This lecture will be recorded!!!

Welcome to

CS 3516: Computer Networks

Prof. Yanhua Li

Time: 9:00am -9:50am M, T, R, and F Zoom Lecture Fall 2020 A-term

Some slides are originally from the course materials of the textbook "Computer Networking: A Top Down Approach", 7th edition, by Jim Kurose, Keith Ross, Addison-Wesley March 2016. Copyright 1996-2017 J.F Kurose and K.W. Ross, All Rights Reserved.

Chapter 6: Link layer

our goals:

- understand principles behind link layer services:
- 6.1 introduction, services
- 6.2 error detection, correction
- 6.4 LANs
 - addressing, ARP (address resolution protocol)
 - Ethernet

Link layer: introduction

terminology:

- hosts and routers: nodes
- communication channels that connect adjacent nodes along communication path: links
 - wired links
 - wireless links
 - LANs
- layer-2 packet: frame, encapsulates datagram

Link layer has responsibility of transferring datagram from one node to *physically adjacent* node over a link

Link layer: context

- datagram transferred by different link protocols over different links:
 - e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link
- Each link protocol provides different services
 - e.g., may or may not provide rdt over link

transportation analogy:

- trip from Worcester to Minneapolis
 - Iimo: Worcester to BOS
 - airplane: BOS to MSP
 - train: MSP to Minneapolis
- tourist = datagram
- transport segment = communication link
- transportation mode = link layer protocol
- * travel agent = routing
 algorithm

Adaptors communicating

- sending side:
 - encapsulates datagram in frame
 - adds error checking bits, rdt, etc.

receiving side

- Iooks for errors, rdt, etc
- extracts datagram, passes to upper layer at receiving side

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.4 LANs
 - addressing, ARP
 - Ethernet

Ethernet: physical topology

- **bus:** popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
- star: prevails today
 - active switch in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

MAC addresses and ARP

32-bit IP address:

- network-layer address for interface
- used for layer 3 (network layer) forwarding
- Media access control (MAC or LAN or physical or Ethernet) address:
 - function: used 'locally" to get frame from one interface to another physically-connected interface (same network, in IPaddressing sense)
 - 48 bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable

hexadecimal (base 16) notation (each "number" represents 4 bits)

LAN, MAC addresses

each adapter on LAN has unique MAC address

LAN: Local area network

Link Layer 5-12

LAN addresses (more)

- MAC address allocation administered by IEEE
- manufacturer buys portion (2²⁴) of MAC address space (to assure uniqueness)
- * analogy:
 - MAC address: like Social Security Number
 - IP address: like postal address
 - Domain Name: Person name
- ✤ MAC flat address → portability
 - can move LAN card from one LAN to another
- ✤ IP hierarchical address not portable
 - address depends on IP subnet to which node is attached

IEEE: Institute of Electrical and Electronics Engineers

Ethernet frame structure

sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

preamble:

- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver, sender clock rates

Ethernet frame structure (more)

* addresses: 6 byte source, destination MAC addresses

- if adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to network layer protocol
- otherwise, adapter discards frame
- type: (2 bytes) indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk)
- CRC-32: (4 bytes) cyclic redundancy check at receiver
 - error detected: frame is dropped

Wireless 802.11 vs Ethernet Frame

* addresses: 6 byte source, destination MAC addresses

- if adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to network layer protocol
- otherwise, adapter discards frame

Final exam: this Friday 10/16 Optional Q&A session: Thursday 10/15 We will upload a video for final exam review today.

- Quiz 9: 8 points + 1 bonus points QI: CRC
- Q2: Ethernet frame structure
- Q3 (bonus): ARP & MAC address

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.4 LANs
 - addressing, ARP
 - Ethernet

Error detection

EDC= Error Detection and Correction bits

- D = Data protected by error checking, may include header fields
- Error detection not 100% reliable!
 - protocol may miss some errors, but rarely
 - larger EDC field yields better detection and correction

single bit parity:

 detect single bit errors

Odd parity:

Even parity:

Cyclic redundancy check

- more powerful error-detection coding
- view data bits, D, as a binary number
- choose r+1 bit pattern (generator), G
- goal: choose r CRC bits, R, such that
 - <D,R> exactly divisible by G (modulo 2)
 - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
 - can detect all burst errors less than r+1 bits
- widely used in practice (Ethernet, 802.11 WiFi)

CRC example (binary division, XOR)

Dividing D²^r by G yields R

Let D=101110, d=6 Let G=1001, r=3

R= remainder[101110 000 / 1001]?

R = remainder[
$$rac{D\cdot 2^r}{G}$$
]

CRC example

Dividing $D^{\cdot}2^{r}$ by G yields R

Let D=101110, d=6 Let G=1001, r=3

R= remainder[101110 000 / 1001]?

G

0 0

R=011, [D,G]=[101111011]

$$R = remainder[\frac{D \cdot 2^r}{G}]$$

Link Layer

Offline practice: CRC example

Dividing D[.]2^r by G yields R

Let D=1011, d=4 Let G=1001, r=3

R= remainder[1011 000 / 1001]?

R= 010, [D,G]=[1011 010]

R = remainder[
$$rac{D \cdot 2^r}{G}$$
]

Link Layer

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.4 LANs
 - addressing, ARP
 - Ethernet

ARP: address resolution protocol

Question: how to determine interface's MAC address, knowing its IP address?

ARP table: each IP node (host, router) on LAN has table

- IP/MAC address mappings for some LAN nodes:
 - < IP address; MAC address; TTL>
- TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

ARP protocol: same LAN

- A wants to send datagram to B
 - B's MAC address not in A's ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - dest MAC address = FF-FF-FF-FF-FF
 - all nodes on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A' s MAC address (unicast)

 A caches (saves) IP-to-MAC address pair in its ARP table until information times out

Switch: *multiple* simultaneous transmissions

- switches buffer packets
- no collisions;
- full duplex
- switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions

switch

star

bus: coaxial cable

Switch forwarding table

Q: how does switch know A' reachable via interface 4, B' reachable via interface 5?

- <u>A</u>: each switch has a switch table, each entry:
 - (MAC address of host, interface to reach host, time stamp)
 - Iooks like a routing table!

<u>Q</u>: how are entries created, maintained in switch table?

something like a routing protocol?

switch with six interfaces (1,2,3,4,5,6)

Switch: self-learning

- switch *learns* which hosts can be reached through which interfaces
 - when frame received, switch "learns" location of sender: incoming LAN segment
 - records sender/location pair in switch table

MAC addr	interface	TTL
A	1	60 min

Switch table (initially empty)

when frame received at switch:

- I. record incoming link, MAC address of sending host
- 2. check switch table using MAC destination address
- 3. if entry found for destination
 then {
 - if destination on segment from which frame arrived then drop frame
 - else forward frame on interface indicated by entry
 - else flood /* forward on all interfaces except arriving interface */

ARP protocol: same LAN

- A wants to send datagram to B
 - B's MAC address not in A's ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - dest MAC address = FF-FF-FF-FF-FF
 - all nodes on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A' s MAC address (unicast)

 A caches (saves) IP-to-MAC address pair in its ARP table until information times out

Self-learning, forwarding: example

- frame destination, A',
 locaton unknown: flood
- destination A location
 known: selectively send
 on just one link

MAC addr	interface	TTL	
A	1	60m	in switch table
A'	4	60	(initially empty)

Source: A

Interconnecting switches

switches can be connected together

<u>Q</u>: sending from A to G - how does S_1 know to forward frame destined to G via S_4 and S_3 ?

A: self learning! (works exactly the same as in single-switch case!)

Introduction 1-35

To ALL Majors Opportunity to Pursue a BS/MS in Data Science

Information & Discussion Session

Session Times: Wednesday Oct 14th, 2020 @11:00am Zoom Link: https://wpi.zoom.us/j/98511661158

Questions? Fille out Class survey on Canvas