This Lecture will be recorded!!!

Welcome to

CS 3516:
Computer Networks

Prof. Yanhua Li

Time: 9:00am -9:50am M, T, R, and F
Zoom Lecture
Fall 2020 A-term

1

Some slides are originally from the course materials of the textbook “Computer Networking: A Top Down Approach”, 7th edition, by
Jim Kurose, Keith Ross, Addison-Wesley March 2016. Copyright 1996-2017 J.F Kurose and K.W. Ross, All Rights Reserved.

Quiz 4 on Thursday

domain name registration, DNS hierarchy and Local
DNS, DSN message and resource records (RRs) format.

Lab 2 due on Monday 9/21

Available on class website

Project | due on Thursday 9/17

Application Layer 2-2

Local DNS, Web Cache, Aut. DNS

2.6 P2P applications
|. P2P vs Client&Server
2. Peer-to-Peer Networks
* Napster
= Gnutella
= BitTorrent

Application Layer 2-9

Client-server vs P2P architecture

Application Layer 2-10

Chapter 2: outline

2.6 P2P applications
|. P2P vs Client&Server
2. Peer-to-Peer Networks
= Napster
= Gnutella
= BitTorrent

Application Layer 2-11

Peer-to-Peer Networks:

How Did it Start?
% A killer application: Napster from 1999

®» Free music over the Internet

+ Key idea: share the content, storage and bandwidth of
individual (home) users

12

Model

<+ Each user stores a subset of files

+ Each user has access (can download) to files from
all users in the system

Challenges

+ Scale: up to hundred of thousands or millions of
machines

+ Dynamicity: machines can come and go any time

13

Main Challenge

+ Find where a particular file is stored
/E?

e
L

14

Napster: Example

15

Peer-to-Peer Networks: Napster

+ Napster history: the rise
" January 1999: Napster version 1.0
= May |1999: company founded

= September |1999: first lawsuits
= 2000: 80 million users Shawn Fanning,

+ Napster history: the fall Northeastern freshman

= Mid 2001: out of business due to lawsuits
= 2003: growth of pay services like iTunes

+ Napster history: the resurrection
= 2003: Napster reconstituted as a pay service
<~ Now

= Music focused online service, for more details:
https://en.wikipedia.org/wiki/Napster 6

https://en.wikipedia.org/wiki/Napster

Napster: Example

’0

’0

Client contacts Napster (via TCP)

’0

Client searches on a title or performer

’0

Client requests the file from the chosen supplier

m4

m3

Napster: Limitations of Central Directory

+ Single point of failure
+ Performance bottleneck

% Copyright infringement File transfer is

decentralized, but
locating content is

| highly centralized

+ So, later P2P systems were more distributed

18

Peer-to-Peer Networks: Gnutella
% Query flooding

+ Gnutella history = Join: contact a few nodes to
= 2000: J. Frankel & become neighbors
T. Pepper released = Publish: no need!
Gnutella = Search: ask neighbors, who
= Soon after: many other ask their neighbors

clients (e.g., Morpheus,
Limewire, Bearshare)

= 2001: protocol
enhancements, e.g.,
ultrapeers

= Fetch: get file directly from
another node

19

Gnutella

+ Ad-hoc topology
+ No guarantees on recall

\ \ Query: “xyz”

+ Queries are flooded for bounded number of hops
(TTL) ?

Gnutella: Protocol

0 Query message sent File transfer:
over existing TCP HTTP
conhnections

0 Peers forward
Query message
0 QueryHit
sent over
reverse

path

QueryHit

Has “xyz”

Scalability: Overlay network: graph

limited scope
flooding

<+ Edge between peer X and
Y if there’ s aTCP
connection

21

Gnutella: Pros and Cons

+ Advantages
= Fully decentralized, Highly robust

+ Disadvantages

= Not scalable; the entire network can be swamped with
request

* Search time may be quite long

22

Chapter 2: outline

2.6 P2P applications
|. P2P vs Client&Server
2. Peer-to-Peer Networks
Napster
Gnutella
BitTorrent

Application Layer 2-23

P2P design challenges

+ Large file
+ Free Riding

+ Scalability
= Publish/Download

24

BitTorrent: Simultaneous Downloading

+ Divide large file into many pieces
(256Kbytes)

= Replicate different pieces on different peers

= A peer with a complete piece can trade with other
peers

" Peer can (hopefully) assemble the entire file

% Allows simultaneous downloading

= Retrieving different parts of the file from different
peers at the same time

25

BitTorrent Components
+ Seed

= Peer with entire file
* Fragmented in pieces

+ Leech
= Peer with an incomplete copy of the file

< JTorrent file

= Passive component

= Stores summaries of the pieces to allow peers to verify
their integrity

< lracker

= Allows peers to find each other
= Returns a list of random peers

26

BitTorrent: Overall Architecture

Web Server - Tracker

c
g
NS
Peer

B Secal
[Leech]

Peer

Downloader
[Leech]

“US”

27

BitTorrent: Overall Architecture

- Web Server

2
o

Tracker

Peer
[Leech]
Peer
Downloader
[Leech]

“US”

28

BitTorrent: Overall Architecture

- Web Server

Tracker

Peer

[Leech]
Downloader Peer
[Leech]

“US”

Peer
[Seed]

29

BitTorrent: Overall Architecture

. Web Server .
Shekesens e |

Peer
[Seed]

Tracker

[Leech]

Peer
[Leech]

Downloader
(11 US”

30

BitTorrent: Overall Architecture

. Web Server .

Peer
[Seed]

Tracker

[Leech]

Peer

Downloader
“Us” [Leech]

31

BitTorrent: Overall Architecture

- Web Server .

Peer
[Seed]

Tracker

,0/'@
Peer CQS
[Leech]

Peer
[Leech]

Downloader
(14 US”

32

BitTorrent: Overall Architecture

. Web Server Tracker

Peer
[Seed]

[Leech]
Downloade Peer
r [Leech]

1 »”

- A few questions: 1) which peer to talk to; 2) which pieces to request first; 3)
0 ’(A' f how to motivate other peers to contribute

"-;’,"‘) 33

Free-Riding Problem in P2P Networks

+ Vast majority of users are free-riders
* Most share no files and answer no queries
* Others limit # of connections or upload speed
= Afew “peers” essentially act as servers
= A few individuals contributing to the public good
= Making them hubs that basically act as a server

+ BitTorrent prevent free riding

" Allow the fastest peers to download from you
" Occasionally let some free loaders download

34

BitTorrent: requesting, sending file chunks

requesting chunks:

\/
0‘0

at any given time, different
peers have different subsets
of file chunks

periodically, Alice asks each
peer for list of chunks that
they have

Alice requests missing
chunks from peers, rarest
first

sending chunks: tit-for-tat

< Alice sends chunks to those
four peers currently sending her
chunks at highest rate

= other peers are choked by Alice
(do not receive chunks from her)

" re-evaluate top 4 every|0 secs
+ every 30 secs: randomly select

another peer, starts sending
chunks

= “optimistically unchoke” this peer
= newly chosen peer may join top 4

Application Layer 2-35

BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’ s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’ s top-four providers

higher upload rate: find better
trading partners, get file faster !

Application Layer 2-36

Chapter 2: summary

our study of network apps now complete!

< application architectures + specific protocols:
" client-server = HTTP
= P2P = DNS

< application service .
requirement5: u P2P BltTOrrent

= reliability, throughput, = SMTF, POF, IMAP
delay, security

% Internet transport service
model

= connhection-oriented,
reliable: TCP

= unreliable, datagrams: UDP

Application Layer 2-37

Questions!

Application Layer 2-38

