Welcome to

DS3010: DS-III: Computational Data Intelligence Gradient Descent Prof. Yanhua Li

Time: 11:00am - 12:50pm M & R

Location: HL 114 D-term 2022

Data pipeline

Urban Computing: concepts, methodologies, and applications.

Zheng, Y., et al. ACM transactions on Intelligent Systems and Technology.

Learning Map

scenario task method

Gradient Descent

Review: Gradient Descent

 In step 3, we have to solve the following optimization problem:

$$\theta^* = \arg\min_{\theta} L(\theta)$$
 L: loss function θ : parameters

Suppose that θ has two variables $\{\theta_1, \theta_2\}$

Randomly start at
$$\theta^0 = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix}$$

$$\nabla L(\theta) = \begin{bmatrix} \frac{\partial L(\theta_1)}{\partial \theta_2} \\ \frac{\partial L(\theta_2)}{\partial \theta_2} \end{bmatrix}$$

$$\begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(\theta_1^0)}{\partial L(\theta_2^0)} / \frac{\partial \theta_1}{\partial \theta_2} \end{bmatrix} \implies \theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$\begin{bmatrix} \theta_1^2 \\ \theta_2^2 \end{bmatrix} = \begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(\theta_1^1)}{\partial \theta_1} \\ \frac{\partial L(\theta_2^1)}{\partial \theta_2} \end{bmatrix} \implies \theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

$$\nabla L(\theta) = \begin{bmatrix} \partial L(\theta_1)/\partial \theta_1 \\ \partial L(\theta_2)/\partial \theta_2 \end{bmatrix}$$

$$\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

Review: Gradient Descent

Gradient Descent Tip 1: Tuning your learning rates

Learning Rate

$$\theta^{i} = \theta^{i-1} - \eta \nabla L(\theta^{i-1})$$

Set the learning rate η carefully

Adaptive Learning Rates

- Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
 - At the beginning, we are far from the destination, so we use larger learning rate
 - After several epochs, we are close to the destination, so we reduce the learning rate
 - E.g. 1/t decay: $\eta^t = \eta/\sqrt{t+1}$
- Learning rate cannot be one-size-fits-all
 - Giving different parameters different learning rates

η : Base learning rate

Adagrad

$$\eta^t = \frac{\eta}{\sqrt{t+1}}$$
 $g^t = \frac{\partial L(\theta^t)}{\partial w}$

 Divide the learning rate of each parameter by the root mean square of its previous derivatives

Vanilla Gradient descent

$$w^{t+1} \leftarrow w^t - \eta^t g^t$$

w is one parameters

Adagrad

$$w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$$

 σ^{t} : **root mean square** of $w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$ the previous derivatives of parameter w

Parameter dependent

Adagrad

 σ^t : **root mean square** of the previous derivatives of parameter w

$$w^{1} \leftarrow w^{0} - \frac{\eta^{0}}{\sigma^{0}} g^{0} \qquad \sigma^{0} = \sqrt{(g^{0})^{2}}$$

$$w^{2} \leftarrow w^{1} - \frac{\eta^{1}}{\sigma^{1}} g^{1} \qquad \sigma^{1} = \sqrt{\frac{1}{2} [(g^{0})^{2} + (g^{1})^{2}]}$$

$$w^{3} \leftarrow w^{2} - \frac{\eta^{2}}{\sigma^{2}} g^{2} \qquad \sigma^{2} = \sqrt{\frac{1}{3} [(g^{0})^{2} + (g^{1})^{2} + (g^{2})^{2}]}$$

$$\vdots$$

$$w^{t+1} \leftarrow w^{t} - \frac{\eta^{t}}{\sigma^{t}} g^{t} \qquad \sigma^{t} = \sqrt{\frac{1}{t+1} \sum_{i=0}^{t} (g^{i})^{2}}$$

Adagrad

 Divide the learning rate of each parameter by the root mean square of its previous derivatives

$$w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$$

$$\sigma^t = \sqrt{\frac{1}{t+1}} \sum_{i=0}^t (g^i)^2$$

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} g^t$$

Contradiction?
$$\eta^t = \frac{\eta}{\sqrt{t+1}}$$
 $g^t = \frac{\partial L(\theta^t)}{\partial w}$

Vanilla Gradient descent

$$w^{t+1} \leftarrow w^t - \eta^t \underline{g}^t \longrightarrow \begin{array}{c} \text{Larger gradient,} \\ \text{larger step} \end{array}$$

Adagrad

Intuitive Reason
$$\eta^t = \frac{\eta}{\sqrt{t+1}} g^t = \frac{\partial L(\theta^t)}{\partial w}$$

How surprise it is Contrast

Extremely large

g^0	g ¹	g ²	g ³	g ⁴	•••••
0.001	0.001	0.003	0.002	0.1	•••••
g ⁰	g ¹	g ²	g^3	g ⁴	•••••

Extremely small

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} g^t$$
 Make the contrast effect

Gradient Descent Tip 2: Stochastic Gradient Descent

Make the training faster

Stochastic Gradient Descent

$$L = \sum_{n} \left(\hat{y}^{n} - \left(b + \sum_{i} w_{i} x_{i}^{n} \right) \right)^{2}$$
 Loss is the summation over all training examples

- Gradient Descent $heta^i = heta^{i-1} \eta
 abla Lig(heta^{i-1}ig)$
- Stochastic Gradient Descent

Faster!

Pick an example xⁿ

$$L^{n} = \left(\hat{y}^{n} - \left(b + \sum w_{i} x_{i}^{n}\right)\right)^{2} \quad \theta^{i} = \theta^{i-1} - \eta \nabla L^{n} \left(\theta^{i-1}\right)$$

Loss for only one example

Stochastic Gradient Descent

Gradient Descent

Update after seeing all examples

Stochastic Gradient Descent

Update for each example If there are 20 examples, 20 times faster.

Gradient Descent

Tip 3: Feature Scaling

Feature Scaling

Source of figure: http://cs231n.github.io/neural-networks-2/

$$y = b + w_1 x_1 + w_2 x_2$$

Make different features have the same scaling

Feature Scaling

$$y = b + w_1 x_1 + w_2 x_2$$

Feature Scaling

Feature scaling in Python

from sklearn import preprocessing

```
scaler = preprocessing.StandardScaler().fit(x_train)
xtrain_scaled = scaler.transform(x_train)
xtest_scaled = scaler.transform(x_test)
```

 https://scikitlearn.org/stable/modules/generated/sklearn.prepr ocessing.StandardScaler.html

More on Gradient Descent Methods

Vanilla Gradient Descent

Adagrad

- RMSProp and Adam (with RMSProp and Momentum)
 - https://blog.paperspace.com/intro-to-optimizationmomentum-rmsprop-adam/

Questions