Welcome to

DS3010: DS-III: Computational Data Intelligence Semi-supervised Learning Prof. Yanhua Li

Time: 11:00am – 12:50pm M & R Location: HL 114 D-term 2022

Class arrangement

- Week 6 (4/18 M): No Class. <u>Patrios' Day Holiday</u>. *Note:* Project 2 is due.
- Week 6 (4/21 R): Unsupervised Learning, Transfer Learning (slides), Review for final exam.
 Note: Project 2 presentations (two students).
- Week 7 (4/25 M): Final exam.
- Week 7 (4/28 R): Reinforcement Learning.
- Week 8 (5/2 M): Project 3 presentations (Zoom or in-person?; We will take a survey in Canvas.) *Note:* Project 3 is due.

Project 2

- Implement and compare SVM, Logistic regression, and Multi-layer perceptron (MLP) on the mobile phone data.
 - somemodel.score(x,y) for accuracy evaluation.
- For MLP, you also need to compare different structures, using hidden_layer_sizes parameter.
 - hidden_layer_sizes is the parameter tuple of the MLP classifier.
 - hidden_layer_sizes = 25,11,7,5,3, that means 5 hidden layers with each layer of 25,11,7,5,3, neurons, respectively.
- You define the implementation on your choice:
 - Cross-validation, feature scaling, or not

Data pipeline

Urban Computing: concepts, methodologies, and applications. Zheng, Y., et al. *ACM transactions on Intelligent Systems and Technology*.

Reference

Semi-supervised Learning

edited by Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien

Semi-Supervised Learning

http://olivier.chapelle.cc/ssl-book/

Semi-supervised Learning

Introduction

Labelled data

Unlabeled data

(Image of cats and dogs without labeling)

Introduction

- Supervised learning: $\{(x^r, \hat{y}^r)\}_{r=1}^R$
 - E.g. x^r : image, \hat{y}^r : class labels
- Semi-supervised learning: $\{(x^r, \hat{y}^r)\}_{r=1}^R, \{x^u\}_{u=R+1}^{R+U}$
 - A set of unlabeled data, usually U >> R
 - Transductive learning: unlabeled data is the testing data
 - Inductive learning: unlabeled data is not the testing data
- Why semi-supervised learning?
 - Collecting data is easy, but collecting "labelled" data is expensive
 - We do semi-supervised learning in our lives

Why semi-supervised learning helps?

The distribution of the unlabeled data tell us *something*.

Usually with some assumptions

Outline

Low-density Separation Assumption

Smoothness Assumption

Semi-supervised Learning Low-density Separation

Clear Separation

Self-training for classification

- Given: labelled data set = $\{(x^r, \hat{y}^r)\}_{r=1}^R$, unlabeled data set = $\{x^u\}_{u=1}^U$
- Repeat:
 - Train model f^* from labelled data set

You can use any model here.

Regression?

- Apply f^* to the unlabeled data set
 - Obtain $\{(x^u, y^u)\}_{u=1}^U$ Pseudo-label

Remove <u>a set of data</u> from unlabeled data set, and add them into the labeled data set

How to choose the data set remains open

You can also provide a weight to each data.

Self-training for Classification with hard labels

• Hard label v.s. Soft label

Considering using neural network θ^* (network parameter) from labelled data

Outlook: Semi-supervised SVM

Classification using Support Vector Machines", ICML, 1999

Semi-supervised Learning Smoothness Assumption

"You are known by the company you keep"

- Assumption: "similar" x has the same \hat{y}
- More precisely:
 - x is not uniform.
 - If x^1 and x^2 are close in a high density region, \hat{y}^1 and \hat{y}^2 are the same.

connected by a high density path

- Assumption: "similar" x has the same \hat{y}
- More precisely:
 - x is not uniform.
 - If x^1 and x^2 are close in a high density region, \hat{y}^1 and \hat{y}^2 are the same.

connected by a high density path

 x^1 and x^2 have the same label x^2 and x^3 have different labels

• Classify astronomy vs. travel articles

	d_1	d_3	d_4	d_2			d_1	d_3	d_4	d_2
asteroid	•	•]	asteroid	٠			
bright	•	•				bright	•			
comet		•				comet				
year						year				
zodiac						zodiac		•		
airport						airport			•	
bike						bike			•	
camp			•			camp				
yellowstone			•	•		yellowstone				•
zion				•		zion				•

• Classify astronomy vs. travel articles

	d_1	d_5	d_6	d_7	d_3	d_4	d_8	d_9	d_2
asteroid	•								
bright	•	•							
comet		•	•						
year			•	•					
zodiac				•	•				
airport						•			
bike						•	•		
camp						•	•	•	
vellowstone							•	•	•
zion								-	•

Cluster and then Label

Using all the data to learn a classifier as usual

Reference

edited by Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien

Semi-Supervised Learning

http://olivier.chapelle.cc/ssl-book/

Questions