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Abstract—Mining spatio-temporal reachable regions aims to
find a set of road segments from massive trajectory data,
that are reachable from a user-specified location and within
a given temporal period. Accurately extracting such spatio-
temporal reachable area is vital in many urban applications, e.g.,
(i) location-based recommendation, (ii) location-based advertis-
ing, and (iii) business coverage analysis. The traditional approach
of answering such queries essentially performs a distance-based
range query over the given road network, which have two main
drawbacks: (i) it only works with the physical travel distances,
where the users usually care more about dynamic traveling time,
and (ii) it gives the same result regardless of the querying time,
where the reachable area could vary significantly with different
traffic conditions. Motivated by these observations, we propose a
data-driven approach to formulate the problem as mining actual
reachable region based on real historical trajectory dataset. The
main challenge in our approach is the system efficiency, as
verifying the reachability over the massive trajectories involves
huge amount of disk I/Os. In this paper, we develop two
indexing structures: 1) spatio-temporal index (ST-Index) and 2)
connection index (Con-Index) to reduce redundant trajectory
data access operations. We also propose a novel query processing
algorithm with: 1) maximum bounding region search, which
directly extracts a small searching region from the index structure
and 2) trace back search, which refines the search results from the
previous step to find the final query result. Moreover, our system
can also efficiently answer the spatio-temporal reachability query
with multiple query locations by skipping the overlapped area
search. We evaluate our system extensively using a large-scale
real taxi trajectory data in Shenzhen, China, where results
demonstrate that the proposed algorithms can reduce 50%-90%
running time over baseline algorithms.

I. INTRODUCTION

A spatio-temporal reachability query aims to find the reach-

able area in a spatial network from a location in a given

time period. As demonstrated in Figure 1, the spatio-temporal

reachable region is very useful in many urban applications:

1) Location-based recommendation, when a user wants to find

a nearby restaurant based on her current location and time,

the spatio-temporal reachable region provides a candidate list

for location recommendations; 2) location-based advertising,

where some business owner finds out the potential spatial re-

gions to arrange special activities, such as distributing coupons

and sales discount; and 3) business coverage analysis, for ex-

ample, a chained company, such as UPS and MacDonald’s, can

‡ The first two authors contributed equally in this work.

Fig. 1. Application Examples. These three simple examples offer an intuitive
understanding of applying our methods to daily life with spatio-temporal
reachability query.

find their overall business spatial coverage of their branches.

Those information can help them to make the right decisions,

when planning for some new branch locations. In Figure 1,

the first two application examples are illustrated using single-

location reachability query (with only one querying location

as input), and the third one is illustrated using a multi-location

reachability query (with more than one querying locations).

The traditional reachability query, e.g., [1], [13], [17], on

the road network has several drawbacks to fulfill the afore-

mentioned urban applications: 1) most of the existing work

focuses on reachable range based on spatial network distance

rather time period. However, in the real application scenarios,

users care more about the actual traveling time period rather

than distance. 2) most of the existing work does not support

queries at different time stamps. However, in reality, due to the

different traffic conditions in the rush hours, the reachable area

may vary significantly. The traditional spatial network based

approach cannot capture such differences.

To improve the usability of the reachability query in the

real application scenarios, we propose a data-driven approach

to find the spatio-temporal reachable regions based on the

massive real trajectory data collected over the road network.

The main intuition behind our approach is that, we want to

formulate the spatio-temporal reachability query as a data

mining process, which finds out all the trajectories that passed

the query location and aggregates all their destinations within

the given time period. This way, the reachable area is more

realistic, as it is essentially a summary from dynamic data.

The main challenge to answer the reachability query with

massive trajectory dataset is the system efficiency, because

the trajectory data usually cannot fit into the memory, and
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analyzing them involves heavy I/O access from the disk, which

results in long responding time. To improve the efficiency of

the spatio-temporal reachability queries, we proposes a set of

novel indexing structures and an efficient query processing

algorithm to minimize the redundant disk accesses.

By introducing a connection index to represent the con-

nections across road segments in two adjacent time slots,

we first develop our Spatio-Temporal Index (ST-Index) and

Connection Index (Con-Index) and propose Single-location

Reachability Query Maximum/Minimum Bounding Region

Search (SQMB) algorithm to determine the bounding region of

a range query q. To further extend system functionality, we de-

vise Multi-location Reachability Query Maximum/Minimum

Bounding Region Search (MQMB) algorithm to process multi-

location Spatio-Temporal Reachability queries which has a

number of starting locations with overlapping bounding re-

gions. Within each bounding region, we also devise Trace

Back Search (TBS) algorithm to search the Prob-reachable

region from the maximum bounding region. The main contri-

butions of this paper can be summarized as follows.

• We propose a novel spatio-temporal reachability query,

which introduces the temporal awareness to the tradi-

tional reachability query processing on the road networks.

The proposed query provides a more realistic and data-

driven result by mining the information within the mas-

sive historical trajectory dataset.

• We develop a spatio-temporal index and a connection

index to facilitate the query processing with the dynamic

connection information across road segments, which en-

able us the significantly reduce the searching space in

answering the spatio-temporal reachability queries.

• We develop SQMB algorithm to address the spatio-

temporal reachability query with single query location.

The proposed algorithm first determines the bounding

region of query q for further trace back search by utilizing

the well-established spatio-temporal index and connec-

tion index to mining in large-scale trajectory database.

Moreover, we also propose a trace back search algorithm

to trace back from maximum to minimum bounding

region until the spatio-temporal reachable area with the

corresponding probability is obtained.

• We also develop an efficient algorithm to answer spatio-

temporal reachability query with multiple query locations.

Instead of performing SQMB algorithm on these single

queries multiple times, our proposed algorithm MQMB

significantly improves the efficiency, by employing short-

est path techniques and eliminating duplicated influence

of road segments in the overlapping regions.

• We conduct extensive experiments on a real-world road

network with large-scale moving-object trajectory dataset

(with 194 GB size) collected from a metropolis in China

to evaluate the efficiency and effectiveness of our in-

dexing structure and query processing algorithms. Our

experimental results show that our SQMB and MQMB

algorithms outperform the exhaustive search method for

TABLE I
NOTATIONS AND TERMINOLOGIES

Notation Description
S S is the spatial information of a location includ-

ing longitude and latitude from query q.
T T is a time value indicating the temporal infor-

mation from query q.
L L is the prediction time length from query q.
Prob Prob is the probability of a reachable area for

answering query q.
B B is a set of road segments indicating the

maximum/minimum bounding region of a query
q.

ri ri is the ith road segment in the road network.
n n is the total number of road segments.
N(ri, t) N(ri, t) is the Near ID list of road segment ri

in a connection table in time slot t.
F (ri, t) F (ri, t) is the Far ID list of road segment ri in

a connection table in time slot t.

Tri Tri is the ith trajectory in the trajectory history.
m m is the total number of trajectory days.

single- and multi-location query with 50%-90% reduction

on the query processing time.

The remainder of the paper is organized as follows. In

Section II, we define our problem and outline our system

framework. Section III presents our approach for data prepro-

cessing. We elaborate on the indexing structure in Section IV.

Section V presents our novel query processing algorithms.

Section VI presents the evaluation results based on large scale

real trajectory data. Section VII discusses the related work.

Section VIII concludes the paper.

II. OVERVIEW

In this section, we first clarify key terms used in the paper

and provide a formal definition of spatio-temporal reachability
queries with single and multiple query locations. Table I pro-

vides a summary of the notations and terminologies frequently

used in this paper. Finally, we give an overview of the system

framework.

A. Basic Concepts

• Road Network. A road network can be viewed a directed

graph G(V,E), where E is as set of edges, and V is a

set of vertices representing the intersections on the road

network. Each road segment has a unique ID, an adjacent

list of the connected road segments in the network, a list

of intermediate points (2 terminal points at the beginning

and the end) describing its shape, a value of its length,

an indicator of direction (i.e., one-way or two-way), a

type value describing its level (primary or secondary) and

a MBR (Minimum Bounding Rectangles) describing its

spatial range.

• Trajectory. A trajectory is a sequence of spatio-temporal

points. Each point consists of a trajectory ID, spatial

information (e.g., latitude, longitude), a timestamp, and

a set of properties (e.g., travel speed, direction, or occu-

pancy).
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Fig. 2. Spatio-Temporal (ST) Reachability Query. A ST Reachability
Query q returns road segments within dash line area. The inner point(s)
is(are) the start location(s) specified by user and the solid circles indicates
the bounding region of the query q. (a) a Single Location ST Reachability
Query with only one start location. (b) a Multi-Location ST Reachability
Query with 3 start locations.

• Trajectory Reachability. Given a start location S, a

road segment ri in the road network, a start time T ,

and a duration L, the trajectory reachability reflects the

fact if any of historical trajectories has traversed the

given road segment from the start location within a given

duration (i.e., from T to T + L). If the road segment

ri is reachable from L, the trajectory reachability is 1,

otherwise the trajectory reachability for these locations

is 0. For example, given the above constrains, if there

was a trajectory passing S at t1 and passing ri at t2 and

t2 − t1 < L holds, the trajectory reachability is 1.

• Reachable Area. Given a start location S, a start time T
and a duration L, a reachable area is a set of road seg-

ments which contain all the road segments that trajectory

reachability from S for each of them is 1.

• Prob-Reachable Area. The Prob-Reachable area is a

more general description of the reachable area, where

we introduce a reachable probability, which describes the

percentage of days in the historical trajectory dataset that

support the fact that a road segment ri is reachable from

S within the given duration. For example, if there were

20 out of 100 days in the dataset with moving objects

starting from location S and traversing the reachable area

within [T, T + L], the probability of this reachable area

is 20%.

B. Problem Definition

Spatio-temporal Reachability Query. Given a road network

graph G(V,E), where E is a set of road segments and V
is a set of intersections, a query location S, a start time

T , a duration L, a probability ratio Prob and a trajectory

database TR, we want to find a set of road segments as

the Prob-Reachable area in the road network G, where the

road segment in the set all have at least prob chance in the

trajectory database to be reached from the start location S in a

given duration. The objective of our system is to minimize the

overall system overhead in finding the prob-reachable region

based on the user’s query parameters.

Extensions. We consider the aforementioned spatio-temporal

reachability query as a building block upon which our frame-

work can be extended to support more complex spatio-

Fig. 3. An overview of framework. Take a Single Location ST Reachability
Query q with S={r1} as an example, we first find road segment r1 at
start timestamp T by ST-Index and then jump to other road segments
according to Con-Index within duration L. Finally, we trace back search from
maximum boundary to minimum boundary until road segments satisfy Prob
requirement.

temporal reachability queries with multiple query locations,

illustrated in Figure 2b, where we want to find the union area

of the prob-reachable area of all the query locations.

C. System Overview

Figure 3 gives an over view of our proposed system, which

consists of three main components: Pre-processing, Index
Construction, and Query Processing.

• Pre-processing. This component performs two main

tasks: 1) road re-segmentation and 2) trajectory map-

matching. The objective of the road re-segmentation step

is to improve the granularity of our reachability range.

The pre-processing component re-segments the original

road network based on the given spatial granularity (e.g.,

500 meters). After that, the system reads the massive

trajectory data from a database and maps the trajectory

to the newly partitioned road network.

• Index Construction. This component builds two index-

ing structures to speed up the later query processing:

1) spatio-temporal index and 2) connection index. The

spatio-temporal index partitions trajectories based on

space and time. On the other hand, the connection index

links road segments based on the historical trajectory

information, which records a lower bound range as

NearTable and upper bound range as FarTable, i.e.,

noted as N and F in the Figure. The connection index

is used to prune the spatio-temporal reachability query

process.

• Query Processing. This component processes queries

from the user. This component employs two main tech-

niques: 1) s-query maximum/minimum bounding region

search, which uses our spatio-temporal index and connec-

tion index to generate a rough estimation of the upper

bound of Prob-reachable region based on the query

parameters; and 2) trace back search, which uses the

connection index and the original road network to refine

the region from the first step. This component also has the

ability to efficiently process the complex spatio-temporal
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Fig. 4. Pre-Processing. (a) a glimpse of new road network after re-segments.
New segment points are marked with ticks. (b) an example of map-matching.
Red line respects a trajectory mapped to a route on the road network which
connecting GPS points.

reachability query by minimizing the redundant searching

space with multiple query locations.

III. PRE-PROCESSING

In this section, we present the details in the pre-processing
module. The objective of this module is to convert the raw

trajectory data in to a set of map-matched trajectory data.

There are two main steps as follows:

Road Re-segmentation. The road re-segmentation step par-

titions the original road segments based on a given spatial

granularity (e.g., 500 meters). The main intuition behind this

step is that, in the real road network data, there are many road

segments with very large length value (e.g., some highways),

and we want to avoid having such long road in our result set to

improve the system effectiveness. After importing the whole

road network, we re-segment original roads by combining all

roads with junction information at first and then chopping

roads into new segments which shows in Figure 4 (a). Ac-

cording to the given length, we add some new intersection

points to create more road segments in the original long road

segment.

Map-Matching. In this step, we map the raw trajectory data

onto the newly segmented road network. We employed an

existing method [24] to perform the task. Figure 4 (b) provides

an example of map-matching part. At first, we map GPS

points to corresponding road segments and then connect all

road segments to make up the mapped trajectory. At the same

time, we add the value of instant speed, car ID (considered

as trajectory ID which connecting points into a trajectory)

and timestamp into the corresponding road segment as its

attributes. As a result, we acquire our cleaned trajectory

database which includes both road network and trajectory

information by mapping trajectories to road network. Note that

one moving object only has one trajectory per day which is

consisted of GPS points recorded at different timestamps.

IV. INDEX CONSTRUCTION

In this section, we introduce the details of our two in-

dex structures: 1) Spatio-Temporal Index (ST-Index) and

2) Connection Index (Con-Index).

A. Spatio-Temporal Index

ST-Index is used to speed up the process to find out the

corresponding start road segment based on the query location.

Fig. 5. ST-Index. The upper component is a temporal partition indicating
the time line per day with the time interval of 5 minutes. Each time slot
corresponds to a spatial partition illustrated in the bottom component. Each
leaf node of the spatial index has a time list to identify the date of trajectories
traversing its road segment.

The main difference in our spatio-temporal index is having two

levels of temporal information embedded (i.e., time of the day

and date) in order the calculate the prob-reachable area more

efficiently. Therefore, ST-Index consists of 3 components:

Temporal index, Spatial index and T ime List. Figure 5

illustrates the indexing structure of ST-Index.

Temporal index. To support finer granularity of the spatio-

temporal reachability query, we split one day into several time

slots. For example, if we want to support the query with 5

mins granularity in the Figure, we will divide the time with

many 5-mins intervals. After that, we build a B-tree upon all

the small temporal intervals to speed up the temporal range

selection. In the each leaf node of the index, a spatial index

is associated with it.

Spatial index. A spatial index (e.g., R-tree) is built based

on the re-segmented road network. As the road network is

static, essentially all the leaf nodes in the temporal index have

the same spatial index structure. As a result, during query

processing, we only need to access the same spatial index to

find out the candidate road segments.

Time List. For each leaf node in the index, we maintain a time

list. Each entry of the time list is identified based on the date.

And all the trajectory IDs that passed this road segment during

the corresponding date and time is stored as the content of this

entry in the disk, as shown in the Figure. The main reason to

keep this time list with trajectory date information is to speed

up the prob-reachable area computation, as the system needs

to identify trajectories to verify the reachability probability.

B. Connection Index

With the spatio-temporal index built as above, a naive

solution to answer the spatio-temporal reachability query can

be proposed as: we use the traditional network expansion

algorithm, e.g., [17] to expand the road network from the

query location and verifies each expanded road segments to

see if it fulfills the reachability probability by reading the

trajectory IDs from the disks. However, this query process can

be prohibitively inefficient, as it has to access very frequently
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Fig. 6. Con-Index. The left table indicates a connection table in time slot
t. The right figure depicts the road segments in the Near ID list and Far ID
list of road segment r1 on a real road network.

to the disk to retrieve the trajectory information.

To improve the system efficiency and avoid the unnecessary

disk accesses, we propose a connection index to skip some

network expansion steps. The basic idea is to use the historical

trajectory data to build a connection table for each road

segment and record the lower and upper bound of its reachable

road segments based on our temporal granularity. In particular,

each road segment with different temporal granularity is

associated with: 1) Near ID list (lower bound range) and 2) Far

ID list (upper bound range) indicating the nearest (farthest)

road segments that could be arrived at within the given time

slot.

To build the connection table, we modified the conventional

network expansion algorithm [17]. We generate Near ID list

of each road segment by considering the minimum speed (re-

moving the 0 speed) in all directions, after that we expand the

road network using the networking expansion algorithm [17]

with the temporal granularity. After that, all the reachable

road segments in this process are added in the table as the

Near ID list of the start road segment. The Far ID list is

constructed in the similar way by using the maximum traveling

speed calculated from the historical trajectories. Figure 6

illustrates a connection table in an arbitrary time slot of Con-

Index. Take road segment r1 as an example, road segments

(r2, r5, r7, r9) belong to Near ID list while road segments

(r4, r6, r8, r10, r12, r14, r15) as Far ID list. As you can see,

it is obvious that the range of Far ID list is larger and extends

to more intersections over road network.

V. SPATIO-TEMPORAL REACHABILITY QUERY

PROCESSING

With the ST-Index and Con-Index, now we are in a position

to introduce query processing algorithms to answer single- and

multi-location ST reachability queries. Below, we refer the

single-location (resp. multiple-location) ST reachability query

as to s-query (resp. m-query) for simplicity.

A. Single-location ST Reachability Query (s-query)

For a single-location ST reachability query, i.e., s-query q =
(S, T, L, Prob),includes one query location specified as S =
{s}, starting time T , a query duration L, and a probability

0 < Prob ≤ 1. We answer an s-query in two steps: (i) by

checking the Con-Index, maximum bounding region is first

extracted, that provides an upper bound of Prob-reachable

region from (S, T ) over a duration L; (ii) a trace back search

algorithm is conducted to search the Prob-reachable regions

from the maximum bounding regions. Below, we elaborate on

the maximum bounding region search and trace back search

algorithms for an s-query.

1) S-query Maximum Bounding Region Search: To answer

an s-query q = (S, T, L, Prob), the first step is to find a

maximum bounding region, that the result of the s-query can

possibly reach. As an upper bound, the maximum bounding

region allows the process to quickly approach the query re-

sult, without exhaustively searching from the starting location

S = {s} of the query q. This can be done by checking ST-

index and Con-Index as follows. First, with the start location

S = {s} and time stamp T from q, we identify the start road

segment r0 in the R-tree from ST-Index. Then, by checking

the start road segment r0 at time T , we can find the list of

r0’s maximum reachable road segments from T , denoted as

F (r0, T ), in the next Δt time interval. Likewise, by checking

each r ∈ F (r0, T ) in Con-Index for their maximum reachable

road segments F (r, T+Δt) from a start time T+Δt in a next

Δt time interval, we can obtain a maximum reachable road

segment set F 2(r0, T ) = ∪r∈F (r0,T )F (r, T + Δt). We keep

searching the Con-Index for k steps, until the time duration

L is met, namely, kΔt ≤ L < (k + 1)Δt. The maximum

reachable region is thus F k(r0, T ) = ∪r∈Fk−1(r0,T )F (r, T +
(k−1)Δt). The detailed S-Query Maximum Bounding Region

Search (SQMB) algorithm is summarized in Algorithm 1.

Algorithm 1 s-query maximum bounding region search

(SQMB) algorithm

1: INPUT: s-query q = {S = {s}, T, L, Prob}.
2: OUTPUT: Maximum bounding region set B = {b1, · · · , bm}.
3: Find road segment r0 in ST-Index, with s ∈ r0
4: Segment list R = {r0}
5: for 0 ≤ � ≤ L do
6: for ∀r in R do
7: Bounding set B = B ∪ F(r, T + �).
8: R = B
9: � = �+Δt

10: return B

Line 3 identifies the starting road segment r0 that the query

location s resides on. Line 4 initiates the segment list as r0.

Starting from r0, Line 5–9 search the maximum bounding

region through Con-Index, and Line 10 returns the maximum

bounding region B. Note that SQMB algorithm can also be

naturally applied to find the minimum bounding region, by

using the records for the nearest reachable region, in each Δt.
Illustration example. We show how SQMB algorithm works

in a concrete example shown in Figure 7, which employs

both ST-Index and Con-Index to determine the maximum

bounding region of an s-query q. In Figure 7, the upper

component shows all paths to locate the bounding regions

through Con-Index, while the bottom component illustrates

the same search paths across index nodes in ST-Index. From

the starting road segment r1, the query finds the first hop
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Fig. 7. Maximum/Minimum bounding regions. An illustrating example on s-query of how ST-Index and Con-Index are employed to determine the
maximum and minimum bounding region of a query starting from road segment r1. The upper component shows the searching paths in Con-Index across
time slots. The subfigure on the right illustrate the bounding region from the start road segment r1 on a real map, where the two solid lines represent the
minimum/maximum bounding regions, respectively). The bottom component indicates the searching paths for the query bounding region across R-trees in
different time slots.

Fig. 8. Trace Back Search. Two solid circles indicate the maximum and
minimum bounding regions, respectively. The dashed circle indicates the
Prob-reachable region with respect toProb. Trace back search starts from
the (outer) maximum bounding region to inner minimum one.

(in one time slot) maximum bounding region of {r2, r6}, by

checking the Con-Index in time slot 1. Then, by checking

and merging the maximum bounding region of r2 and r6, a

final maximum bounding region is obtained as {r5, r7, r9}.

Similarly, a minimum bounding region from r1 can be found

as {r3, r6, r8}. The corresponding geographical location of

each road segment is presented in the subfigures in Figure 7.

2) Trace Back Search: The maximum and minimum bound-

ing regions provide a refined and smaller geographic region to

further identify the exact Prob-reachable region of an s-query

q. It guarantees that all road segments on Prob-reachable

region are between the maximum and minimum bounding

regions. Utilizing such bounded information, we develop a

trace back search algorithm to search road segments from the

maximum bounding region back to the minimum bounding

region to find the Prob-reachable region, which works as

follows. Firstly, by checking ST-Index, we extract the list

of trajectory IDs from the starting road segment r0 in time

interval T0 = [T, T + Δt] during each day d, represented as

Tr(r0, T0, d), with 1 ≤ d ≤ m and m as the total number of

days the trajectory dataset spans. The maximum bounding re-

gion B include a list of road segments. For each road segment

r ∈ B, we check ST-Index to extract the list of trajectory IDs

from the road segment r in time interval TB = [T, T + L]
of each day d, represented as Tr(r0, TB , d). Then, for each

day 1 ≤ d ≤ m, we check if r is reachable from r0 on day

d, by checking if there is some common trajectories in both

Tr(r0, T0, d) and Tr(r0, TB , d) or not. Suppose that there are

m∗ out of m days where Tr(r0, T0, d) ∩ Tr(r0, TB , d) �= ∅
holds, then the reachable probability probability(r, r0) from

r0 to r during the period of [T, T + L] is as follows, which

represents from the historical statistics, the probability that

road segment r is reachable from r0 during the time interval

[T, T + L].

probability(r, r0) =
m∗

m
100%. (1)

For a given r ∈ B, if probability(r, r0) ≥ Prob, the road

segment r is close enough to the start road segment r0 that

is reachable with a higher probability than Prob. r will

be included in the prob-reachable region set. Otherwise, if

probability(r, r0) < Prob, it means that r does not have

large enough probability to be reached from r0, thus we add

r’s neighboring road segment set neighbor(r) to the search

space B for further investigation. Note that since we search

from the maximum bounding region to the minimum bounding

region, the neighboring road segments of r being added are

always closer than r to the start road segment r0. The process

terminates when B = ∅ or all the road segments between

maximum and minimum bounding regions are searched.

The detailed Trace Back Search (TBS) algorithm is sum-

marized in Algorithm 2. Line 3 initializes the searching road

segment set as the maximum bounding region Bmax. Line 4–

5 check if there is still road segments to be searched or not:

the searching process terminates if B is empty, otherwise, the

next road segment r ∈ B is popped out. Line 6–9 examine

if r is Prob-reachable from r0 or not. If yes, r is added to

Prob-reachable set, and it moves forward to search next road
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Algorithm 2 Trace Back Search (TBS) algorithm

1: INPUT: Bounding set Bmax and Bmin, Probability Prob, stat
road segment r0.

2: OUTPUT: Bounding set B′ with respect to Prob
3: B ← Bmax

4: while B �= ∅ do
5: r ← dequeue(B)
6: if probability(r, r0) ≥ prob then
7: Result ← {r} ∪Result
8: else
9: B ← (neighbor(r)−Bmin) ∪B

10: return Result

Fig. 9. Multiple Query Bounding Regions. Solid line indicates the outer
bounding region which is the real maximum reachable boundary of both r1
and r2 while dashed line indicating inner bounding regions. Road segments
r1 and r2 are the start locations from a m-query. Road segment r3 is on
the boundary of r2 while r4 on r1. However, r3 is not on the outer-most
bounding regions while r4 is.

segment in B (if any); otherwise, we add r’s neighboring road

segments to B (if not yet overlapping with Bmin) for further

investigation. Line 10 terminates the TBS search and returns

Prob-reachable region of r0.

Illustration example. Figure 8 shows a concrete example on

how TBS algorithm works to answer query q by searching

from the maximum to minimum bounding regions. The solid

road segments are with lower reachable probability than Prob
from q, and dashed road segments are with higher or equal

reachable probability than Prob. Note that once a road seg-

ment has been searched, it will be marked as “visited”, so that

it will not be searched when being expanded from other road

segments in B. To be precise, taking road segment r∗ as an

example in Figure 8, there are two paths traversing it from

the maximum bounding region. However, once one of them

has visited r∗, it will be marked as “visited”. When the other

path expands to r∗, trace back search algorithm will not add

it again to B. Such mechanism ensures the efficiency of TBS

algorithm and avoid duplicated searches.

B. Multi-location ST Reachability Query (m-query)

Going beyond s-query, which allows one single query loca-

tion S = {s}, we now consider a ST reachability query with

multiple starting locations, i.e., S = {s1, · · · , sn}, referred to

as multi-location ST reachability query, in short, m-query. A

m-query is formally defined as q = (S, T, L, Prob), with a

set of querying n locations S = {s1, · · · , sn}, starting time

T , duration L, and a confidence probability Prob. The m-

query q asks for the Prob-reachable region from any of the

location s ∈ S during the time interval [T, T + L]. In theory,

if we consider each query location si ∈ S as an s-query,

namely, q = (si, T, L, Prob), with a result of Prob-reachable

region as Bi, the answer of an m-query is thus the outer-most

bounding regions of the union among all Bi’s. Figure 9(a)

shows an example of m-query with two starting road segments,

r1 and r2. The solid lines outline Prob-reachable region of

the m-query, which is the outer-most bounding region of the

two single Prob-reachable regions of r1 and r2, where the

overlapping parts (in dashed lines) are removed.

Naive solution. To solve an m-query, a naive (but always

working) solution is treating an m-query as multiple s-queries,

answer them one by one, and merge the Prob-reachable region

of each s-query to obtain the Prob-reachable region for the

m-query. However, the potential inefficiency of this approach

is that when answering multiple s-queries, the road segments

lying between the maximum and minimum bounding regions

of different s-queries may be searched multiple times, due to

the lack of communication among individual s-queries. When

the number of locations in an m-query is large, say, tens to

hundreds and the query duration L is long, i.e., 4 hours or

more, the issue may lead to huge processing time. As a result,

we are motivated to develop an m-query processing algorithm

that can automatically take advantage of the overlapping

information, to avoid duplicate search for road segments.

Query processing algorithm for m-query. The basic idea

behind the query processing algorithm for m-query is still

a two-step approach: (i) finding a unifying maximum and

minimum bounding region of the m-query by checking ST-

Index and Con-Index; (ii) trace back searching the road

segments from the maximum to minimum bounding regions

to identify the Prob-reachable region of m-query q. As

shown in Figure 9(b), the maximum and minimum bounding

regions are the outer-most boundary of the merged bounding

regions across all single s-queries. We develop the m-query

maximum/minimum bounding region search algorithm, which

works as follows. First, we match each start location si ∈ S
to a start road segment r0,i from R-tree in ST-Index, forming

a starting road segment set R0 = {r0,1, · · · , r0,n}. Then,

we check each r0,i ∈ R0 in Con-Index and obtain a list of

r0,i’s maximum and minimum reachable road segments from

T , denoted as F (r0,i, T ), in the next Δt time interval. We

denote the simple union set of all F (r0,i, T )’s as F (R0, T ) =
∪r∈R0F (r0,i, T ), which would include road segments in the

overlapping regions of F (r0,i, T )’s. Those road segments can

be eliminated by the following rule: Given a road segment

r ∈ F (R0, T ), if the nearest road segment rs ∈ R0 to r,

i.e., rs = argminr′∈R0
{dis(r′, r)} ∈ R0 is the same as the

one whose bounding region contains r, i.e., r ∈ F (rs, T ), r
should be included into the bounding region of R0. Otherwise,

r should be eliminated. To better understand the logic behind

this, we look at r3 Figure 9(a). r3 has the shorter distance

to the starting road segment r1 than r2, where r3 is in the

bounding region of r2, thus r3 is in the overlapping region,

and should be eliminated. After this filtering processing, a

unifying maximum bounding region of m-query q is obtained

as R(R0, T ), from start road segment set R0, during time
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interval [T, T + Δt]. Next, taking R(R0, T ) as the starting

road segment set, we can obtain R2(R0, T ), a maximum

bounding region of m-query q, with starting road segment set

R0 during time interval [T, T +2Δt]. Keeping searching Con-

Index for k steps, until the time duration L is met, namely,

kΔt ≤ L < (k+1)Δt. The maximum bounding region of R0

is thus Rk(R0, T ) with starting road segment set R0 during

time interval [T, T + kΔt].
The detailed M-Query Maximum Bounding Region Search

(MQMB) algorithm is summarized in Algorithm 3. Line 3

identifies the set of starting road segments R = {r1, · · · , rn}
of the locations S = {s1, · · · , sn} in m-query q. Line 4 starts

the loop of increasing the targeted time interval [T, T + �]
until it reaches the user-specified duration L. Line 5–6 simply

construct the union set B of maximum bounding regions of

all road segments in R. Line 7–10 remove road segments

in overlapping regions, and construct a unifying maximum

bounding region. Line 11–12 update the target road segments

set R and time interval � for next iteration. Line 13 returns

the maximum bounding region Result.

Algorithm 3 m-query maximum bounding region search

(MQMB) algorithm

1: INPUT: m-query q = {S = {s1, · · · , sn}, T, L, Prob}.
2: OUTPUT: Maximum bounding region set Result.
3: Find starting road segment list R in ST-Index
4: for 0 ≤ � ≤ L do
5: for ∀r in R do
6: Bounding set B ← B ∪ F(r, T + �).
7: for ∀b in B do
8: rs = argminr′∈R{dis(r′, b)}
9: if b ∈ F (rs) then

10: Result = Result ∪ {b}
11: R = Result
12: � = �+Δt
13: return Result

VI. EVALUATION

In this section, we conduct extensive experiments to

evaluate our indexing structure and query processing algo-

rithms for both s-query and m-query using a one-month taxi

trajectory dataset from Shenzhen, China. For s-query, we

compare our SQMB+TBS algorithm with exhaustive search

method; for m-query, we compare our MQMB+TBS algorithm

with SQMB+TBS algorithm. The extensive evaluation results

demonstrate that our SQMB+TBS can on average reduce

50% running time than exhaustive search method, and our

MQMB+TBS algorithm can reduce on average 30% running

time over SQMB+TBS algorithm. Below, we elaborate on the

dataset we used, experiment configurations, and experimental

results.

A. Data Descriptions and Experiment Configurations

We use a large-scale trajectory dataset collected from taxis

in Shenzhen, with an urban area of about 400 square miles

and three million people. The dataset was collected for 30

days in November, 2014. These trajectories represent 21,385

TABLE II
EVALUATION CONFIGURATION

duration L {5, 10, · · · , 35}min
probability Prob {20%, · · · , 100%}
start time T {[00 : 00− 00 : 05], · · · , [23 : 55, 00 : 00]}
interval Δt {1, 5, 10, 20}min
s-query algorithms ES, SQMB+TBS
m-query algorithms SQMB+TBS, MQMB+TBS

(a) Processing time (b) Reachable segment length

Fig. 10. Effect on duration L

unique taxis in Shenzhen. They are equipped with GPS sets,

which periodically (i.e., roughly every 30 seconds) generate

GPS records. Hence, each GPS record in our database is

represented as a spatio-temporal point of a taxi, where in

total 407,040,083 GPS records were obtained. Each record has

five core attributes including trajectory ID, longitude, latitude,

speed and time. To calculate the probability of reachable

areas, we consider the same taxi at different dates as different

trajectories, e.g., with different trajectory IDs.

B. Single-Location ST Reachability Query

In the experiments, we evaluate our query processing

method for s-query by changing different parameters, includ-

ing, duration L (in minutes), probability of reachable areas

Prob, starting time T , and time interval Δt (in minutes). The

detailed experiment configurations are listed in Table II.

Baseline method. For s-query, we choose baseline algorithm

as exhaustive search (ES) method, which starts from the

querying location s and time T , to search the neighboring road

segments through the road network. The searching process

terminates until Prob-reachable road segments at all possible

branches on the road network.

Evaluation metrics. We use two different metrics to measure

the efficiency and effectiveness of our method, i.e., running

time, and total length of covered road segments from the

query result. Query processing running time is used to eval-

uate algorithm efficiency, which captures how long different

algorithms take to process an s-query. On the other hand, we

use the total length of all reachable road segments as the

measurement of the effectiveness of our model. Moreover,

we also employ visualizations of query results on road map

to better understand and illustrate the performances of our

proposed query processing algorithms.

1) Effect on Duration L: To evaluate the processing time

of baseline method and our algorithm, Figure 10(a) shows

query processing time as we increase the duration L. We

set travel duration L from 5 to 35 mins with different time
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Fig. 11. Examples of Prob-reachable region

interval Δt = 5 mins and 10 mins, respectively. Moreover,

for all queries, they share the same start time T = 11am,

location s = (22.5311, 114.0550) in latitude and longitude,

and probability Prob = 20%. ES method always traverses

road segments from the starting location s in the road network,

where our SQMB+TBS algorithm can skip the nearby region

of the starting location, and start search from the road segments

on the maximum bounding region. As shown in Figure 10(a),

our SQMB+TBS algorithm always achieves much less running

time than ES method. Moreover, the processing time of

SQMB+TBS algorithm, increases as duration L increasing,

because of the expansion on the maximum bounding region.

Figure 10(a) shows that our algorithm can reduce up to 90%

of processing time when users tend to query a small duration.

Even with larger duration like 30 minutes, our algorithm can

still reduce nearly 50% of processing time. In Figure 10(b), it

shows the increase of road length with the increase of duration

L when applying our algorithm. This is simply because

longer duration allows to travel longer distance. Moreover,

we observe that with different Δt, i.e., the two curves in

the figures, the Prob-reachable road segment length does

not change much. This is because the total length of Prob-
reachable road segments is fixed given an s-query. Note that

Δt as a granularity in the indexing structure does not have

impact of the query result.

The Figure 11(a) and Figure 11(b) visualize our results on

a road map, with all road segments that can be reached on

at least 20% days in the historical data with L = 5 and 10
mins, respectively. Both figures show that the entire Prob-
reachable region from the starting location s to the boundary

road segments. Clearly, on the high-speed road segments, the

region is further away from the starting location, while on the

local low-speed roads, the query result region is smaller. This

occurs because vehicles on highways in general travel faster

than on those low speed roads. Moreover, long trips tend to

take highway, while shorter trips tend to take local low-speed

roads.

2) Effect on the probability Prob: Now, we fix the start

time T , start location s, time granularity Δt and duration

L to study how different query probabilities influence the

performance of our query processing algorithm.

We use Figure 12(a) and Figure 12(b) to demonstrate

the effect of query probability Prob on both efficiency and

effectiveness. Figure 12(a) shows that as we change Prob ∈
{20%, 40%, 60%, 80%, 100%}, the running time is almost

(a) Processing time (b) Reachable segment length

Fig. 12. Effect on query probability
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Fig. 13. Results of Prob = 20%, 60%, 80% and 100%

unchanged, which indicates that our SQMB+TBS algorithm

employs Con-Index to directly find the maximum and mini-

mum bounding region of the s-query, thus the query processing

time does not hinge much over the querying probability.

Moreover, the running time of SQMB+TBS is much smaller

than ES method, which is reasonable, since our SQMB+TBS

algorithm skips the searching process near the start location

s, which significantly reduces the running time.

The Figure 12(b) shows the reachable road segment length

with respect to different probabilities. We observe that as

the query probability increases, the length of reachable road

segment decreases, which is reasonable, since there will be

less road segments qualified for the query with higher query

probability.

Figure 13 shows the visualization results on a road map,

which gives us an idea of how reachable region look like.

Figure 13(a), Figure 13(b), Figure 13(c) and Figure 13(d) illus-

trate the query results of probability = 20%,60%,80%,100%,

respectively. As we increase the probability, the visualization

of reachable region starts to shrink, especially, on those low-

speed local roads. However, the overall reachable road network

structure, formed by the highways remains the same.

3) Effect on start time T : In this section, we evaluate

the performance of our SQMB+TBS algorithm over travel

starting time T in a day, and we fix all other parameters.

In Figure 14(a), we observe that the running time changes as
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(a) Processing time (b) Reachable segments length

Fig. 14. Effect on start time
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Fig. 15. Results of T = 1am, 6am, 12pm and 6pm

starting time varies. For example, at around 7am and 6pm, the

running time drops significantly, which primarily because of

the effect of rush hours. The traffic condition goes down during

these rush hours, which leads to smaller reachable regions at

these starting time, thus with less running time to process the

query. To be precise, in Con-Index, slower maximum speed

leads to smaller maximum bounding region, which covers less

road segments candidates, which in turn takes less running

time. This phenomenon can also be verified using reachable

road segment length in Figure 14(b), where the total length of

reachable road segments exhibits similar pattern with running

time.

To better illustrate the effect of starting time, we visualize

the reachable road segments with 80% probability, L = 5 mins

and start time as 1 am, 6 am, 12 pm and 7 pm, respectively.

Clearly, Figure 15(d) shows the results of start time at 6 pm

has the smallest reachable region. Moreover, the changes of

reachable regions are more on local low-speed roads, and the

highway reachable regions are relatively stable over time.

4) Effect on time interval Δt: In this section, we evaluate

how the time interval Δt affects the running time of our

SQMB+TBS algorithm. From Figure 16, we observe that the

running time does not change much as the time interval varies,

when other parameters are fixed, such as start time, location

and probability. This indicates that our SQMB+TBS algorithm

is stable on the system parameter, Δt, that governs the time

granularity in the indexing structure.

C. Multi-location ST Reachability Query Processing

For multi-location ST reachability query, in short m-query,

we compare our MQMB+TBS algorithm with running single-

location query algorithm SQMB+TBS multiple times. To use

SQMB+TBS algorithm to process m-query, we treat the m-

query with n query locations as n s-queries, where each s-

query has a unique query location. The SQMB+TBS algorithm

is then applied to process each s-query, and the final m-query

results comes from the union of all results of each s-query.

In Figure 17, we execute an m-query with three locations

and we set probability as 20%. The result shows that it is

roughly three times slower than processing the m-query using

SQMB+TBS algorithm on each individual s-queries. More-

over, we also examine the performance of MQMB+TBS vs

SQMB+TBS, with changing the number of query locations in

the m-query. We set start time as 10 am, duration as 20 minutes

and probability as 20%. Figure 18 indicates that when we use

MQMB+TBS algorithm to process an s-query, with only one

query location, it is slightly slower than normal SQMB+TBS

algorithm, which is reasonable because that MQMB+TBS

algorithm has an extra filtering stage trying to eliminate the

road segments in the overlapping region among different query

locations. However, when the number of locations increases

(say, more than one), the running time MQMB+TBS algorithm

takes to process m-query is almost constant but processing

time of SQMB+TBS algorithm incearses linearly to number

of locations. When visualizing our results on road maps in

Figure 19, we observe that the reachable region of all three

locations is the union of reachable areas of three individual

s-queries.

VII. RELATED WORK

In this paper, we make the first attempt to study a problem of

mining the spatio-temporal reachable region from a location

and within a time interval. In this section, we discuss three

topics that are closely related to our work and highlight

the differences from them, including (1) Spatio-temperal data

management, (2) trajectory query processing, and (3) reacha-

bility query processing.

A. Spatio-temperal data management

With the rapid development of sensor technologies like

satellites, GPS, 4G networks and Internet of Thing, we can

collect a massive scale of spatio-temporal data like real-

time rode condition, trajectories and point-of-interest status.

Researchers have proposed a number of decent models to store

and index those data. For spatial information, R-tree structure

has been widely used to index data [12], [4], [17], [28].

Then, B-tree and R-tree are combined together to store both

spatial and temporal information [10], [11]. In these structures,

an R-Tree is maintained for each leaf node of B-tree, which

could take a huge space to store them in either an internal

or external storage. With the observation that most of R-

trees share a similar or even same structure, a set of methods
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Fig. 16. Processing time over different time
intervals

Fig. 17. Comparision of s-query and m-Query
over duration

Fig. 18. Comparision of s-query and m-query
over nubmer of locations
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Fig. 19. Results of ST Reachability of three locations

have been developed to compress the index structure into a

reasonable size [3], [10], [19]. Another approach to store and

index spatio-temperal data is to utilize its network structure.

The connectivity of road segment could be maintained using

adjacency matrix or adjacent list [17]. Predictive Tree has been

proposed to maintain the reachability of road segments using

additional information such as road length [13]. Moreover,

grid-based indexing structures are used to store data: first,

spatial dimensions are split into different grids, indexed by

Quad-tree or KD-trees, etc; then, based on each spatial grid,

different temporal indices could be built such as scalable and

efficient trajectory index (SETI) [7]. All models above share

a common drawback, namely, they all use separate structure

to represent spatial and temporal aspect of data. However,

in real-world applications, we need an indexing structure

that describes both spatial and temporal aspects of spatio-

temporal data. For example, if two roads are connected to each

other, they should be connected in both spatial dimension and

temporal dimension. If it takes 5 minutes to travel from A to

B, the node which represents road A should be connected to

the node of road segment B in 5 minutes. Our proposed Con-

Index structure fill this gap that record connections between

connected road segments across different time slots using

speed information.

B. Trajectory query processing

With large amount of trajectory data generated over time, it

is increasingly challenging to answer various trajectory queries

in different application scenarios in urban computing [26],

[27]. One typical trajectory query is range query, where

historical trajectories are used to predict the possibility that

a moving object will go towards a next location. Such query

can be answered based on predicted route for every object

in the trajectory database [14]. Moreover, the transformed

Minkowski Sum has been used to answer such range queries,

if the query input is a circular region [25]. In [16], sampling

based approach is proposed to efficiently answer trajectory

aggregate queries, that ask for the total number of trajectories

in a user-specified spatio-temporal region. Another type of

popular trajectory query is route query, that answers how to

get to a location from another location. For simple short-

est path queries, Dijkstra Algorithm is the optimal method

when any additional information is available [20]. However,

information such as transit nodes, which can be viewed as

the connection between local road network and general road

network, can be used to accelerate shortest path query [2].

Moreover, researchers have extensively studied trip planning

problems, that seek for a best path passing through a set of

distinct objects [15]. Overall, our proposed spatio-temporal

reachability query problem is different from the trajectory

queries described above, which aims to find the region that

are reachable from a given location within a time interval.

C. Reachability queries

Reachability queries are usually conducted to test whether

there is a path from a node u to another node v in a (directed)

graph setting, which have been widely studied in the literature,

and are treated as a very basic type of graph queries for many

applications. There are three types of techniques commonly

used to process graph reachability query. The transitive closure

(TC) of vertex v is the set of vertices that v can reach in

a graph, normally this TC structure is large and different

methods are proposed to compress TC [8], [9], [21]. Moreover,

2-hop labeling schema are introduced to solve the query and

some heuristic methods are proposed to reduce the size of

labels [5], [6]. The methods [18], [22] construct a small

index with a small construction cost to solve such reachability

queries. In urban setting, the road networks can be naturally
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viewed as a (directed) graph, thus these approaches apply to

find the reachabilities on road networks. However, all these

methods are designed over static graphs [23], [29]. However,

the traditional graph reachability query mainly focuses on

the static graph structure rather than dynamic data associated

with the graph structure like trajectories. Differing from these

queries, our proposed spatio-temporal reachability query re-

sults hinge on querying time.

VIII. CONCLUSION

In this paper, we investigate a problem of mining spatio-

temporal reachable regions from a user-specified location

within a given time period, which has a wide range of

applications in reality, including location based recommen-

dation, advertising, etc. To solve such a trajectory mining

problem efficiently over massive trajectory data, we develop

a novel indexing and query processing framework. First of

all, to capture the temporal connection information between

road segments over time, we introduce both spatio-temporal

index and connection index to index the trajectory data.

Utilizing these two indexing structures, we further develop

algorithms to quickly locate the maximum and minimum

bounding regions of the query results, and introduce a trace

back search algorithm to find the exact reachable region of a

query. Finally, we evaluate our indexing structure and query

processing algorithms using a large-scale taxi trajectory dataset

(with 194 GB size) collected from Shenzhen, China. Extensive

experiments demonstrate that our query processing framework

can reduce 50%–90% running time to answer spatio-temporal

reachability query over baseline algorithms.
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