sy

http://www.chioka.in/how-
to-select-your-final-models-
in-a-kaggle-competitio/

RANKED 3XX IN PRIVATE LEADERBOARD



Cross Validation

public private

Training Validation Using the results of public testing

Real Testing

Training Set

Set

data to tune your model

You are making public set
better than private set.

Set set

fModeI 1 »Err=0.9

4Model 2 —p——Err=0.7
[Model 3 “Err=0.5| —— Err>0.5 —— Err>0.5

<

Not recommend




N-fold Cross Validation

Training Set Model1 Model2 Model 3

Train Train Val Err=0.2 Err=0.4 Err=04

Train Val Train Err=04 Err=0.5 Err=0.5

Val Train Train Err=0.3 Err=0.6 Err=0.3

Avg Err  Avg Err Avg Err

=0.3 =0.5 =0.4

public private
Real Testing

Testing Set
Set




Questions?



