This lecture will be recorded!!

Welcome to

CS 3516:
Computer Networks

Prof. Yanhua Li

Time: 9:00am -9:50am M, T, R, and F
Zoom Link
Fall 2020 A-term

1

Some slides are originally from the course materials of the textbook “Computer Networking: A Top Down Approach”, 7th edition, by
Jim Kurose, Keith Ross, Addison-Wesley March 2016. Copyright 1996-2017 J.F Kurose and K.W. Ross, All Rights Reserved.

Lab 2 due 9/21 Monday.

Quiz 4: Grading done by today!
Quiz 5:9/21 Monday on P2P

Project 2 started
We will do a demo next M or T

Proj |: Extended to next M 9/21

Mid-term exam

. We will send + We will have a review
you sample session for the sample
questions during questions.

the weekend

+ In-person session on

_ Thursday 9/24 in AK219.
2. Next Friday 9/25

in Canvas 8:55-
9:50AM. Zoom
for Questions

Transport Layer 3-3

Encapsulation

message M appli¢ation
segment [H] M trangport \
datagram |Hp| Hy| M netWork
frame [H||Hy H| M Mk
bits phyJalcaI
link
physical @C_?
switch
destination Hnl He| M network
M pplication My Al Be] ™ Iink Ho[Hy| M
H M transport \ physical - -
Hyl He| M network
H [Hy[He[M link " router
—phyeical

Introduction 1-4

Chapter 3: Transport Layer

our goals:

+ understand + learn about Internet
principles behind transport layer protocols:
transport layer = UDP: connectionless
services: transport

= multiplexing, = TCP: connection-oriented
demultiplexing reliable transport

= reliable data transfer

Transport Layer 3-5

Chapter 3 outline

3.l transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

Transport Layer 3-6

Transport services and protocols

>

L)

4

>

>

L)

provide logical
communication between
app processes running on
different hosts

transport protocols run in
end systems

" send side: breaks app
messages into segments,
passes to network layer

" rcv side: reassembles
segments into messages,

passes to app layer

more than one transport
protocol available to apps

= |[nternet: TCP and UDP

PP
g transport

networ!

o¥

S

()

transport
networ

data link
physical

Transport Layer 3-7

Internet transport-layer protocols

+ reliable, in-order
delivery (TCP)
" retransmission
" congestion control
* flow control
" connection setup

+ unreliable, unordered
delivery: UDP

= no-frills extension of
best-effort” IP

message application
segment dnsSpo
datagrams ne (o)
& data li
R hysic
Al M'
<< > netw data link
data lint(eXphysical |-=—
physical O
ork >
), Kk
CCE NI : p .
S‘{ network |§Z
52 data link N
O
|_networkye
data link
shysical
network Y
data link
hysical
Pysica network

data link

{ physical

d

networ

_data link |

physical

Transport Layer 3-8

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

Transport Layer 3-9

MuItiQIexing/demuItiglexing

- multiplexing at sender: o .
handle data trom multiple — demultiplexing at receiver: —
sockets, add transport header use header info to deliver
(later used for demultiplexing) received segments to correct
socket
application

application | socket

application

, “_| Q process
transport netwaork trarj{dport
network Ei Ik netyfork
link Bl Physital [k D
physical physical

Transport Layer 3-10

Connectionless demultiplexing

+» when host receives UDP IP datagrams with same
segment: dest. port #, but different

= checks destination port mm) sog;*ce IP addressets
in segment and/or source por

. numbers will be directed
" directs UDP segment to to same socket at dest
socket with that port #

Transport Layer 3-11

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket Dat Socket DatagramSocket
mySocket2 = new atagramsocke mySocketl = new
DatagramSocket (6428) ; DatagramSocket
(9157) ; application (5775) ;

application @ application
44
L4 transport L
tramgport nefwo [trangport
nefwork IIn|< network
||i|’ k m‘/SiCEﬂ link
phydical phykical \
I &
source port: 6428 source port: ?
’ dest port: 9157 L dest port: ?
> e 5
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 3-12

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket DatagramSocket DatagramSocket
mySocket2 = new g mySocketl = new
DatagramSocket (6428) ’ DatagramSocket
(9157) ; application (5775) ;
application @ application
44
14 transport L
tramgport nefwo [trangport
nefwork IIn|< network
||i|’ k m‘/SiCEﬂ link
./ Td w
phygical phykical \
- - &=
source port: 6428 source port: 6428
’ dest port: 9157 L dest port: 5775
> le ¥
source port: 9157 source port: 5775
dest port: 6428 dest port: 6428

Transport Layer 3-13

Connection-oriented demux

+» TCP socket identified
by 4-tuple:

" source |IP address

" source port number

" dest IP address

" dest port number

+» demux: receiver uses
all four values to direct
segment to appropriate
socket

% server host may support

many simultaneous TCP
sockets:

= each socket identified by
its own 4-tuple

Transport Layer 3-14

Connection-oriented demux: examEIe
server: |P

host: IP host: IP
address B
address A 30 address C
9157 5775 9157
application
application - - - application
L CP3D
a4 s “yandport o ol _@
1:ran|;port detwlork transpo
netjvork lifk network
lihk)hysical link
N/ phyical physical &
source IP,port: B,80 -
dest IP,port: A,9157 source IP,port: C,5775
s dest IP,port: B,80
Sourge IP,port: A,9157 -
IP ' B e
est IP, port: B,80_ source IP,port: C,9157

dest IP,port: B,80

three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets Transport Layer 3-15

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

Transport Layer 3-16

UDP: User Datagram Protocol [RFC 768]

» "best effort” service,
UDP segments may be:

= |ost

= delivered out-of-order
to app

< connectionless:

" no handshaking
between UDP sender,
receiver

= each UDP segment
handled independently
of others

+ UDP use:

" streaming multimedia
apps (loss tolerant, rate
sensitive)

= DNS

< reliable transfer over

UDP:

" add reliability at
application layer

= application-specific error
recovery!

Transport Layer 3-17

UDP: segment header (8 bytes header)

length, in bytes of
UDP segment,
including header

32 bits

source port #

~

length <~ | checksum

— why is there a UDP? __

% NO connection

application establishment (which can
data add delay)
(payload) .

» simple: no connection
state at sender, receiver

» small header size

» Nno congestion control:
UDP can blast away as
fast as desired

UDP segment format

Transport Layer 3-18

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

sender: receiver:

<+ treat segment contents, % compute checksum of
including header fields, received segment
as sequence of | 6-bit .

» check if computed

integers
hecl 2 ddit checksum equals checksum
» chechoumadddon fieldvlue
sum) of segﬁment " NO - error detected
contents " YES - no error detected.
» sender puts checksum But maybe errors
value into UDP nonetheless? More later

checksum field

Transport Layer 3-19

Internet checksum: example

example: add two | 6-bit integers
1110011001100110
1101010101010101

wraparound (1)1011101110111011

1100

sum 1011101 11
000011

110
checksum 0100010001

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Transport Layer 3-20

Questions!

Application Layer 2-21

