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ABSTRACT
Cycling as a green transportationmode has been promoted bymany
governments all over the world. As a result, constructing e�ective
bike lanes has become a crucial task for governments promoting
the cycling life style, as well-planned bike paths can reduce tra�c
congestion and decrease safety risks for both cyclists and motor ve-
hicle drivers. Unfortunately, existing trajectory mining approaches
for bike lane planning do not consider key realistic government
constraints: 1) budget limitations, 2) construction convenience, and
3) bike lane utilization.

In this paper, we propose a data-driven approach to develop
bike lane construction plans based on large-scale real world bike
trajectory data. We enforce these constraints to formulate our
problem and introduce a �exible objective function to tune the
bene�t between coverage of the number of users and the length of
their trajectories. We prove the NP-hardness of the problem and
propose greedy-based heuristics to address it. Finally, we deploy
our system on Microso� Azure, providing extensive experiments
and case studies to demonstrate the e�ectiveness of our approach.
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Figure 1: Motivating Examples.

1 INTRODUCTION
Cycling as a commonly used urban transit mode for daily com-
mute has been promoted by multiple governments all over the
world [1, 40] for several reasons: 1) it is an a�ordable and
environment-friendly transportation mode for users; 2) it reduces
road tra�c congestion; and 3) it is a healthy lifestyle [31]. As a
result, building e�ective bike lanes, demonstrated in Figure 1a, be-
comes a vital task for governments to promote the cycling lifestyle.
Well planned & implemented bike lanes not only make cycling
easier, but also reduce the safety risks for both cyclists and drivers
of motor vehicles [30].

Traditional approaches to planning bike lanes in a city rely
mainly on empirical experience and surveys [12, 18, 32]. With
widespread availability of GPS embedded devices, more data-driven
approaches on planning bike lanes have emerged, e.g., [10, 11, 19].
However, existing works [10, 11, 19] merely focus on summarizing
commonalities of bike trajectory data while ignoring the realistic
constraints and requirements faced by the government:

• Budget Limitations. �ere are costs to realizing a bike
lane on a road segment, whichmay include: 1) the space for
creating bike lanes; and 2) the price of building bike lane
railing, and painting signs (demonstrated in Figure 1(a)).
Unfortunately, governments o�en have limited budgets.

• Construction Convenience. To implement the bike
lanes, construction teams need to be dispatched to con-
struction zones, with the number of teams required also
being a hard constraint. For the sake of ease of manage-
ment, the government would like to avoid spreading teams
out to construction zones in far reaching locations (e.g., red
lines in Figure 1(b) highlights the top-100 segments with
the most bike trajectories), and prefer to have them clus-
tered, i.e., as a limited number of connected components
in the road network.
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Figure 2: �e Mobike Example.

• Bike Lane Utilization. As a public service, from the gov-
ernment’s point of view, the objective of building bike lanes
is to increase the usability for more bikers and cover more
possible routes.

To incorporate these real world constraints, in this paper, we
propose a data-driven approach for planning the bike lanes based
on the massive number of trajectories collected from Mobike 1

users. Mobike is a fully station-less bike-sharing system currently
deployed in many large cities in China. It is the world’s largest
bike operator, and recently made Shanghai the world’s largest bike-
share city. Compared to the traditional station-based bike sharing
system, trajectories generated by Mobike users have two distinctive
advantages in tackling the bike lane planning problem:

• Realistic TravelDemands. Unlikemany existing station-
based bike sharing systems, which require the users to pick
up and drop o� bikes from designated stations, Mobike
o�ers a more �exible system, where the users can pick up
and drop o� their bikes at arbitrary locations (Figure 2(a)).
As a result, the trajectories of Mobike users re�ect actual
urban travel demands.

• Rich Travel Information. A 3G communication compo-
nent and a GPS module are embedded on the lock system
in Mobike (demonstrated in Figure 2(b)), which enables
the users to �nd bikes with their phones. It also keeps the
track of the exact route traversed by the users (Figure 2(c)),
while the traditional station-based bike sharing system can
only provide the check-in/out information.

In this paper, we design, implement and deploy a data-driven bike
lane planning system on Microso� Azure, which not only leverages
the massive bike trajectories generated by thousands of Mobike
users, but also ful�lls the constraints and objectives requested by the
government. �e proposed system contains two main components:
1) Pre-Processing, which pre-processes the trajectories from the
Mobike user and maps them on the road network; and 2) Bike
Lane Planning, which takes the user’s input (i.e., requirements from
the government) and provides bike lane suggestions. �e main
contributions are summarized as follows:

•We formulate the bike lane planning problem by considering
various construction constraints, and propose a �exible tuning
parameter to characterize the design trade-o� between the number
of covered users and the length of the continuously covered bike
trips. �e problem proves to be NP-hard.
1h�ps://en.wikipedia.org/wiki/Mobike

• We propose a greedy network expansion algorithm, which pro-
vides a scalable and approximate solution to the data-driven bike
lane planning problem. To achieve a be�er e�ectiveness, we also
propose two di�erent approaches to initialize the algorithm, which
work well for low and high budget scenarios, respectively.

• We evaluate the proposed algorithms extensively over one
month Mobike trajectory data (i.e., from 9/1/2016 - 9/30/2016) from
the City of Shanghai. We also provide an extensive data analysis
and discover many useful insights. Moreover, on-�eld case stud-
ies are conducted to evaluate the e�ectiveness of our bike lane
recommendations.

•An online systemwith the real dataset is deployed and available
on Microso� Azure [2]. Finally, we collect the feedback from the
government o�cials, from which our system received very positive
reviews.

�e rest of the paper is organized as follows: Section 2 describes
the problem de�nition and the system overview. Section 3 presents
the pre-processing module. Bike lane planning module is presented
in Section 4. Experiments and case studies are given in Section 5.
Section 6 presents the system deployment details and the expert
reviews. Related works are summarized in Section 7. Section 8
concludes the paper.

2 OVERVIEW
In this section, wemodel and de�ne the bike lane planning problem,
and outline our solution framework.

2.1 Problem De�nition
Given a road network graph G = (V ,E) (where a vertex set V
represents intersections and an edge set E = {e} represents all
relevant road segments, our data-driven bike lane planning problem
aims to discover a subset of edges E 0 ✓ E, that follows three criteria:
(i) construction budget constraint, (ii) connectivity constraint, (iii)
maximum usage bene�t.
Construction budget constraint. �ere is a monetary cost ei .c
associated with each road segment ei , to convert a road segment
into a bike lane (e.g., building the railings and clearing the space).
On the other hand, the government has an overall budget con-
straint B to building bike lanes, and the total cost of the bike lane
construction cannot exceed the overall construction budget B, as
highlighted in eq.(1) below.

’
ei 2E0

ei .c  B. (1)

Connectivity constraint. As has been outlined in the introduc-
tion section, for the construction and management convenience,
the government prefers to deploy bike lanes with up to k connected
components (e.g., to be assigned to k construction teams). �e
following inequality eq.(2) re�ects such a constraint:

C(E 0)  k, (2)
where C(E 0) denotes the operator that counts the number of con-
nected components from an edge set E 0.
Maximum usage bene�t. �e goal here is to maximize overall
usage of deployed bike lanes, which should 1) facilitate as many
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Figure 3: Motivation of Trajectory Score Function.

users as possible, and 2) covermore continuous road segments along
their trip routes. Note that continuous road coverage in bike lane
planning is crucial, as it increases the users’ quality of experience
(QoE). For example, a bike travels on a path (i.e., e1 ! e2 ! e3),
shown as blue do�ed lines in Figure 3(a)). �ough the two planned
bike lanes (Figure 3(b) & (c)) cover the same lengths of the trajectory,
Lane Plan 2 in Figure 3(c) is preferred by users as it provides a longer
continuous path, while the trajectory coverage of Lane Plan 1 in
Figure 3(b) is broken into two disconnected segments s1 & s2.

Unfortunately, these two objectives (i.e., serving more users vs.
covering longer and continuous trips) usually con�ict with each
other, as user trips usually have di�erent destinations. Hence, we
propose a �exible score function for decision makers to adjust their
preference between the two objectives for a trajectory tri :

tri .� =
’
sj 2Si

�
sj .`

min(e .`) ⇥
sj .`

min(e .`) ,� � 1. (3)

where tri .� is the bene�cial score for trajectory tri , Si is the set of
continuous road segments that overlap with trajectory tri in the
path plan E 0, sj is one continuous road segments in set Si ,

sj .`
min(e .`)

normalizes the length of the continuous road segment sj 2 Si
(wheremin(e .`) is the minimum length of the road segment in the
network), with the guarantee that its value is no less than 1, and
� is the tuning parameter to set the preference on the number of
covered users vs the length of continuous coverage. �e reason
for designing a score function using the exponential function of
the normalized length is that when � > 1, the continuous segment
gets a higher score. Otherwise, without the exponential function

�
sj .`

min(e .`) , Lane Plan 1 and Lane Plan 2 will have the same score. A
smaller � indicates that more preference is given to the amount
of user coverage (e.g., � = 1 means that we do not care about the
continuous length coverage, and two path plans in Figure 3 have
the same bene�cial score), while a larger � means that the longer
continuous length coverage of the user trips is preferred.

�en, the overall bene�cial score of a edge set (or a bike lane
plan) E 0.� can be calculated by aggregating the scores of all the
trajectories Tr that overlap with road segment set E 0:

E 0.� =
’

tri 2T r&tri\E0,;
tri .�. (4)

We now formalize our bike lane planning problem as follows.
Problem de�nition. Given a set of trajectories Tr , a road network
G = (V ,E) with a cost value ei .c on each edge ei , a tuning parameter
� , a value k , and a total construction budget B, we want to �nd a set
of edges E 0 ✓ E, which maximizes the total bene�cial score �, and

Figure 4: An Overview of System.

ful�lls two constraints: 1) the total budget is no more than B; and
2) the number of connected components in E 0 is less than k . Formally,
it is represented as an integer programming problem:

max: E 0.�, s.t.:
’
ei 2E0

ei .c  B, C(E 0)  k . (5)

Such a problem of �nding k budget constrained connected com-
ponents with maximum bene�cial score is NP-hard as proven in
Lemma 1 below.

L���� 1 (NP�����������). Finding k budget constrained con-
nected components with maximal bene�cial score is NP-hard.

P����. We reduce our problem of �nding k budget constrained
connected components with a maximum bene�cial score from the
0 � 1 Knapsack problem. We can view each road segment ei 2 E
as an item, with an item size (i.e., construction cost), and an item
pro�t (e.g., a bene�cial score contribution). �e set E 0 of selected
road segments is viewed as a knapsack, with a �xed size B (i.e.,
total budget constraint). If we set � = 1, i.e., we do not care about
the continuous length coverage, and k = |E |, i.e., the maximum
number of disconnected components is unbounded. Our problem
boils down to a 0 � 1 Knapsack problem.

�us, for any instance of the decision version of the 0 � 1 Knap-
sack problem, we can �nd an instance of the decision version of the
problem of �nding k budget constrained connected components
with the maximum bene�cial score by se�ing k = |E | and � = 1,
and their answers are the same. �us, the decision version of the
0 � 1 Knapsack problem is reducible to the decision version of our
problem, which completes the proof of NP-di�culty. ⇤

Given it is an NP-hard problem, we develop a greedy-algorithm
based heuristic to tackle the issue.

2.2 System Framework
Figure 4 gives an overview of our system, which consists of two
main components:
Pre-Processing. �is component takes the bike trajectories and
the road network and performs three main tasks: 1) Trajectory
Data Parsing, which removes the outlier GPS points; 2) Trajec-
tory Map-Matching, which projects the bike trajectories onto the
corresponding road segment; and 3) Inverted Index Construction,



KDD’17, , August 13–17, 2017, Halifax, NS, Canada. J. Bao et al.

Figure 5: Spatial Insights of Mobike Data.

which builds an index to speed up the lookup process of retrieving
trajectories based on road segment IDs (detailed in Section 3).
Bike Lane Planning. �is component takes the user’s parameters,
e.g., the total budget, number of connected components, and the
� value, and outputs the bike lane recommendation results. If the
user is satis�ed by the results, parameters can be tuned to get a
new set of recommendations. We propose two di�erent approaches
for bike lane recommendation (detailed in Section 4).

3 PRE-PROCESSING

Pre-processing takes the road network and the trajectories as
input, and performs the following three tasks to prepare the data
for further processing:
Trajectory Parsing. �is step cleans the raw trajectories from
Mobike users by �ltering the noisy GPS points with a heuristic-
based outlier detection method [37].
Trajectory Map-Matching. In this step, the system maps each
GPS point onto the corresponding road segment. We use a revised
version of an interactive-voting based mapmatching algorithm [36],
where the speed constraint of the road segments is not used, to
perform map-matching.
Inverted Index Construction. In this step, the system builds
the inverted index for each road segment, recording the trajectory
IDs passing it. In this way, we can speed up the road segment-
based trajectory look-up. �e index construction process is done in
parallel on Microso� Azure [4].

4 BIKE LANE PLANNING

In this section, we �rst describe the overall framework of the
greedy network expansion algorithm for planning bike lanes. A�er
that, we describe the di�erent approaches to initialize the network
expansion.

4.1 Greedy Network Expansion Framework
Main Idea. �e intuition of the greedy network expansion algo-
rithm is to expand a set of k starting road segments in the network.

Algorithm 1 Framework of Greedy Network Expansion

Input: Road NetworkG = (V , E), Inverted index I , Trajectory Dataset
T r , Total budget B , tuning parameter � , and a value k .
Output: Result road segment set E0.
//Stage 1: Initialization

1: Road Segment Set E0  k starting road segments
2: Candidate set C  adjacent road segments of E0
3: Remaining Budget B  B �Õei 2E0 ei .c

//Stage 2: Network Expansion
4: while Budget B > 0 do
5: MaxGain  0; enext  ;
6: for ei 2 Candidate set C do
7: if ei .c < B then
8: Retrieve trajectories T r 0 from I based on E0 [ ei
9: Calculate bene�cial score di�erence per cost �� = �0��

ei .c
10: if MaxGain < �� then
11: MaxGain = ��; enext  ei
12: E0  E0 [ enext ; B  B � enext .c
13: Candidate Set C  C[ none-selected adjacent edges of enext

//Stage 3: Termination
14: return E0

�is is inspired by the two key insights discovered in the dataset,
namely spatial hot spots and star-like mobility pa�erns:

Spatial hot spots. Figure 5(a) shows the two hot spots with the
highest number of trip starting locations, where the upper side
re�ects a subway terminal station (i.e., Jinyun Road Station of
Subway Line 13), and the lower side illustrates a very popular
shopping mall (i.e., Bailian Zhonghuan Commerce Plaza). �e
intuition behind the observation is straightforward: although the
mall is very popular, it is not close to any subway stations, which
makes cycling the best option; similarly for the terminal station, the
fastest & most economic option to get home from there is cycling.
Star-like mobility pa�erns. We further investigate travel directions
around spatial hot spots, and we discover that the bike trips go
to di�erent destinations from the same starting location, just like
multiple edges with one shared end, namely, a star-like mobility
pa�ern, as demonstrated by the arrows in Figure 5(b).

Taking these observations into considerations, our greedy-based
bike lane planning algorithm extends the incremental network
expansion algorithm in road network, e.g., [3, 28]. �e algorithm
has three phases:

• Stage 1: Initialization. �e algorithm starts by selecting
k starting road segments. In this way, we can guarantee
that the �nal road segment recommendation produced by
the algorithm ful�lls the connectivity constraint, i.e., does
not generate more than k connected components.

• Stage 2: Network Expansion. In this stage, the algo-
rithm runs iteratively. In each iteration, the algorithm
selects the best road segment (i.e., with the highest the
bene�cial score gain per cost, which equivalents to the
ratio of item pro�t to size, in the classic 0 - 1 Knapsack
problem) to the result set E 0 and adds its none-selected
adjacent segments to the candidate set.
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Figure 6: Greedy Network Expansion Example.

• Stage 3: Termination. �e algorithm terminates when
budget limit B is met, and then returns the resulting road
segment set E 0 as the recommended bike lane plan.

Algorithm Design. Algorithm 1 gives the pseudo-code of our
greedy network expansion algorithm. In the initialization stage,
the algorithm �rst selects k starting road segments in the resulting
set E 0, puts all the adjacent road segments of the start segments in
candidate set C, and updates the budget value by subtracting the
total cost of the starting road segments (Line 1-3).

In each iteration of the network expansion stage (Line 5-13), the
algorithm checks each road segment ei in the candidate set C. If
the cost of the road segment is smaller than the remaining budget,
the algorithm retrieves all the trajectoriesTr that has been covered
by the road segment ei and the result road segment set E 0 (Line 8).
A�er all the covered trajectories are retrieved, we calculate an up-
dated bene�cial score �0 based on Equation 4. �en, we calculate
the corresponding bene�cial score gain per cost (Line 9). During
the process, we keep track of the road segment enext , which has
the maximum bene�cial score gain per cost in the iteration. enext is
inserted in to the resulting road segment set E 0, the remaining bud-
get is updated by subtracting the cost of the selected road segment
enext .c . Road segment enext is removed from candidate set C, and
all of its none-selected adjacent segments of enext are inserted in
the candidate set C for further iterations (Line 10- 13).

Finally, when all the budget is used up, the algorithm terminates,
and the road segment set E 0 is returned as the recommended plan.

Example. Figure 6 gives an example of the greedy network ex-
pansion algorithm. In the initialization stage, two starting road
segments are selected (marked in red), and all of their adjacent
segments are inserted in the candidate set (marked in blue). Dur-
ing the network expansion stage, in the iteration, we calculate the
bene�cial score gain di�erence for each segment in the candidate
set (illustrated in Figure 6(a)), based on Equation 4. A�er that, we
divide the bene�cial score di�erence by the cost of each segment
and select the highest one to expand the network, which is e8 in our
example. �en, the adjacent segments of e8 are added as the new
candidates (i.e., e12 and e13 in Figure 6(c)). �e algorithm terminates
when the budget is used up.

(a)  Result of Top-k Initialization (b) Top-k Start Segments

Top 1

Top 2

Top 4

Top 3

Top 5

Zoom in

Figure 7: Top-k Initialization Example.

Analysis. As demonstrated in the example, it is clear that the
performance of the �nal results E 0 is highly determined by the
selection of the starting road segments. As a consequence, �nding
an e�ective method to perform initialization becomes a vital task
in our greedy network expansion algorithm.

4.2 Top-k based Initialization
Main Idea. �emost straightforwardmethod is Top-k Initialization,
which essentially selects the highest ranked k segments based on
the bene�cial score per cost (i.e., ei .�ei .c ), as the starting segments
for network expansion. �e intuition behind this approach is that
these road segments usually represent the spatial hot spots, which
should always be included in the �nal result.

Example. Figure 7(a) gives an example result of greedy network
expansion with top-k based initialization, with k = 5. �e recom-
mended bike lanes are marked in red in the �gure, which form one
large set of connected components. �e reason the result contains
only one connected component, rather than �ve (i.e., k value) is
that the top-5 highest ranked segments are connected with each
other. Figure 7(b) is the detailed view of the boxed area in Fig-
ure 7(a), where the selected �ve starting road segments are marked
in green and blue, which form two groups (i.e., {Top 1, Top 2, Top
5} and {Top 3, Top 4}). �e �rst group contains the road segments
between a major residential area and nearby shopping malls/facto-
ries, while the second group contains the road segments near the
terminal station for subway Line 13. �e reason the top ranked
segments are usually connect to each other, is a large amount of
trajectories may share a lot of road segments, as they traverse from
or to the same location (e.g., a subway station or a shopping mall).

Analysis. �e top-k based initialization approach guarantees that
the algorithm will never miss any segment with the highest bene�-
cial score per cost. However, as most of the top-k ranked segments
are very close to each other, it can only expand with a much lower
number of connected components in the network, which limits the
search space in the candidate set and may miss some important
areas, especially when the budget B is large.

4.3 Spatial Clustering-based Initialization
In order to include more spatially diversi�ed starting locations in
the initialization stage and be more e�ective when the budget is
larger, we take advantage of spatial clustering techniques to select
the starting road segments.
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Figure 8: Moike Trajectory Data Distribution.

Main Idea. �e intuition behind the spatial clustering-based initial-
ization is from observing of the trajectory heat map (i.e., Figure 8),
which visually has some rough clusters over the space. In this way,
we can avoid the drawbacks of the top-k based initialization, which
has the starting segments connected to each other and limits the
search space. �is method has two main steps:

• Candidate Selection. In this step, we select a subset of
road segments with high ranks (e.g., top 1% ranked seg-
ments in our implementation based on the score per cost),
as the candidates for clustering.

• Spatial Clustering. In this step, the candidate road seg-
ments are clustered based on an agglomeration hierarchical
clustering method, e.g., [33]. A�er that, the highest ranked
road segment in each cluster is selected as the starting
segments.

�e reason for selecting a subset of road segments for clustering
is to remove the road segments that will never be in the �nal result
and reduce computational cost. �e hierarchical-based clustering
method is employed in our system, as it does not need to tune the
clustering parameters (e.g., in DBSCAN [9]) and it always generates
stable results (unlike it is in K Means [14]). �us, it is more intuitive
for government users.

Example. Figure 9 gives an example of the execution results of
spatial clustering-based initialization, where k = 5. In the �rst step,
we compute the clusters generated by our algorithm, i.e., Figure 9(a).
A�er that, the highest ranked road segments are selected as the
starting segments, which are the black segments in Figure 9(b). It is
interesting to note that four of the starting segments are at subway
stations. �e recommended paths actually cover the neighborhood
of six subway stations, as illustrated in the �gure.

Analysis. Compared to the results generated by the top-k initial-
ization method, spatial clustering based initialization clearly has

Figure 9: Spatial Clustering based Initialization.

be�er diversity and coverage. �e main reason is that a�er the spa-
tial clustering step, the starting segments are no longer connected
with each other. As we will show in our experiments, with more
budgets, the spatial clustering-based initialization method is more
e�ective.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the
e�ectiveness of our system. We �rst describe the dataset used in the
paper. �en, we provide a detailed analysis on the mobility statistics
of theMobike trajectories. A�er that, we provide experiment results
with di�erent parameters. Finally, we present a set of real case
studies to demonstrate the e�ectiveness of our system.

5.1 Datasets
Road Network. We use the road network of Shanghai, China from
Bing Map, which contains 333, 766 intersections and 440, 922 road
segments.

Mobike Trajectories. Each Mobike trajectory contains a bike ID,
a user ID, a temporal range of the trajectory, a pair of start/end
locations, and a sequence of intermediate GPS points.

�e Mobike dataset is collected in one month (i.e., 09/01/ 2016 -
09/30/2016) from the city of Shanghai. (Figure 8 gives an overview
of the spatial distribution of GPS locations). �e dataset contains
13,063 unique users, 3,971 bikes, and 230,303 trajectories (with a
total of 18,039,283 unique GPS points).

5.2 Mobility Statistics of Mobike Data
Trip Length Distribution. Figure 10(a) summarizes the trip
lengths distribution of the Mobike users. From the �gure, it is
clear that the majority of the trajectories are relatively short, i.e.,
more than 70% of the trips are shorter than 2 km, as people primar-
ily take bikes for shorter trips. �e observation is consistent with
the assumption that shared bike service is the solution for the “last
mile problem” in public transportation systems [7].
Trip Duration Distribution. Figure 10(b) gives the trajectory
duration distribution, where the majority of the trips are within
30 mins. �is is because: 1) most of the trips are less than 2 km,
which should be completed within 15 mins, and 2) the pricing plan
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Figure 10: Mobike Trip Characteristics.
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Figure 11: Temporal Imbalance Example of Mobike Trips.

of Mobike charges a user one RMB per 30 mins (we also notice a
sudden drop around the 30 min mark).

Trip Temporal Distribution. Figure 10(c) illustrates the distribu-
tion of the trip start time. It is obvious that there are two usage
peaks, i.e., the morning/evening rush hours. It is interesting to see
there is still a small amount of usage late at night, i.e., 10:00PM -
3:00AM, which is generated by the overtime workers.

Road Traversal Distribution. Figure 10(d) depicts the road seg-
ment distribution with respect to the number of traversed trajecto-
ries (in semi-log scale). It is obvious that most road segments are
covered by less than 100 trajectories, which echoes that bikers have
destinations all over the urban area. On the other hand, there are
over 2,000 road segments, with more than 1,000 trajectories, which
validate the necessity of planning e�ective bike lanes.

Temporal Imbalance. Figure 11 gives the Mobike trajectory start-
ing locations at di�erent time periods, which exhibits signi�cant
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Figure 12: E�ectiveness Evaluation.

temporal imbalance. For example, in the early morning, i.e., Fig-
ure 11(a), more trajectories start at the residential areas. However,
around 08:00 a.m. to 10:00 a.m, more trips start at the subway sta-
tion (as Figure 11(b)). A�er we analyze their �nal destinations, it is
clear that in the early morning, people who live nearby ride bikes
to the subway stations for work. �en, a�er one hour, more people
arrive at the subway station and ride to nearby malls and o�ces.

5.3 E�ectiveness Studies
In this subsection, we study the e�ects of di�erent parameters in our
system. Unless mentioned explicitly, the default parameters used
in the experiments are: k = 5, total construction budget B = 30KM
(we use the length of the segment as the cost ei .c , as the cost and
the length are highly correlated), and � = 1.

Di�erent k Values. Figure 12(a) gives the total bene�cial scores
E 0.� of choosing di�erent numbers of components (i.e., k values).
As a result, we have the following insight: 1) in most cases, the
spatial clustering-based initialization method gets a higher score;
2) the scores for Top-k method stays the same for k < 7, as all
the top-7 segments are connected; 3) when k value is small, two
methods are similar. �is is because in these cases the starting
segments of clustering results are the same as the top-k .

Di�erent Total Budgets. Figure 12(b) illustrates the total scores
with di�erent total budgets, from 10 KM to 50 KM. From the �gure,
we make the following observations: 1) the spatial clustering-based
initialization method performs be�er when the budget is larger.
2) when the budget is small, top-k method is be�er than spatial
clustering based method. �is is because, when the budget is small,
the best strategy may be expanding the segment with the most
number of trajectories (essentially the intuition of top-k method).
However, when the budget is large, the segments with high scores
per cost around the top-1 or top-2 ranked segments can be fully
covered (as most bike trajectories is less than 2 KM). At this time,
a more e�ective way should include the segments around other
spatial hot spots, rather than still expanding around that top-1 or
top-2 ranked segments.

Di�erent � Values. Figure 13 provides the results with di�erent
� se�ings, with the spatial clustering based method, where the
red lines are recommended paths and the black dots are their start
segments. It is interesting that, when � is large, most of the network
expansions happened in one connected component. Moreover, with
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Figure 14: A Real Case Study Near Jinyun Road Station.

Figure 13: E�ects of � Values.

a higher � , the result of the expansion goes further on some major
roads. �e reason behind these two phenomena is that, when � is
large, higher bene�cial scores are given for covering more portion
of the bike trajectories.

5.4 Case Study
To be�er understand the e�ectiveness of our bike lane recommen-
dations, we conduct a �eld case study. We choose to visit the area
near Jinyun Road subway station, as this area appears in all of our
recommendations, regardless of the parameters.

Figure 14(c) gives an overview of the overall POI distribution of
the area: 1) Jinyun Road is the terminal station of subway line 13,
2) there is a very large shopping mall (Shanghai Jiangqiao Wanda
Plaza) next to the subway station; and 3) around the subway station,
there are many populated residential areas within a 2 km radius,
marked as the blue icons on the �gure. As a result, cycling is
the most convenient way for the residents in this area to go to
the subway station or the shopping mall, which explains this area
having the highest bike usage density in our dataset.

When we arrive at the Jinyun Road station, we discover that the
government has built a few designated bike lanes. Based on our
observation, the government plans these bike lanes with a simple
strategy: building designated bike lanes for all major roads, and
painting bike lanes for the most of the local roads.

For example, the major roads in the �gure have designated bike
lanes, which are the Jinshajiang West Road (i.e., highlighted in

blue) and Huajiang Road (i.e., highlighted in green), as shown
in our photos: (Figure 14(b) for Huajiang Road and Figure 14(d)
for Jinshajiang West Road). �ese observations demonstrate the
e�ectiveness of our system, as all of these major roads are included
in our bike lane recommendation results.

On the other hand, there are no designated bike lane on lo-
cal roads, e.g., Hewang Road (Figure 14(a)) and Shahe Road (Fig-
ure 14(e)). However, we observe that there is also extensive bike
usage on these roads, as they are the paths to highly populated
residential areas. Although there are painted bike lanes on the road,
the cycling conditions are pre�y bad. In Figure 14(a), the bike users
have to ride on the sidewalk, as the original bike lane is taken by
a parked car. As a consequence, it not only makes the cycling ex-
perience much worse, but also is potentially dangerous for people
walking or running on the sidewalk. In the other example, i.e.,
Figure 14(e), at Shahe Road, the bike users are forced to ride on the
main lane of the road, as all the space of the biking path is taken
by cars, which may lead to tra�c accidents.

As a result, based on our analysis and observation, we conclude
that the government’s current strategy, i.e., building bike lanes
only on major roads, is insu�cient. With the real bike trajectories
and data-driven analysis, we propose that the cycling conditions
in these local road segments in our recommendation should be
improved. For example, the government should build designated
bike lanes, replace o�-street parking spaces with (underground)
parking garages, and enforce be�er management of illegal parking
violations.

6 SYSTEM DEPLOYMENT & EXPERT REVIEW

In this section, we �rst describe the details of our deployed
system on Microso� Azure. A�er that, expert feedback from gov-
ernment o�cials are presented and summarized.

6.1 System Implementation
Our bike lane planning system is publicly available online [2],
where the website user interface is implemented using bootstrap,
C#, Asp.NET and Bing Map V8 API, and the system is deployed
on Microso� Azure. Figure 15 is an example of the system inter-
face. �e system allows users to interact with it using di�erent
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Figure 15: System Interface.

parameters, and get bike lane construction recommendations in
a very short period of time. �e interface contains the following
components:

Parameters. �is section of the interface allows users to input the
parameters, such as the maximum number of connected compo-
nents (or k value), total budget (we consider the length as the cost),
and the � value (with a slider). �ere are two main bu�ons on this
area: 1) Cluster, which shows the results of spatial clustering, a�er
a user inputs the k value; and 2) Compute, which will generate the
path recommendation results, with all the given parameters.

Result. In this section, a table is used to show the algorithm results,
including: 1) the number of road segments in the recommendation,
2) the total score based on the � and the recommended paths, and
3) total execution time of the task.

Initialization Segments. In this section, we show the list of the
road segments, which are used to initialize the greedy network
expansion. For each road segment, we present information, which
includes: road segment ID, road name, center position (with latitude
and longitude) and the length in km.

MainMap View. In the upper right section, there is our main map
view. In this view, it displays the spatial clusters, distinguished
using di�erent colors, when the user inputs a value k and presses
the Cluster bu�on. It will also visualize bike lane recommendation
results, when the user inputs all the parameters and clicks Compute.
�e starting road segments are illustrated as the purple dots and
the recommended road segments are in red poly-lines.

6.2 Expert Review
We presented our system to the government o�cials from Xuhui
District, Shanghai, and collected their feedback.

Overall, they highly appreciated our data-driven bike path plan-
ning approach and found the system is very useful to help their
planning. One of the o�cials commended: “�e idea of using the
real sharing bike trajectories for planning the bike lanes is very

reasonable. �e data mining results from the system will serve as a
very solid foundation for our urban planners to build more e�ective
bike lanes in Shanghai”.

7 RELATEDWORK

In this section, we summarize the related works in three main
areas: 1) data-driven urban planning, 2) trajectory data mining, and
3) traditional bike lane planning methods.

Data-Driven Urban Planning. With the availability of massive
amounts mobility data from users, vehicles and public transporta-
tion systems, urban computing techniques have become more and
more popular in many urban planning tasks, as the massive mobil-
ity data re�ects real travel demands in the physical world [38]. For
example, [39] mines pa�erns in taxi trajectories to suggest road
constructions and public transportation projects. [35] infers dif-
ferent function zones in a city based on tra�c pa�erns and POI
distribution. [5, 17] identify potential tra�c pa�erns and anomalies
in the city based on multiple mobility datasets. In this paper, we
focus on providing a data-driven approach to �nd a more e�ective
and economic way for bike lane planning.

Trajectory Data Mining. �e bike lane planning problem is re-
lated to the trajectory data mining [6, 16, 21, 22, 24, 26, 27, 34].
Many systems have been proposed to discover frequently used
routes based on massive trajectory data, e.g., [6, 15, 16, 21, 26, 27].
�ere are also some projects on clustering/summarizing trajectories
on the road network [13, 20], which help urban planners to know
the popular routes and improve public transportation system. �e
closest projects on bike trajectory mining are [10, 11, 19], which
focus on summarizing the trajectory commonality and �nd out the
K-Primary Corridors for bike lanes. However, all of these works can
not be directly used for bike lane planning, as they fail to consider
the realistic budget and connectivity constraints.

Traditional Bike Lane Planning. Traditional bike lane planning
in a city is mainly studied in the transportation domain, and relies
heavily on the empirical experience, e.g., [8, 12]. To evaluate the
necessity of building bike lanes, [29, 32] provide some high level
suggestions based on public surveys and the geographical statistics,
such as the road network and POI distributions. �ere have been
some a�empts [18] to systematically discover factors for actual
bike route choices based on survey data. Recently, there have also
been some works on tra�c predication and route suggestion based
on the station-based bike-sharing systems, e.g., [23, 25].

8 CONCLUSION

In this paper, we propose a data driven approach to plan bike
lanes based on the real bike trajectories collected from Mobike (a
major station-less bike sharing system) in the City of Shanghai.
Our system can address the bike lanes planning problem in a more
realistic way, considering the constraints and requirements from
urban planners’ perspective: 1) budget limitations, 2) construction
convenience, and 3) bike lane utilization. We also propose a �exible
bene�cial score function to adjust preferences between the number
of covered users and the length of covered trips. �e formulated
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problem is proven to be NP-hard, thus we propose a greedy network
expansion algorithmwith two di�erent initializationmethods: top-k
based and spatial clustering.

We perform extensive experiments on a large scale Mobike data
and demonstrate the e�ectiveness of our proposed bike lane plan-
ning framework, where interesting trade-o� phenomena are ob-
served namely the top-k based (resp. spatial clustering based) ini-
tialization approach works well with low (resp. high) construction
budgets. We also conduct an on-�eld case study based on our path
recommendation results, and present many important insights to
improve cycling convenience in a given area. A demonstration
system is deployed on Microso� Azure for public use, and the ex-
pert feedback from the government o�cials from Xuhui District,
Shanghai, con�rms the e�ectiveness and usability of our system.

Finally, in future work, we plan to use the parallel computing
framework in Microso� Azure to improve system response time
to work more e�ciently with larger trajectory datasets. Also, we
would like to further explore the interactive planning process to
incorporate more human intelligence.
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