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Abstract—In this work, we focus on two fundamental questions that are unprecedentedly important to urban planners to understand
the functional characteristics of various urban regions throughout a city, namely, (i) how to identify regional weather-traffic sensitivity
index throughout a city, that indicates the degree to which the region traffic in a city is impacted by weather changes; (ii) among
complex regional features, such as road structure and population density, how to dissect the most influential regional features that drive
the urban region traffic to be more vulnerable to weather changes. However, these two questions are nontrivial to answer, because
urban traffic changes dynamically over time and is essentially affected by many other factors, which may dominate the overall impact.
We make the first study on these questions, by developing a weather-traffic index (WTI) system. The system includes two main
components: weather-traffic index establishment and key factor analysis. Using the proposed system, we conducted comprehensive
empirical study in Shanghai, and the weather-traffic indices extracted have been validated to be surprisingly consistent with real world
observations. Further regional key factor analysis yields interesting results. For example, house age has significant impact on the
weather-traffic index, which sheds light on future urban planning and reconstruction.

Index Terms—Trajectory analysis, weather-traffic index, traffic prediction, urban computing.
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1 INTRODUCTION

URBAN computing connects urban sensing, data management,

data analytic and service providing into a recurrent process

for an unobtrusive and continuous improvement of people’s lives,

city operation systems and the environment [2]. The aim is to solve

a variety of emerging city problems, such as traffic congestion,

energy consumption, and pollution, based on the data of traffic

flow, human mobility, and geographical data, etc. In particular,

many works have been done to investigate the impact of inclement

weather to traffic [3] [4] [5]. For example, a heavy rain may slow

down the traffic and cause congestions due to low visibility and

high demand of vehicles; the decreasing temperature in very cold

days will freeze the roads and influence the transport performance,

etc. Table 1 describes the general relevance of the impact of

weather change to transport in US.

In July 21st, 2012, Beijing faces its largest rainstorm since

1951, with an average rainfall of 164 millimeters. According to

the news report [7], there are 77 people died in this catastrophic

natural disaster. The transport of Beijing suffered from various

contingencies due to the serious flood, as shown in Figure 1.

During that time, a variety of photos titled “see the sea in Beijing”

widespread on the Internet. This disaster not only shows the

serious problems of the urban transport system of Beijing, but also
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Fig. 1: The rainstorm of Beijing in the year of 2012.

inspires our research interest: how can we identify those regions

being highly influenced by weather change on transport?

The early works often focus on the correlation of weather

and traffic in some particular roads where devices have been de-

ployed to continuously collect traffic data. By analyzing the traffic

change in different weather conditions, the traffic prediction can

be better preformed considering the weather forecast. However,

the weather-traffic correlation covering most roads throughout a

city (known as regional weather-traffic sensitivity index or for

simplicity weather-traffic index) is still an open problem vain

in spite of the practical value in our daily life. One essential

reason is the lacking of effective traffic monitoring system in

city-wide scale. Another open problem is how to disclose the

key factors behind the weather-traffic index, to explain the reason
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TABLE 1: Changes in Climate and Weather Relevant on US Transport [6]

Change in Climate or Weather Likelihood
Decreases in very cold days Virtually certain
Increases in Arctic temperatures Virtually certain
Later onset of seasonal freeze and earlier onset of seasonal thaw Virtually certain
Sea level rise Virtually certain
Increases in very hot days and heat waves Very likely
Increase in intense precipitation events Very likely
Increases in drought conditions for some regions Likely
Changes in seasonal precipitation and flooding patterns Likely
Increases in hurricane intensity Likely
Increased intensity of cold-season storms, with increases in winds and in waves and storm surges Likely

why some regions in a city are more vulnerable to inclement

weather and others are not. These factors are the regional features

including the density of roads, the number of road intersections,

the number of POIs (points of interest), the traffic volume, the

average age of the household, the density of buildings and more

in the surrounding regions. The weather-traffic index throughout

a city and the knowledge of key factors behind the correlation

provides effective support to help government agent to understand

the functional character of districts throughout a city, to improve

traffic performance and to learn the key factors in urban planning,

etc. For example, if the traffic of a region is highly affected by

heavy rains, and the key factors include the sewer system, then it

is important for the government to examine and improve the sewer

system of the region in first priority.

To enable weather-traffic index throughout a city and factor

analysis, the effective traffic monitoring in city-wide scale is a

must. Nowadays, with the widely commercial use of taxi tracking

system, the most feasible means probably is to extract traffic infor-

mation from numerous taxis driving on roads due to its availability,

wide-coverage and low-cost. A taxi tracking system combines

the use of automatic vehicle location in individual vehicles with

software that collects these fleet data. Typically, taxi data continu-

ously record the information including location, speed, occupancy

status, and orientation of the taxis. The traffic parameters (e.g.,

traffic speed) extracted from taxi data are practically sparse since

the number of taxis in a city is typically limited. Therefore, we

partition the city by Voronoi diagram where the seeds are the road

intersections. Compared to the region-oriented city map partition

approach such as equal-sized rectangles [8] where the roads in

some cells are highly dense and in others are highly sparse, the

advantage of our road-intersection-oriented partition makes sure

every cell include at least one road intersection and a number of

roads connected to this intersection. Given a period of time, the

average parameters of driving taxis in each Voronoi cell (or called

cell for simplicity in the rest of this work) is extracted as the

average traffic parameter of the cell. In addition to traffic data,

weather data and complicated regional features in the same period

of time are also required to perform the study.

This work has developed a weather-traffic index (WTI) system
which mainly aim to fulfill two tasks. The first is to set up a

weather-traffic index throughout a city, which indicates the impact

of weather to traffic from light to heavy. The second is to reveal

the key factors behind the weather-traffic index throughout the

city and their relative weights. Although there are many existing

traffic prediction and measurement works as introduces in related

works, they mainly focus on the analysis of road segments; on

the contrary, this paper is the first study on local traffic-weather

sensitivity throughout a city and the investigation to reveal the key

factors behind the sensitivity.

We have addressed a series of techniques challenges in this

work, and the central contributions are summarized as follows:

• A systematic approach has been proposed for establishing

weather-traffic index throughout a city. The challenge is

to separate the impact of weather to traffic from many

other reasons. The other reasons include the traffic in peak-

hour differing from that in non-peak hours, the traffic, for

example, 5 minutes ago in the nearby road networks, and

the road works slowing down the average speed, etc. A

novel method has been proposed to successfully address

this challenge.

• A supervised learning method have been proposed to

disclose the key factors and their weights contributing to

weather-traffic index throughout the city. It is a challeng-

ing task because many factors have composite and delicate

influence concurrently.

• Using the proposed system, we conduct empirical study in

Shanghai, the largest city in China, using 115.2 GB traffic

data (extracted from more than 4000 taxi trajectories)

for two years, the weather data of the same period of

time, the road networks and complicated regional features.

The established weather-traffic index and the discovered

key factors have been extensively verified against the

observations in the real world.

In the rest of this paper, we outline the related works in section

2, and show the framework of the proposed system in section 3.

Then, the data preparation component of the system is introduced

in section 4, the weather-traffic index establishment component

is presented in section 5, and the factor analysis component

is detailed in section 6. We conduct empirical study using the

proposed system in section 7. Finally, this work is concluded in

section 8.

2 RELATED WORK

Urban computing works often focus on a particular city problem,

such as traffic congestion, energy consumption, and pollution,

based on the data of traffic flow, human mobility, and geographical

data, etc. For example, in [8], they inferred the real-time and fine-

grained air quality information throughout a city, based on the air

quality data reported by existing monitor stations and a variety

of data sources observed in the city. In [9], they tried to identify

the hot spots of moving vehicles in an urban area via a novel,

non-density-based approach, called mobility-based clustering. In

[10], they proposed a framework, called DRoF, to discover regions

of different functions in a city using both human mobility among



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2623320, IEEE
Transactions on Big Data

3

regions and points of interests (POIs) located in a region. In [11],

the authors tried to sense the refueling behavior and citywide

petrol consumption in real-time, based on the trajectories of

vehicles. In [12] and [13], they tried to discover the traveling

companions and gathering patterns of vehicles, respectively.

Being an important topic in urban computing and cross-

domain data analytics [14], the early research on the relation be-

tween weather and traffic is mainly based on quantitative analysis

and statistical methods. For example, in [3], they presented an

algorithm for forecasting physical road surface conditions based

on weather and road surface data they have collected, and aim

to identify icy roads during a cold weather in advance in order

to predict the impact to traffic. In [4], they proposed a crash-

likelihood prediction model based on both real-time traffic flow

variables measured through series of underground sensors and the

rain data collected at weather stations in order to alarm potential

crash occurrence in advance. In [5], they developed a neurowavelet

prediction algorithm to forecast hourly traffic flow considering

the effect of rainfall. The experiments show that the rainfall

data successfully augments the traffic flow data as an exogenous

variable in periods of inclement weather. The early works focus

on some particular roads where devices have been deployed to

continuously collect traffic data. None of them investigated the

weather-traffic correlation throughout a city and conduct analysis

of the key factors behind the regions whose traffics are highly

influenced by inclement weather.

3 OVERVIEW

This work aims to develop a weather-traffic index (WTI) system
which performs two tasks: establishment of weather-traffic index

throughout a city and analysis of key factors behind the index. The

framework of the proposed system is shown in Figure 2, which

consists of three functional components:

• Data preparation: The road networks in the city of

interest is partitioned into cells via Voronoi diagram where

the seeds are road intersections. For each cell, the traffic

parameters are extracted from taxi trajectories and the

regional features are collected. The weather information

of the same period of time is also collected. The details

are presented in section 4.

• Weather-traffic index establishment: The weather-traffic

index is established for each cell by analyzing traffic data

and weather data. In specific, given a cell g, the weather-

traffic index ρ(g) is a value indicating the extent to which

the traffic parameter in g is affected by weather. This

component is discussed in section 5.

• Factor analysis: The input includes the established

weather-traffic index and the regional features. The aim

is to identify which regional features make traffic in

cells vulnerable to inclement weather. In particular, the

weights of regional features are quantitatively measured.

The methodology is provided in section 6.

4 DATA PREPARATION

In this section, we introduce the data preparation component

which partitions the city into fairly distributed regions, and collects

relevant source data for each region.

Road
Network

Taxi
Trajectories

Traffic
Parameters

Factor Analysis

Weather
Information

Regional
Features

Weather-Traffic Index

Weather
Report Data

Region Partitioning

Regional 
InformationData Preparation 

Component

Weather-Traffic Index Establishment Component Factor Analysis 
Component

Fig. 2: Framework of weather-traffic index (WTI) system.

4.1 Region Partitioning
A straightforward region partitioning method is region-oriented

partitioning such as in [8] where the city region is split into equal

size grids. However, this partitioning method is improper if the

traffics of road networks in grids are concerned. The reason is

that the road networks in a city are often distributed unevenly.

For example, the road networks are typically much denser in the

urban areas than that in the rural areas. As a consequence, the

road networks in some grids are highly dense and in some grids

are highly sparse. This situation motivates us to apply a different

region partitioning method.

Our method is to partition the city region using Voronoi

diagram [15]. A Voronoi diagram is a partitioning of a plane

into regions (or cells) based on the distance to points (or seeds)

in a specific subset of the plane, and the shapes and sizes of

the cells differ from each other. In this paper, we choose road

intersections as the seeds. We call such partitioning method as

road-intersection-oriented partitioning. In particular, if several

road intersections are very close to each other, for example within

50 meters, they are grouped together as a complex intersection.

So, each cell includes at least one road intersection and the road

segments connected with this intersection. The indices of all cells

are obtained following the equal procedure no matter they are in

dense and non-dense areas.

The road-intersection-oriented partitions in Shanghai is shown

in Figure 3 where the seeds are the intersections of major roads.

We observe that the cells are relative small in the urban areas

while the cell tends to be large in rural areas. This partitioning

method has two desirable properties. The first is the relatively

even distribution of road networks in all cells. The second is

that traffic jam, in particular in extreme weather condition like

a thunderstorm or a heavy rain, often happens in the road intersec-

tions according to our experience in daily life. In other words, the

road-intersection-oriented partitioning method helps to portray the

relation of weather and traffic investigated in this work.

In this paper, Voronoi cell is the unit region of weather-traffic

index. For each cell, traffic and weather of a long period of time

are analyzed to decide the weather-traffic index.

4.2 Source Data
The input of the system includes the road networks, traffic data,

and regional features in the city of interest, and the weather data

in the same period of time. A road network G(V,E) consists of a
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Fig. 3: The Voronoi diagrams partitions in Shanghai. The under

layer represents the road networks.

set of road segments E and a set of road intersections V . A road

segment in E is associated with its type, length, speed limit, two

end points and other meta information. A road intersection in V is

associated with its location (i.e., latitude and longitude) and type.

The carriageway between two road intersections in E may consist

of multiple edges in E connected in sequence.

From traffic data, a certain traffic parameter of interest, such as

average speed, can be extracted. Traffic parameter can be classified

in terms of one of the following: quantity measures, e.g., “how

much or at what rate is traffic moving or waiting to move?”;

quality assessment measures, e.g., “how well is traffic moving?”;

movement measures, e.g., “where is traffic coming from and going

to?”; and composition / classification measures, e.g., “what kind

of traffic is moving?”. While all kinds of traffic parameters can be

applied in our weather-traffic index, this work use average speed

as an example. Speed expresses the rate at which traffic is moving

and, therefore, is a natural measure of the quality of the flow.

In this work, time mean speed (also called average speed) is

used as the traffic parameter, which is defined as the arithmetic

mean of individual spot speeds that are recorded over a selected

time period. An adequately sized sample of spot speeds is needed

to ensure that the time mean speed approximates the population

mean to within the desired accuracy. The traffic parameters are

extracted from large volume of taxi trajectory data collected.

In our study, the average speed of the driving taxis in each

cell are calculated. In particular, the average speed is split into

7 classes: less than 10 km/h, 10-30 km/h, 30-50 km/h, 50-70

km/h, 70-90 km/h, 90-110 km/h, and more than 110 km/h. Since

traffic parameters are categorical results and our objective is to

establish index, we split the continuous variables because 1) it

reduces the complexity of the problem, and 2) it well supports

our objective. In particular, if continuous values are used, the

main ideas proposed in this work are still applicable with trivial

modification. The average speed of one road segment is subject

to the traffic parameter of that road segment only, which is not

comparable with other road segments. For example, the average

speed of 30 km/h reflects drastically different traffic condition on

a small local street and a highway. Hence, in this paper, we only

compare the changes of the average speed on each road segment

separately.

Weather is the state of the atmosphere, to the degree that it is

hot or cold, wet or dry, calm or stormy, clear or cloudy. The details

of the weather data used in this paper are described in Table 2 in

section 7.1. If a particular weather condition is interested, such

as rain, the weather-traffic index can be specialized as rain-traffic

index and accordingly the factor analysis is specialized to rain as

well.

For each Voronoi cell, the complicated regional features are

collected including four categories in the surround regions. The

details of the regional features used in this paper are described in

Table 4 in section 7.1.

5 WEATHER-TRAFFIC INDEX ESTABLISHMENT

The weather data and traffic data from data preparation component

is the input of weather-traffic index establishment component. The

intuition that the traffic is influenced by weather can be proven by

the example shown in Figure 4. It illustrates the average speeds in

different cells in Shanghai at the same time slots in two different

weather conditions: cloudy and rainy. It is clear that the average

speed in rainy days is generally lower than that in cloudy days.

At the same time, it also demonstrates that the average speeds

in some cells are unchanged in the rainy days and in cloudy days.

Therefore, weather-traffic index is necessary to indicate the impact

of weather to traffic in different cells.

Given a cell g, its value in weather-traffic index is the corre-

lation between traffic and weather, denoted as ρ(g). ρ(g) takes

value from a discrete range, such as [1, 2, 3, 4, 5]. The following

subsection will discuss how to detect such correlation.

5.1 Correlation Detection
In a cell, for detecting the correlation between the traffic speed,

denoted as Ft, and weather, denoted as Fw, a simple method is

to train a classifier which infers directly from Fw to Ft, as shown

in Figure 5. The input is the weather represented as a feature

vector and the output is one of the seven speed classes. The trained

classifier is tested. If the inference accuracy is high, it means the

correlation between the traffic and weather is high in this cell;

otherwise, the correlation is low. This method is commonly used in

statistics to measure the correlation between two random variables.

However, we observed critical weakness of this method in

correlation detection between traffic and weather. This is because

there are many other reasons which impact traffic. For example,

the traffic in peak-hour differs from that in non-peak hours, the

traffic accident in one road segment will influence the traffic in

nearby road networks, and the road works slow down the average

speed, etc. Compared to weather, these reasons are dominant in

most cases. Therefore, the main challenge in weather-traffic index

establishment is to separate the impact of weather to traffic in each

cell from other reasons.

To address this challenge, we propose a novel method inspired

by the Granger causality test [16]. The Granger causality test

is a statistical hypothesis test for determining whether one time

series is useful in forecasting another. A time series X is said

to Granger-cause Y if it can be shown that those X values

provide statistically significant information about future values
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(a) Scattered clouds

(b) Thunderstorms and rain

Fig. 4: The average speed at 14:00 on two days in summer in

Shanghai, where the weather is scatter cloudy (top) and rainy

(bottom).

FtFw ρ(g) = Accuracy

Fig. 5: A simple weather-traffic correlation detection method

where traffic speed is directly inferred from weather.

of Y . Hence, we say that a variable X that evolves over time

Granger-causes another evolving variable Y if predictions of the

value of Y based on its own past values and on the past values

of X are better than predictions of Y based only on its own past

values.

In this paper, the initiative is to train a traffic prediction

model which considers all other reasons besides weather, and then

train a traffic prediction model which considers all other reasons

and weather. We observe the difference between the inference

accuracies of the two models. If the accuracy is improved after

considering weather, it indicates that the weather does impact the

traffic in this cell in general; otherwise, the impact of weather is

uncertain in this cell. The overview of our method is shown in

Figure 6. The traffic prediction models are trained separately in

different time slots. The reason is that the traffic regularity in time

slot, for example, 7:00 am - 9:00 am can be very different from

another time slot, for example 9:00 am - 11:00 am. As shown

in Figure 6, the average of the traffic prediction accuracies in

different time slots is used.

FtFt'

Fw

FtFt'

...

Accuracy A

Accuracy B

Difference

Traffic Prediction 
without Weather

Traffic Prediction
with Weather

Timeslot 1
Timeslot 2

Timeslot 3

ρ(g) = Average
Difference

Fig. 6: The weather-traffic correlation detection method used in

this paper.

The weather-traffic index value ρ(g) is assigned to each cell

to indicate the extent to which the traffic prediction accuracy

is impacted by weather as discussed above. After considering

weather, in some cells the traffic prediction is strongly improved

and in some cells the traffic prediction is weakly improved. The

cells are organized in ascending order of the traffic prediction

accuracy improvement, and then they are divided by k-quantiles,

i.e., dividing the ordered cells into k equal-sized subsets. Thus,

the k-quantiles show the correlation between traffic and weather

from weak to strong. The motivation of quantiles is because the

cells are essentially normally distributed and a large percentage of

cells are close to the mean. By using k-quantiles, the number of

cells in each subset is about equal.

Due to the requirement of a traffic prediction model in

weather-traffic index establishment, the following subsection will

discuss traffic prediction in details.

5.2 Traffic Prediction
Traffic prediction is a well studied problem. Since early

1980s, univariate time series models, mainly Box-Jenkins Auto-

Regressive Integrated Moving Average (ARIMA) [17] and Holt-

Winters Exponential Smoothing (ES) [18], have been widely used

in traffic prediction. In the last decade, neural network models

have also been used in forecasting travel time [19]. In [20],

spatial-temporal characteristics of traffic events are considered in

training traffic prediction models. In [21], authors use AQ21, a

natural induction system that learns and applies attributional rules,

to predict traffic by autonomous agents within a vehicle route

planning system. In [22], they estimate the traffic flow of a road

segment by analyzing taxi trajectories. A recent study successfully

uses the weather situations as supplementary information in traffic

prediction model to enhance the prediction accuracy [4]. In this

work, any traffic prediction model can be used.

In this work, the traffic parameter of interest is consisted of

discrete classes, thus we treat traffic prediction as a classification

problem. To be robust, we use three different linear inference

methods, including support vector machine (SVM) [23], logistic

regression (a.k.a. logit) [24], and perceptron [25]. The average

accuracy of a 10-fold cross-validation is used to compute the

accuracy difference as shown in Figure 6. Our framework is

compatible to various inference models to infer WTI. In this paper,
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gu gi

Fig. 7: Weather-traffic index inference from adjacent cells.

we use support vector machine as an example because SVM is

both suitable for time series prediction [26] and adopted in some

works on weather-traffic inference [27]. We use logistic regression

and perceptron, both of them are popular linear models, to verify

the output of support vector machine. We conclude the weather-

traffic index for one cell only when all three models indicate the

similar results. In the rare case that the results of three models

are not consistent, a special value is assigned to the cell in the

weather-traffic index to indicate the uncertainty of the correlation

between weather and traffic.

6 FACTOR ANALYSIS

In this section, our discussion is based on the assumption that the

weather-traffic indices of all cells have been certainly assigned.

The weather-traffic index indicates which cells are correlated

with weather in terms of traffic. It provides the possibility for us

to investigate the key factors behind the correlation. The factors

are the regional features, denoted as Fr , as shown in Table 4 in

section 7.1. The factor analysis identifies the key factors and their

weights contributing to the weather-traffic indices of cells. In other

words, it discloses what regional features make the traffic in some

cells vulnerable to inclement weather.

6.1 Key Factor Verification by Index Inference (KFVII)
Given a set of regional features, our methodology verifies they

are the key factors based on the following intuition. The weather-

traffic index of one region can be inferred from the indices of

its closely located (or adjacent) cells. The intuition is feasible

because all the regions are connected by the road network, which

can directly show the sensitivities of regions against weather.

Based on the intuition, give a set of regional features Fr , if the

inference accuracy is satisfactory using Fr as input, it indicates

that such set of regional features are the key factors.

The intuition leads to the model as shown in Figure 7. In

Figure 7, the parent node gu specifies the source cell, and the child

node gi is a set of observed cells which are closely located to gu.

This model is not symmetric since gi → gu may have a different

probability comparing with gu → gi. The inference model can

be any graphical classifier but we propose to use naı̈ve Bayes

classifier [28], because the location closeness can be naturally

considered by naı̈ve Bayes classifier. Since different cells have

different numbers of neighboring cells, it is hard to use other

classifiers such as logistic regression, SVM, neural network, and

random forest where the number of input features is fixed. In this

situation, Naı̈ve Bayes classifier is a reasonable choice.

The following subsections describe the details of the Naı̈ve

Bayes classifier, from constructing the marginal distribution to the

detailed index-index inference method.

6.1.1 Marginal Distribution
The marginal distribution used in this paper is shown in Figure

8. A marginal distribution describes the probability distribution

gv

gu

m11 m12
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...

...
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Fig. 8: Converting from similarity matrix to marginal distribution.

of the regions contained in a similarity subset [28]. Specifically

in this paper, it describes the probability of one region being the

index of i given one of its adjacent regions with index j, if the

two regions have a certain similarity. The similarities are split

into subsets because the probability distributions may vary upon

different similarities. In this paper, we use cosine similarity in

terms of regional features as shown in Equation (1) to describe the

similarity muv between two regions gu and gv .

muv =
Fu
r · F v

r

‖Fu
r ‖‖F v

r ‖
=

∑n
i=1 F

u
r (i)× F v

r (i)√∑n
i=1(F

u
r (i))

2 ×√∑n
i=1(F

v
r (i))

2

(1)

According to the similarity of regional features, all pairs

of adjacent cells are clustered into k groups. Suppose b0 is

the minimum similarity and bk is the maximum similarity. The

similarity ranges of the k groups are [b0, b1], · · · , [bk−1, bk] as

shown in Figure 8. The group of [bi−1, bi] only contains the pairs

whose similarities are in between bi−1 and bi. So, the pairs in the

same group have the similar similarity. In the group of [bi−1, bi],
the pairs of cells are summarized to marginal distribution matrix

Bi. The rows of Bi are the weather-traffic indices of gu and

the columns of Bi are weather-traffic indices of gv . Specifically,

when the weather-traffic index of gu is ρi, the probability that the

weather-traffic index of gv is ρj is recorded in pij . For example,

there are 500 pairs of cells in group of [bi−1, bi]. Suppose, in 200

pairs of them, one cell has index 2 and the number of another cells

whose index is 1 is 50. Then p21 in matrix Bi is 0.4. It indicates

that, if two cells have similarity in terms of regional features in

between bi−1 and bi, and the weather-traffic index of one cell is

1, the probability that the weather-traffic index of the other cell is

2 is 0.4. Formally,

pij = Pr(ρ(gu) = ρi|ρ(gv) = ρj)

=
|ρ(gu) = ρi, ρ(gv) = ρj |

|ρ(gv) = ρj |
(2)
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Fig. 9: Weight estimation of regional feature F 1
r .

6.1.2 Index-Index Inference
Once the marginal distribution is obtained, the weather-traffic

index for a particular cell can be inferred from its adjacent cells

using naı̈ve Bayes classifier, which follows Bayes rule:

Pr(ρ(gu) = ρu|ρ(g1) = ρ1, ρ(g2) = ρ2, · · · )
=

Pr(ρ(g1) = ρ1, · · · |ρ(gu) = ρu) ∗ Pr(ρ(gu) = ρu)∑k
i=1 Pr(ρ(g1) = ρ1, · · · |ρ(gu) = ρi) ∗ Pr(ρ(gu) = ρi)

=
Pr(ρ(g1) = ρ1|ρ(gu) = ρu) ∗ · · · ∗ Pr(ρ(gu) = ρu)∑k
i=1 Pr(ρ(g1) = ρ1|ρ(gu) = ρi) ∗ · · · ∗ Pr(ρ(gu) = ρi)

(3)

Given a cell gu, the marginal distribution allows naı̈ve Bayes

classifier to infer which value the weather-traffic index of gu
is most likely to be, based on the weather-traffic indices of its

adjacent cells ρ(g1), ρ(g2), · · · . The inference accuracy of 10-

fold cross validation is then obtained.

6.2 Weight Estimation of Regional Features
Given a set of regional features, some of them may have trivial

impact to weather-traffic index, or are just noise. This requires

us to test the weight of each regional feature through a feature

selection [29] process.

There are many feature selection methods could be used in

this paper. For example, Fisher score [30], where features are

scored by considering that features with high quality should assign

similar values to instances in the same class and different values

to instances from different classes; and ReliefF [31] [32], which

selects features to separate instance from different classes. In this

TABLE 2: Specifications of Weather Report Data

Attribute Description
Time Time of the weather report.
Temperature Temperature in Celsius degrees.
Dew Point The temperature at which the air must be cooled for

water vapor to condense, forming water droplets,
fog, or clouds.

Humidity The relative amount of water vapor in the air.
Wind Speed Speed of wind shown in km/h.
Wind Gust The maximum wind speed in km/h.
Wind Direction The direction of wind in degrees.
Visibility The ability to see an object in the atmosphere in

km.
Pressure The Atmospheric air pressure in millibars.
Wind Chill The perceived decrease in air temperature felt by

the body on exposed skin due to the flow of air.
Heat Index An index that combines air temperature and relative

humidity to estimate the human-perceived equiva-
lent temperature.

Precipitation The condensation in mm of atmospheric water va-
por that falls under gravity, including drizzle, rain,
sleet, snow, etc.

Condition Weather condition, e.g., clear, rainy, and cloudy.
Extreme Weather Indicator of a fog, rain, snow, hail, thunder, or

tornado.

TABLE 3: Specifications of Trajectory Data

Attribute Description
Taxi ID Taxi registration plate number.
Time Timestamp of the sample record.
GPS Location Spatial location of the record in latitude and longitude.
Speed Instant speed of the taxi (in km per hour).

paper, we uses the following method similar as mutual information

based methods [33] [34] [35].

Suppose a regional feature has nontrivial impact to weather-

traffic index. Let us remove this regional feature from the set of

regional features. We can use the KFVII method in section 6.1 to

test whether the remaining set of regional features is still the set

of key factors which results in high overall accuracy. If not, it is a

strong signal that the removed regional feature is very important;

otherwise, it is less important. We use δ(F i
r) to denote the weight

of the regional feature F i
r . Look closely, the similarity of every two

adjacent cells are recomputed in terms of the remained regional

features, as well as the marginal distribution. If the inference

accuracy is increased more, the removed regional feature has more

weight. The idea is presented in Figure 9.

7 EMPIRICAL STUDY

In this section, we conduct empirical study using the proposed

weather-traffic index system in Shanghai. We first introduce our

data sources in section 7.1, and then present the results of regional

traffic-weather index obtained in section 7.2, and finally present

the regional features which are the key factors behind the weather-

traffic index in section 7.3.

7.1 Datasets

The input of our weather-traffic index system includes (i) road

network data of Shanghai, (ii) taxi trajectory data collected in

Shanghai; (iii) weather report data of the same period of time; and

(iv) regional information data.
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TABLE 4: Specifications of Regional Features

ID Feature Detail ID Feature Detail
POI Density

1 # of attractions 13 # of attractions per m2

2 # of restaurants 14 # of restaurants per m2

3 # of hotels 15 # of hotels per m2

4 # of leisures 16 # of leisures per m2

Structure 17 Major road length per m2

5 # of major roads 18 Minor road length per m2

6 # of minor roads 19 Total road length per m2

7 # of intersections 20 # of intersections per m2

8 Ratio of major / minor roads Community
9 Total road length 21 # of residential communities
10 Average road length 22 Average house age

11 Geographical cell size (m2) 23 Average house unit price
12 # of neighboring cells

7.1.1 Road Network Data
The road network data of Shanghai is provided by the govern-

ment, where a road (or precisely a road segment) is defined as

the carriageway between two intersections. An expressway or a

large avenue may have two different road segments between two

intersections, because they are different directions with limited-

access. A road network is consisted of a set of roads. There are in

total seven levels of roads: national expressway, city expressway,

regular highway, large avenue, primary way, secondary way, and

regular road [36]. We consider the first four levels of roads as

major roads and the other three levels as minor roads. In this

study, only the major roads are used in region partitioning and

the minor roads are ignored. By conducting the road-intersection-

orientated partitioning method introduced in section 4.1, the city

area of Shanghai is partitioned into 3, 207 Voronoi cells.

7.1.2 Weather Report Data
Weather report data are collected from Weather Underground
(wunderground.com), which is a leading website on commercial

weather service providing weather forecast and historical weather

information. The weather data contain rich information covered by

14 weather features, including temperature, wind speed, precipita-

tion, etc. In Table 2, we summarize all 14 weather features used in

this paper, and they are processed all together. For data alignment,

the collected weather reports in Shanghai cover the same period of

time as that of taxi trajectory data, i.e., January 2006 to November

2007. The weather is reported on hourly basis. Accordingly, we

split day time into time slots by hours.

7.1.3 Trajectory Data
A trajectory is represented as a series of spatial-temporal points

[37], where each point is associated with additional information

including the driving speed. Our trajectory data of 115.2 GB are

collected from 4,529 taxis in Shanghai from January 2006 to

November 2007. The average sampling rate of the dataset is about

20 seconds. Table 3 lists the fields recorded in the trajectory data.

By extracting the driving speeds of all taxis in each Voronoi cell

at each time slot, the average speed is obtained.

7.1.4 Regional Information Data
Complicated regional information data have been collected in-

cluding real estate data and POI data (i.e., points of interests).

The real estate data is crawled from soufun.com, which is a real

estate website providing marketing, e-commerce, listing, and other

value-added services for China’s real estate and home-related

sectors. The real estate data provides a wide range of information

including location, price, and age of residential communities. The

POI data is collected from dianping.com, a website in China

providing local life information and third-party consumer service

ratings. The data includes detailed merchant information, where

the merchants are labeled by categories, such as tourism attrac-

tions, hotels, restaurants, leisure facilities, etc.

For each Voronoi cell, the regional features can be extracted

from real estate data, POI data and road networks. The extracted

regional features can be generally clustered into four categories:

POI, structure, density, and community. The details are listed in

Table 4.

7.2 Weather-Traffic Index

Weather-traffic index in Shanghai is constructed using the weather-

traffic index establishment method introduced in section 5. Briefly,

for each cell in each time slot, the average speed is inferred

using traffic prediction model with/without weather. The inference

accuracy difference indicates the sensitivity of this cell at this time

slot. The average of the inference accuracy differences at all time

slots indicate the sensitivity of the cell, depending on the fraction

of the time that the cell was experiencing abnormal weather. In

particular, the traffic prediction model without weather uses the

average speeds of previous days of the same cell at the same time

slot as the input. The purpose is to predict the current average

speed with minimal weather impact since the previous days are in

“good” and “bad” weather conditions and as a result the weather

impact is trade-off. In the traffic prediction model with weather,

the weather features of the current day is used as the additional

input features in the traffic prediction.

7.2.1 Robustness
First, we show the accuracy of the traffic prediction without

weather in Figure 10a. The relative high average traffic prediction

is necessary. If the traffic prediction is poor, it typically means

the input features contain much noise. As a result, we have

less confidence to the impact of weather detected. Figure 10a

shows that the traffic prediction accuracy in most cells is 0.5

using support vector machine. This result is promising since it is

comparable to the current state-of-the-art in traffic prediction [20]

[21]. The other two traffic prediction methods logistic regression

and perceptron show low traffic prediction accuracy, but they will

be used to test whether the traffic prediction accuracy change

with/without weather is independent of traffic prediction models,

in other words, to test the robustness of our weather-traffic index

establishment method.

In Figure 10b, the traffic prediction accuracy changes

with/without weather are presented using support vector machine,

logistic regression and perceptron. For better presentation, we sort

the cells by the predication accuracy changes. The probability

distribution of the traffic prediction accuracy changes with/without

weather is illustrated in Figure 10c. We observe that the accuracy

changes are generally normally distributed with small variance,

i.e., the accuracy changes of most cells are close to the mean. In

particular, the bias of the distribution using perceptron is because

the accuracy of perceptron has greater variance compared to that

of support vector machine and logistic regression. Nevertheless,

the similar distributions of the three models clearly show the

robustness of our method.
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(c) The probability distribution of the traffic prediction accuracy
changes in all the regions with/without weather.

Fig. 10: Evaluation of weather-traffic index.

7.2.2 Validation

The effectiveness of weather-traffic index established have been

verified against the observations in the real world. Figure 11

shows the resulting weather-traffic index of the regions in the

urban areas of Shanghai. In Figure 11, a positive weather-traffic

index describes a region with high impact of weather change

on transport, and a negative weather-traffic index describes a

region with low impact of weather change on transport. There

are five regions with very high weather-traffic index as labeled

1-5 in the figure, and the details of these regions are shown

in Table 5. In practical, there are often many people walking

near a tourism attraction, and when there is a rain, the tourists

Fig. 11: The weather-traffic index of the regions in the urban areas

of Shanghai. The details of the labeled regions are shown in Table

5.

TABLE 5: Details of Regions with High Weather-Traffic Index

ID Description
1 Yu Garden, a tourism attraction.
2 Shanghai Confucian Temple, an old temple with many restaurants

around.
3 Shanghai Town God’s Temple, a tourism attraction.
4 An area with many old buildings and construction sites.
5 Construction sites (Bund House, a high-end residential community

is built several years later).

may have rush home. Thus, it may cause transport problems and

reduce the traffic efficiency. Regions 1-3 in Figure 11 illustrate

such situation. Notably, not all the tourism attractions have a high

impact of weather on transport, some even more popular ones,

such as Xintiandi (historical location of the first Congress of the

Chinese Communist Party), is not highly influenced by weather

on transport. We have noticed that it may because the district

of Xintiandi is constructed later than regions 1-3, and the public

transport is more efficient. Besides tourism attractions, there are

many other reasons may cause the region vulnerable to extreme

weather conditions, such as contraction sites (region 4 and region

5) and old districts (region 2 and region 4). They both prove that

the regions distinguished by our weather-traffic index make sense.

Another validation is shown in Figure 12, with the four labeled

areas in Figure 4 presented as examples. The third column is

about the average speeds in the cloudy day and the fourth column

is about the average speeds in the rainy day. The weather-traffic

indices of the labeled areas are shown in the first column and the

second column shows the rain-traffic indices of the corresponding

areas. In the weather-traffic index, all available 14 features in the

weather report data are applied. Since rain has own impact to

traffic, the hypothesis is that the composite impact of all features

provides a general description of the weather impact to traffic, and

the rain-traffic index should be better to present the impact of rain

to traffic in cells. Interestingly, the observations in the four labeled

areas give strong support to this hypothesis.

Look closely, the circled cell in the area labeled 1 show low

average speed in rainy day and faster average speed in cloudy

day. So, the weather-traffic index and rain-traffic index shows

the impact of weather/rain to traffic is relatively high. In the

circled cell in the area labeled 3 and 4, the average speed is
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Fig. 12: The weather-traffic index validation using the four labeled

areas in Figure 4.

significantly slowed by rain compared to that in cloudy day. So,

the weather-traffic index and rain-traffic index shows the impact

of the weather/rain to traffic is significantly high. If we observe

other cells in each labeled area, we found that the rain-traffic

index generally shows more accurate description of the impact

of rain to traffic than the weather-traffic index. In the area labeled

2, it is interesting to observe that the average speed in the circled

cell is high in rainy day and is low in cloudy day. After deep

investigation, we found in such cell the roads are usually crowded

with pedestrians, such as the regions around Shanghai Town God’s

Temple, a hot tourist spot. The average speed of taxis are slow in

normal days. In rainy days, the number of pedestrians are reduced

such that the speeds of taxis tend to increase. However, such region

is much less than the regions where the average speed slows down

in rainy days compared to cloudy days. In the factor analysis, we

are only interested in the regional features of the cells where the

average speed slows down in rainy days.

7.3 Effectiveness of KFVII

In the weather-traffic index system, the factor analysis includes

two functions. The first function is to verify a set of regional

features are key factors behind the vulnerability of traffic in cells

to inclement weather, and the second function is to estimate the

weight of each regional feature. Both of them are based on the in-

ference of weather-traffic index of each cell by the weather-traffic

indices of other cells. The inference method must be accurate.

If the inference method is inaccurate, the noise may dominate

the impact of regional features. We propose to use naı̈ve Bayes

classifier because the location closeness of cells can be naturally

considered by it. So, the empirical study evaluates the inference

Expected Reciprocal Rank = 1/2 

Likelihood

a b c d

0.15 0.27 0.53 0.03

c b a d

1 2 3 4

Rankinge

0.02

e

5

Ground 
Truth

Fig. 13: An example of expected reciprocal rank.

method in KFVII first, by comparing two straightforward methods,

through a fine-grained evaluation metric.

7.3.1 Evaluation Metric
The inference accuracy is evaluated through expected reciprocal
rank (ERR) [38]. Given a cell, the expected reciprocal rank

evaluates each inference result which indicates the likelihood for

this cell to take each index value. An example is shown in Figure

13. Let us define five index values a, b, c, d and e, where the

likelihoods returned by the inference method are 0.15, 0.27, 0.53,

0.03, 0.02, respectively. Thus, the sorting orders of the likelihoods

are 3, 2, 1, 4, 5, respectively. If the true index value of this cell is,

for example, b, the expected reciprocal rank is the reciprocal of 2
(i.e., 1

2 ), the position of b in the sorted list. Similarly, if the true

index value of this cell is d, the expected reciprocal rank is the

reciprocal of 4 (i.e., 1
4 ). For the expected reciprocal rank of the

inference method, the average value of the reciprocals of all cells

are used.

Expected reciprocal rank can be considered as a fairer metric

comparing with maximum-likelihood accuracy. For example, if

the likelihoods of the categories of weather-traffic index of a

region are 〈a : 0.49, b : 0.48, c : 0.03〉, it is actually difficult

to determine whether the category is a or b, but it is clear that the

type is not c. However, using the metric of maximum likelihood

cannot give the bonus of such observation, since no matter the

ground truth is a or b, the accuracy for this region may result in

0 in a 50% chance. If we evaluate the likelihoods using expected

reciprocal rank, it will give us a comprehensive distribution of

the accuracy (either 1 or 1
2 ). Hence, the evaluation of expected

reciprocal rank is fairer, which widens the gap between different

likelihoods.

7.3.2 Straightforward Methods
There are two straightforward methods implemented in our empir-

ical study. One is random guess and the other is artificial neural

network (ANN).

In random guess, we assume the probability of guessing any

weather-traffic index value of a cell is 1/l. Based on the expected

reciprocal rank metric, the expectation of the random guess is:

1 ∗ 1

l
+

1

2
∗ 1

l
+

1

3
∗ 1

l
+ · · ·+ 1

l
∗ 1

l

l ∗ 1

l

=
1

l
∗

l∑

i=1

1

i
(4)

In this paper, since we have five categories of the weather-

traffic index, the expectation is around 0.4567.

We use an artificial neural network (ANN) with one hidden

layer for the inference on weather-traffic index directly from

regional features as another baseline method. Artificial neural
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Fig. 14: Comparison of the expected reciprocal ranks of the

inference of the categories of traffic-weather index.

networks have been used to solve a wide variety of tasks that are

difficult to solve using ordinary classification models, including

urban comping problems [8].

In ANN, we observed that the cells have different number

of adjacent cells. Thus, it is difficult to train an ANN where the

input layer is related to adjacent cells. Instead, the input of the

ANN are the observations of all Voronoi cells. Because the size

of hidden layer affects the results, we conduct configurations with

different sizes of the hidden layer. In the output layer, we use

softmax regression [39] as the classification model. The softmax

regression model generalizes logistic regression to classification

problems where the class label can take on more than two possible

values. For the activation function, we use sigmoid function [40],

which refers to a special case of the logistic function.

7.3.3 Comparison of Methods
We test the inference accuracy of the naı̈ve Bayes classifier,

random guess and ANN, and the expected reciprocal ranks of the

results are presented in Figure 14. In particular,

• BAYES: the naı̈ve Bayes classifier where the initial prob-

abilities of Pr(ρ(g) = ρk) is the statistical distribu-

tion of the categories. That is, if there are m regions

with category k among a total of n regions, we set

Pr(ρ(g) = ρk) = m/n. The pairs of adjacent cells are

clustered into 5 equal groups for the marginal distribution

based on their similarities: [0, 0.2], (0.2, 0.4], (0.4, 0.6],
(0.6, 0.8], and (0.8, 1].

• RAND: the random guess method.

• ANN-12/23/46: the artificial neural network classifier

with 12 / 23 / 46 neurons in the hidden layer.

In Figure 14, it is clear that BAYES has the best performance

compared to ANN in all settings and RAND. Moreover, the expected

reciprocal rank of BAYES reaches around 0.75. On the other hand,

ANNs with different settings lead to an average expected recipro-

cal rank of roughly 0.65. The random guess method performs the

worst, with a consistent expected reciprocal rank of 0.4567.

Next, we first verify the key factors via KFVII using different

sets of regional features, and find out some are key factors and

some are not. Then, we assume all regional features are key

factors, and estimate the weight of each regional feature.

7.4 Factor Analysis
Given any set of regional features, we verify they are key factors

to weather-traffic index or not by KFVII introduced in section 6.1,
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Fig. 15: The weights of the regional feature sets in Table 4.

and then generalize the weight of the set of regional features by

the method introduced in section 6.2. We test four sets of regional

features, each corresponding to one of the four regional feature

categories, i.e., POI, structure, density, and community listed in

Table 4. Figure 15 shows the weight for each set. It is clear that

the set of regional features in community is the relatively most

important key factor set, and the regional features in structure are

relatively less important key factors. The regional features in POI

and density are not key factors. This conclusion is verified by the

observations in Figure 16.

The weight estimation of each feature is shown in Figure 16. It

demonstrates some surprising phenomena, for example, house age
and the number of neighboring cells have the highest impact to

the weather-traffic index. After reviewing all factors and checking

up the information of the cells in the real world, we conclude

some explanations to the unexpected outcomes. The older house

age usually reflects that the cell is typically quite mature with

old traffic facilities, more business outlets, narrow roads and more

populations. As a results, when the weather changes, e.g., heavy

rain, those cells may cause serious traffic problems. Moreover,

we observe that the second most weighted regional feature is the

number of neighboring cells. If a cell has many neighboring cells,

it indicates the region has a more complicated road structure, i.e.,

more intersections and in turn it typically is a mature region with

high density of population.

After the weights of each regional features being estimated, we

found that the regional features with the highest weights are from

the community category as listed in Table 4. This is consistent

with the results in Figure 15 which indicates the regional features

in community category together are the key factors. Moreover,

the regional features in structure have smaller weights, and most

regional features in POI and density have the least weights.

The effectiveness of estimated weights of regional features

have been verified against the observations in the real world.

In Figure 17, the four labeled areas in Figure 4 are presented

as examples. The first column is the weather-traffic index, the

second column is the average house age, the third column is

the number of neighboring cells, and the fourth column is the

geographical cell size. The hypothesis is that, if a regional feature

has more weight, it should be more correlated to the weather-traffic

index; otherwise, it is not. Among the three regional features, the

weights of average house age and the number of neighboring

cells are similar and they are significantly higher than that of

geographical cell size. The observations in the four labeled areas

shows consistent with this hypothesis. In the second column, some

cells are with white color to indicate the relevant information is

missing in the cell. The high weight of average house age means

that for the cells which have the house age information they have
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Fig. 16: The weights of the regional features in Table 4. From left

to right: 1) house age, 2) # of neighbors, 3) road length / area

size, 4) ratio of major / minor roads, 5) density of major roads, 6)

house price, 7) density of leisures, 8) density of minor roads, 9)

# of communities, 10) # of intersections, 11) average road length,

12) density of attractions, 13) density of major roads, 14) # of

attractions, 15) # of minor roads, 16) area size, 17) # of leisures,

18) density of intersections, 19) # of hotels, 20) road length, 21)

density of hotels, 22) density of restaurants, 23) # of restaurants.
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Fig. 17: Validation of regional feature weight estimations using

the four labeled areas in Figure 4.

high correlation with the weather-traffic index. The fourth column

indicates the lowest correlation of geographical cell size.

8 CONCLUSION

This work fills the gap in the study on the impact of weather

to traffic from few locations to all road networks throughout

a city, more importantly, the regional features leading to the

vulnerability of traffic in local areas to inclement weather are

systematically revealed for the first time. The empirical study in

Shanghai demonstrates the effectiveness of the proposed system.

The regional weather-traffic indices extracted have been validated

to be surprisingly consistent with real world observations. Fur-

ther regional key factor analysis yields interesting results. For

example, the regional house age has significant impact on the

region’s weather-traffic index. The achievement in this work will

benefit government agent to understand the functional character

of districts throughout a city, to improve traffic prediction and

to learn the key factors in urban planning, etc. The knowledge

of key factors learned from one city is transferable to another

city because modern cities often have road networks with similar

quantitative density and other features. At last, the investigated

problem has important practical value, but the research is still in

its early stage. We are working on to incorporating more data

sources to continuously improve the results.
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