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Data pipeline

Service Providing
Improve urban planning, Ease Traffic Congestion, Save Energy, Reduce

Air Pollution, ...
A

“Urhan Data Analytics

Data Mining, Machine Learning, Visualization
A

n Data Management

Spatio-temporal index, streaming, trajectory, and graph data management,...
A

88888800

Human Air Meteorolo Social Road
Ene
mobility Traffic Quality gy Media “ey Networks

A

W Sensing & Data Acquisition
Participatory Sensing, Crowd Sensing, Mobile Sensing

Urban Computing: concepts, methodologies, and applications.
Zheng, Y., et al. ACM transactions on Intelligent Systems and Technology.



Learning Map

Learning Theory

Linear
Model

Deep
Learning

- scenario - task - method

Ensemble

tree, K-NN ...




References

Ensemble

Bishop: Chapter 14.3-14.4



Ensemble



Framework of Ensemble

e Get a set of classifiers
* f1(x), f2(x), f3(x), ...... They should be diverse.

Programming Coordinating Members in a team.
Writing

» Aggregate the classifiers (properly)



Outline

Ensemble: Bagging

Ensemble: Stacking



Ensemble: Bagging



Review: Bias v.s. Variance
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A complex model will
have large variance.

If we average all the f*,
isitcloseto f

We can average
complex models to
reduce variance.



Sampling N’

- N training examples with
Bagging | P
examples replacement
A// \\A(usually N=N’)
Set 1 Set 2 Set 3 Set 4
Function Function Function Function

1 p) 3 4



This approach would be helpful when
Bagg| ng vyour model is complex, easy to overfit.

e.g. decision tree

Testing data x

A//\\A

Function Function Function Function
1 2 3 4
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N

Average/voting



Assume each object x is

Decision Tree represented by a 2-dim vector [i;]

\ Y

x1 —_ 05

W\lo The questions in

Class1 Class2 Class2 Class1 training.....
number of branches,

p— I v Branching criteria,
an ve more complex ion oot iteri
ave more complex questions termination criteria,

base hypothesis




Experiment: Function of Miku

(Data: 15t column: x, 2" column: y, 3" column: output (1 or 0) )



Experiment: : C'
Function of Miku
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train | f, | f, | f | fi
X1 O X O X

Random Forest

X2
X3
* Decision tree: N

O X X O
X O O X
X O X O

* Easy to achieve 0% error rate on training data
* If each training example has its own leaf ......

* Random forest: Bagging of decision tree
* Resampling training data is not sufficient
* Randomly restrict the features/questions used in each

split

* Out-of-bag validation for bagging
* Using RF = f,+f, to test x* -

* Using RF = f,+f; to test x?
 Using RF = f;+f, to test x3
 Using RF = f;+f; to test x*

Out-of-bag (OOB) error

Good error estimation
of testing set



Experiment: ’
Function of Miku
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Outline

Ensemble: Bagging

Ensemble: Stacking



Ensemble: Stacking



Voting

John’s system

Kyle’s system o
. . Majority

> Vote

Saad’s system




: Training § Training Val Testing

Classifier

as new feature



Questions



