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ABSTRACT
Emergence of autonomous vehicles (AVs) offers the potential to
fundamentally transform the way how urban transport systems be
designed and deployed, and alter the way we view private car own-
ership. In this paper we advocate a forward-looking, ambitious and
disruptive smart cloud commuting system (SCCS) for future smart
cities based on shared AVs. Employing giant pools of AVs of vary-
ing sizes, SCCS seeks to supplant and integrate various modes of
transport – most of personal vehicles, low ridership public buses,
and taxis used in today’s private and public transport systems – in
a unified, on-demand fashion, and provides passengers with a fast,
convenient, and low cost transport service for their daily commuting
needs. To explore feasibility and efficiency gains of the proposed
SCCS, we model SCCS as a queueing system with passengers’ trip
demands (as jobs) being served by the AVs (as servers). Using a
1-year real trip dataset from Shenzhen China, we quantify (i) how
design choices, such as the numbers of depots and AVs, affect the
passenger waiting time and vehicle utilization; and (ii) how much
efficiency gains (i.e., reducing the number of service vehicles, and
improving the vehicle utilization) can be obtained by SCCS com-
paring to the current taxi system. Our results demonstrate that the
proposed SCCS system can serve the trip demands with 22% fewer
vehicles and 37% more vehicle utilization, which shed lights on the
design feasibility of future smart transportation systems.
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1 INTRODUCTION
In most urban cities today, there are two primary modes of transit: i)
Public transit services such as buses, subways which run along fixed
routes with fixed timetables, and have limited coverage areas. These
limitations mean that one cannot take public transport between any
two arbitrary points in a city. ii) private transit services such as
taxis, shared-van shuttles, (mobile app-based) ride-hailing services
(e.g., Uber or Lyft) are largely "on-demand" – although their service
may not be immediate or "real-time". However, taxi and ride-hailing
services can be expensive, limiting them mostly for ad hoc use,
namely, occasional short trips.

The emergence of autonomous vehicles1 (AVs) although will
offer new potentials to address the challenges facing the current

1Colloquially known as “self-driving cars” – however in our study we will use the term
AVs to refer to not only passenger cars, but also “self-driving” shuttles, vans or busses;
namely, AVs of varying sizes.
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urban transit systems, and challenge and transform how we view and
design public and private transport systems in future smart cities.
For instance, with their autonomy, would it still make sense to take
“self-driving” cars to work, but have them spend most time parked,
when in fact they can go somewhere by themselves? We envisage a
forward-looking, ambitious and disruptive cloud commuting based
transport system – smart cloud commuting system (SCCS) – for
future smart cities based on shared AVs. Employing giant pools of
AVs of varying sizes, SCCS seeks to supplant and integrate vari-
ous modes of transport – most of personal vehicles, taxis, and low
ridership public buses used in today’s private and public transport
systems – in a unified, on-demand fashion, and provides passengers
with a fast, convenient, and low cost transport service for their daily
commuting needs.

We postulate the four key aspects of system efficiency gains that
could potentially be achieved in a smart cloud commuting system
with shared AVs (see Section 2.1). This paper constitutes a first
attempt at exploring the feasibility and efficiency gains of the pro-
posed SCCS; due to space limitation, we focus primarily on the
temporal multiplexing gain through time-sharing of AVs. To this
end, we model SCCS as a queueing system with passengers’ trip
demands (as jobs) being served by the AVs (as servers). Using a
1-year real trip dataset from Shenzhen China, we quantify (i) how
various design choices – such as the number of shared AVs and
number and locations of depots (where idle AVs are stationed) –
affect the passenger waiting time and vehicle utilization; and (ii)
how much system efficiency gain (e.g., in terms of number of AVs
and vehicle utilization) can be attained through SCCS.

• Utilizing a large-scale taxi trip dataset, we develop generative
models to capture the arrival and service patterns of urban
taxi trip demands over different time periods of the day.

• By modeling SCCS as anM/G/k queuing system, we propose
an theoretical framework to estimate the average waiting time
of all passengers, given the total number of AVs and the
number/locations of depots.

• We investigate the impacts of different design choices, e.g.,
number of AVs and number/locations of depots, on passenger
waiting time and vehicle utilizations.

• We quantify the temporal multiplexing efficiency gain of
time-sharing AVs achieved via SCCS, and compare that with
the current urban taxi system. The evaluation results obtained
using the 1-year taxi trip dataset demonstrate that the pro-
posed SCCS system can serve the trip demands with 22% less
vehicles and 37% more vehicle utilization.

The rest of the paper is organized as follows. In Section 2, we
motivate the proposed SCCS and outline a queueing system model
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Figure 1: Idling taxis Figure 2: Request pattern Figure 3: Queuing system

for its feasibility study. In Section III we present the overall method-
ology and detail the modeling framework. In Section IV we describe
the evaluation results using the Shenzhen taxi datasets. The related
work is discussed in Section V, and the paper is concluded in Section
VI.

2 MOTIVATION AND PROBLEM DEFINITION
In this section we first motivate the proposed SCCS system. We then
lay out a general queueing system model for SCCS for studying its
feasibility and quantifying its potential efficiency gains.

2.1 Smart Cloud Commuting System (SCCS)
As alluded in the introduction, today’s urban transit systems suffer
many well-known shortcomings. Taking taxis as an example, Fig. 1
shows that on average more than 60% of taxis are idle over time. Now
imagine a (perhaps not-so-distant) future where we live in a smart
city with autonomous vehicles or “self-driving” cars. How would
the transport systems, both public and private, be designed in such a
smart city? What transport services would be needed or plausible?
Our envisaged SCCS is a bold attempt to re-imagine and re-design
transport for future smart cities by fusing information technologies
with AVs to offer a new kind of mobility-as-a-service that targets
more specifically daily commuting needs for most (if not all) users
in cities and metro areas (urban and suburban). Similar to today’s
(mobile-app-based) ride-hailing services, each AV is controlled by
(centralized) dispatch servers residing in the cloud. Once a passenger
requests a trip, the cloud servers will arrange an AV to pick up and
send the passenger to the destination. When a trip demand is com-
pleted, the vehicle can be re-used for other passengers. Employing
giant pools of shared AVs of varying sizes, SCCS aims to provide
users with a fast, convenient, and low cost transport service to meet
their daily commuting needs. The scale and the resulting abilities to
maximize system efficiencies via shared AVs differentiate our envis-
aged SCCS from today’s ride-hailing services, which are designed
primarily to serve ad hoc trips. In other words, the AVs in SCCS
cannot be replaced by the vehicles with drivers like taxis and Uber
cars. One key difference between AVs and taxis or Uber cars is that
each taxi or Uber car with a driver is maximizing its own gain, and
each taxi/Uber car acts as a selfish player without caring much on
the global gain in terms of transit system efficiency. etc. While with
AVs, SCCS system can be designed to maximize a global system
efficiency.

We postulate the following four key aspects of system efficiency
gains that could potentially be achieved in a smart cloud commuting

system with shared AVs. (i) Temporal multiplexing gain through
time-sharing of AVs: by leveraging “bursty” travel demands and
sharing of AVs over time, the number of AVs needed would be
significantly less than what would be if every user had his or her
personal AV. This is analogous to the statistical multiplexing gain
attained by a packet-switched data network. (ii) Payload multiplex-
ing gain through ride-sharing among users: By utilizing AVs of
varying sizes to enable ride-sharing among users (similar to today’s
car-pooling, shared shuttle or transit services, but leveraging the au-
tonomy of AVs), the number of AVs needed can be further reduced.
(iii) Elastic demand gain through smart trip scheduling: Many travel
demands are elastic in nature (a trip to a store for grocery shopping
now may not be crucial and thus can be delayed, say, for 30 minutes).
Even for peak hour travel demands, as long as a user can reach her
destination within a desired time window, the trip can be scheduled
dynamically to leverage such elasticity to achieve additional system
efficiency gain. (iv) Road network efficiency gain through intelligent
control of AVs: With fewer vehicles on the road through shared AVs,
road congestion can be alleviated or avoided, thus shortening trip
times. Road network efficiency gain can be further increased by
packing more AVs during peak demands (e.g., by reducing inter-car
spacing) without creating safety issues, and by intelligent routing of
AVs through less congested roads.

As a first attempt at studying the feasibility of the envisaged
SCCS, in this paper we focus primarily on the first aspect of the
system efficiencies, namely, temporal multiplexing gain through
time-sharing of AVs, that can be potentially achieved through SCCS.
In particular, by modeling SCCS as a queueing system, we investi-
gate how various design choices – such as the numbers of vehicles
and the number/locations of depots – affect the quality of services
(QoS) of passengers (e.g., waiting time) and the overall system
performance (e.g., vehicle utilization). Notice that SCCS does not
necessarily require the presence of depots. In this paper, we explore
the trade-off between the centralized and decentralized SCCS sys-
tem design. Clearly, current system design like Uber is using a fully
decentralized approach. We use the number of depots as a parameter
to control the trade-off and evaluate the system effiency gain. When
the number of depots is sufficiently large, it becomes a decentral-
ized system. For this study, we utilize a real-world, taxi trip dataset
from Shenzhen, China over a period of one year. One interesting
and important feature of this dataset lies in that due to the limited
area coverage (and the fact that the public transit capacity cannot
meet the demands during the peak hours), many residents in the city
rely on taxis for daily commuting needs (see Fig. 2). This feature
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enables us to study the feasibility of the proposed SCCS to meet
daily commuting needs and compare its system performance with
that of the existing taxi system.

2.2 Modeling SCCS as a Queuing system
SCCS can be viewed as a queuing system. Passengers request for
commute services from SCCS. Their requests will be placed in a
queue, if the servers (i.e. AVs) are busy. Fig.3 shows the queuing
model of SCCS, an arrival event is a request received from a passen-
ger, and a service event is the process of an AV taking the passengers
to the destination. As a queueing system, there are three components
charactering the system performances, including the arrival pattern,
service pattern and number of servers.

Arrival pattern is the distribution of the arrival events coming
into the queuing system. We can use arrival rate and arrival interval
to capture the arrival pattern of a queuing system. Service pattern
captures the distribution of the service time.

DEFINITION 1 (ARRIVAL INTERVAL A). The arrival interval is
the time period between each two successive trip requests.

DEFINITION 2 (ARRIVAL RATE λ). The arrival rate is the num-
ber of trip requests arriving the system within a unit time slot.

DEFINITION 3 (SERVICE TIME S ). The service time is the time
period when a self-driving vehicle is dispatched to serve a passenger.

If the passengers’ requests arrive the queue while all of the AVs
are busy, the requests will be placed in a queue to wait for the next
available AV. The waiting time indicates how long a passenger waits
in a queue, which characterizes the quality of experience of the
passenger in SCCS.

DEFINITION 4 (WAITING TIME W ). The waiting time is the
time period from the arrival of a passenger request to an AV being
dispatched to the passenger.

2.3 Problem Definition
Thanks to the fast development of location sensing technologies, the
increasing prevalence of embedded sensors inside mobile devices,
vehicles has led to an explosive increase of the scale of urban mobil-
ity datasets, including the trip demands data of passengers in urban
areas.

DEFINITION 5 (TRIP DEMAND). A trip demand of a passenger
indicates the intent of a passenger to travel from a source location
src to a destination location dst from a given starting time ts with
an expected trip duration ∆t , which can be represented as a 4-tuple
⟨src,dst , ts ,∆t⟩.

Fig. 2 shows the temporal distribution of urban taxi trip demands
for each 10-minute time interval in Shenzhen from 03/04/2014 −
03/06/2014, which exhibits a clear diurnal pattern. Such pattern
is driven by the daily commuting needs between residential and
working locations. Given such strong diurnal pattern, we divide each
day into a few time intervals, and focus on the daily dynamics of trip
demands over intervals.
Problem definition. Given the total number of available self-driving
vehicles k and the number of depots d, we aim to (1) estimate the
impact of design choices (in k and d) on passenger waiting time and

Figure 4: Framework

vehicle utilization; and (ii) evaluate the efficiency gains of SCCS
comparing to the current taxi system, in terms of numbers of vehicles
needed and the vehicle utilization.

3 METHODOLOGY
In this section, we introduce our design model of SCCS given the
total number of vehicles k and the number of depots d , and provides
an analytical framework for analyzing the system performances and
passenger quality of experience.

3.1 Overview
Fig. 4 illustrates our solution framework, that takes two sources of
urban data as inputs and contains four key analytical stages: (1) trip
demands extraction, (2) depots deployment, (3) arrival and service
pattern extraction (4) system performance evaluation.

• Stage 1 (Trip demand extraction) This stage aims to extract
the passengers’ trip demands from the collected taxi GPS data.
In our datasets, each taxi trajectory consists of a sequence
of time-stamped GPS points, where a GPS point is collected
every 40 seconds on average. A GPS data point includes the
time stamp, latitude, longitude, and binary indicator (indicat-
ing if a passenger is aboard). Moreover, the raw trajectory
data are noisy, with spatial errors from the groud-truth lo-
cations, due to the accuracy limit of the GPS devices. By
cleaning the taxi GPS data, we can extract the passenger taxi
trips, indicated by four key elements: (1) starting location src,
(2) ending location dst , (3) starting time ts , (4) trip duration
∆t . As a result, each trip represents a passenger demand.

• Stage 2 (Depot deployment) Given the number of depots d
and the number of AVs k , this stage aims to identify the depot
locations and assign AVs to depots. First, the urban area is
divided into d grids with equal sizes. Second, the trip demands
extracted in stage 1 can be aggregated into each grid based on
the source locations. Then, for each grid with trip demands,
we will deploy a AV depot. To reduce the dispatching distance,
the depot location is obtained by the average geo-location of
all trip source locations inside the grid. If the location is not
exactly on a road segment, the depot location will be shifted
to the nearest road network.
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Figure 5: Heat map of starting location
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Figure 6: Heat map of ending location Figure 7: Shenzhen road map

• Stage 3 (Arrival/service pattern extraction) With a partic-
ular SCCS system design (from stage 2), this stage will exam-
ine the arrival and service patterns. The trip requests arrive
in a sequence of time stamps, i.e., {ts1 , ts2 , ..., tsm }. We will
quantify the arrival pattern of such time sequence. Moreover,
with all trip durations (as system service times), we will char-
acterize the service pattern.

• Stage 4 (System performance estimation) With generative
models for arrival and service patterns of the urban trip de-
mands, we can naturally view the taxi service system as a
queuing system, with trip demands as the customers and taxis
as the servers. In Stage 4, by modeling the SCCS as anM/G/k
queueing system, we will quantify the average waiting time
of passengers and vehicle utilizations.

3.2 Data Description
Our analytical framework takes two urban data sources as input,
including (1) taxi trajectory data and (2) road map data. For consis-
tency, both datasets are collected in Shenzhen, China in 2014. We
introduce the details of these datasets below.
Taxi trajectory data are GPS records collected from taxis in Shen-
zhen, China during 2014. There were in total 17, 877 taxis equipped
with GPS sets, where each GPS set generates a GPS point every 40
seconds on average. Overall, a total of 51, 485, 760 GPS records are
collected on each day, and each record contains five key data fields,
including taxi ID, time stamp, passenger indicator, latitude and lon-
gitude. The passenger indicator field is a binary value, indicating if
a passenger is aboard or not.

Table 1: Road Map Data in Shenzhen

Type Counts Type Counts
Motorway 563 Secondary 868

Trunk 258 Tertiary 1,393
Primary 745 Unclassified 16,829

Road map data. In our study, we use Google GeoCoding [1] to
retrieve a bounding box of Shenzhen, which is defined between
22.44◦ to 22.87◦ in latitude and 113.75◦ to 114.63◦ in longitude. The
covered area covers a total of 1, 300km2. Within such a bounding re-
gion, we crawl road map data in Shenzhen from OpenStreetMap [3].
The road map data contain six levels of road segments, which are
detailed in Table 1 and visualized in Fig.7.

3.3 Stage 1: Demand Extraction
In stage 1, we clean and extract the urban trip demands from the raw
trajectory data.

Trajectory data cleaning. The trajectory data are noisy in nature.
First of all, the GPS locations are with errors of around 15 me-
ters. Secondly, there are GPS points outside the bounding box of
Shenzhen. We conduct two steps to clean the noisy trajectory data,
including map-matching and spatial filtering. Map-matching is a pro-
cess that project the noisy GPS locations back to the road segments,
which has been extensively studied in the literature We apply the
map-matching technique [8] to our dataset. Secondly, we apply a
simple spatial filtering step to remove GPS records that are outside
the bounding region of Shenzhen.
Trip demand extraction. The passenger indicator field in the taxi
trajectory data is the key enabler to extract the taxi trip demands. A
taxi trip can be represented as a sequence of taxi GPS points with
the passenger indicator as 1. The first and last GPS locations of the
taxi trip capture the source/destination locations (src, dst) of a trip
demand, and the corresponding time stamps characterize the trip
starting/ending time ts/te . The trip duration can be obtained as the
elapsed time from ts to td , i.e., ∆t = te − ts . Once we have all trip
demand tuples ⟨src,dst , ts ,∆t⟩, we observe that there are a small
number of trip demands with extremely short or long trip durations.
From the size of the bounding region of Shenzhen and the road map,
any trip could be done within 2 hours (including the rush hours
with traffic congestion). Moreover, people would not take a taxi trip
shorter than 2 minutes in general. Thus, we simply filter out those
noisy taxi trips longer than 2 hours or shorter than 2 minutes, which
may be due to the issues with hardware or data collection processes.

After the two steps, we obtain a total of 595, 501 daily trip de-
mands from our trajectory data. Fig.5 and Fig.6 show the geo-
distributions of source and destination locations in Shenzhen during
the morning rush hours 6–9AM on March 6th, 2014.

3.4 Stage 2: Depot Deployment
Given the number of depots d and total number of available vehicles
k, our system deployment model works as follows: (1) road map
partitioning, (2) depot placement, (3) vehicles assignment.

Step 1: Road map partitioning. We first get the boundary of
Shenzhen from OpenStreetMap, which is defined between 22.44◦
to 22.87◦ in latitude and 113.75◦ to 114.63◦ in longitude. Then, we
partition the area of the city into d grids with the sizes.

Step 2: Depot placement. After the regions are divided, we try
to deploy one depot in each region, and totally d depots will be
deployed. First, we aggregate the trip demands extracted in stage
1 into each grid. In SCCS, the request in a grid will be served by
the depot in that region. We allocate those demands into grids based
on their source locations. Then, to reduce the dispatching distances,
in each grid, the center location of all the source demand locations
are calculated to place the depot. Moreover, if the center source
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Figure 8: Depot placement in Shenzhen

Table 2: Parameters of arrival rate distributions

Time slot 12am-6am 6am-12pm 12pm-6pm 6pm-12am
λ 4.1375 7.6189 8.4415 9.0023

locations is not on the road network, it will be shifted to the nearest
road segment. Fig.8 shows the result of road map partition and depot
deployment. Note that one region is in the ocean, and we do not
deploy a depot in that region.

Step 3: Vehicle assignment. After deploying the depots, the vehi-
cles are assigned to each depot according to the portion of demands
in the region. Let N be the total demands in the urban area, Ni be
the number of demands in region i. The total number of vehicles
assigned to region i is thus ki = k · Ni/N .

3.5 Stage 3: Arrival/Service Pattern Extraction
SCCS ststem can be viewed as a queuing system. Each trip demand
and the corresponding trip represent a customer arrival event and
a service event, respectively. Self-driving vehicles are the servers
in the system. Now we characterize the arrival pattern and service
pattern from the trips.
Arrival pattern analysis. We chose the time unit as one second,
and count the number of arrived trip demands over each second in
demand data we obtained from Stage 1. The arrival rate distribution
from original data can be nicely fitted by Poisson distribution. The
parameter λ of Poisson distribution is the mean arrival rate, which is
listed in Table 2 for different time intervals in a day.
Service pattern analysis. As shown in Fig.9, the service time of an
AV include three time intervals. The first part is pickup time, namely,
the passenger sends a request to the cloud servers to request a trip
service. The cloud servers arrange a vehicle to pick the passenger up,
if there is an available vehicle in the depot, otherwise, the passenger
would wait in the queue. After the vehicle picked up the passenger, it
will take the customer to the destination, during which the passenger
experiences in-vehicle time. When the trip is completed, the vehicle
returns to the nearest depot to the passenger dropoff location, which
is the return time.

Note that a complete service time include all three time intervals,
i.e., pickup, in-vehicle, and return times. Though passenger does not
experience the return time, it is counted, because the vehicle is still
“reserved” and cannot serve other passengers (on the trip back to the
depot)2.

2Note that the system can be further designed to allow vehicles to direct pick up the next
passengers without going back to depot, which require more complex system design

Figure 9: Service process in SCCS

Table 3: Average service time

# Depots 1 2 3 4 8 16
S(min) 58.45 51.67 49.80 41.31 31.60 29.38

Since each request will be served by a vehicle from the depot in
the source region, and the destination of the demand may be in a
different region, a vehicle balancing approach is required. We adopt
a simple schedule-based approach for vehicle rebalancing: Every
12 hours, the vehicles will be rebalanced to the initial numbers of
vehicles. Moreover, the on-road travel time can be estimated by
OSRM API [2] from one place to another. Thus, the picking up time
and the returning time of each demand can be estimated by the API.

To extract the service time pattern from the demand data, we
choose the unit time as minute. Taking k = 12000 as an example,
Fig.10 show the distributions of service time given different number
of depots: 2 and 4 depots, in the 12pm-6pm time slot on March 5th
in 2014. The x-axis represents the service time and the y-axis is the
percentage of demands. The distribution of the service time from the
trip demands data cannot be fitted by a simple distribution. Hence,
the service pattern follows a general distribution, denoted as G in
queueing theory. The average service times with different number of
depots are listed in Table 3.

3.6 Stage 4: Estimating the System Performance
Now, we are in a position to introduce our queuing theory based
approach to estimate the average waiting time in SCCS, given the
number of available vehicles k.

model. To simplify our feasibility and performance gain analysis, we adopt this simple
model, and leave it for our future work to evaluate more complex system design.
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(a) 2 depot (b) 4 depots

Figure 10: Service time(k = 12000)

We have shown that the trip demands arrival rate follows a Poisson
distribution, but the service pattern is general. When k vehicles are
available in SCCS, we can denote this queuing system as an M/G/k
queue. It is still an open question to exactly quantify the features of
such a queue, such as waiting time [9]. We employ the approximation
algorithm [11] to estimate the average waiting time in M/G/k queue
by adjusting the mean waiting time in a corresponding M/M/k
queue. Equation (1) shows the approximation function of the average
waiting time in M/G/k queue. where E[WM/G/k ] and E[WM/M/k ]

are the expected waiting times of the M/G/k and M/M/k queues,
respectively. The M/M/k queue has the same mean service time as
the M/G/k queue.

E[WM/G/k ] =
C2 + 1

2
E[WM/M/k ] (1)

whereC is the coefficient of variation of the service time distribution
in M/G/k queue. In M/M/k queue, the average waiting time can be
calculated in Eq (2).

E[WM/M/k ] =
Erc (k, ρ)S

k − ρ
,k > ρ (2)

where ρ is the utilization in a queuing system, which equals to λS ,
and Erc (k, ρ) is the Erlang C formula(Eq (3)), which indicates the
probability that an arriving customer has to wait, which is also the
proportion of time that all k servers are busy. k > ρ ensures the
system can reach the steady state.

Erc (k, ρ) =

kρk

(k−ρ)k !∑k−1
k=0

ρn
n! +

kρk
(k−ρ)k !

(3)

Finally, we can approximate the average waiting time in M/G/k
queue. Taking one depot deployment as an example, the arrival
rate in 12pm − 6pm slot is 5.0594, and the average service time of
the system is 3536.45249, so the utilization ρ = 17876.4137, and
the coefficient of variation of the service time distribution C =
0.5563. Given the number of vehicles k = 18000, we can first get
Erc (18000, 17876) = 0.2547, which means that 25.47% of the time
when all of the servers are busy. Finally the approximate average
waiting time is 4.0134 seconds.

4 EVALUATION
In this section, we use real taxi trip data to conduct experiments to
evaluate (1) the performance of the design choices of number of
available vehicles k and the number depots d . (2) the efficiency gain
in SCCS comparing with current taxi system.

(a) 9000 vehicles (b) 10000 vehicles

(c) 11000 vehicles (d) 12000 vehicles

(e) 15000 vehicles (f) 20000 vehicles

Figure 11: the impact of total number of taxis

4.1 Evaluation Settings
Time intervals in a day. We observe that the trip demand arrival
and service patterns change dramatically over time intervals in a day.
In our evaluations, we divide a day into 4 time intervals, we have the
cutting-off times as [12am, 6am, 12pm, 6pm]. and evaluate how the
granularities affect the performances of our proposes models.

Baselines. We compare the performances of our SCCS system (in
different design choices) with the current taxi system. To evaluate
how our SCCS system performs when serving the same set of trip de-
mands in our taxi data, we employ a data-driven simulation approach
as follows: The real world trip demands arrive by the order of their
starting times. If there are available vehicles in its regional depot,
the waiting time of this demand will be 0. Otherwise, the waiting
time is the time interval from the starting time to the moment when a
vehicle returns to that depot. The results introduced below show that
our SCCS can achieve several efficiency gains comparing with the
current transit system in vehicle utilization and number of vehicles
needed.

Metrics. For the design choices, we use the customer in system
time and vehicle idle rate to evaluate the performance of the system.
The efficiency gain is evaluated by the number of vehicles needed,
and the utilization of the vehicles while serving the same amount of
demands in our system and current urban taxi transit system.

4.2 Design Choices
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4.2.1 Impact of k. From the passengers’ perspectives, the ser-
vice process consists of two parts: passenger waiting time and in-
vehicle time. The passenger waiting time includes the system waiting
timeW 3 (as defined in Sec 2-B) and the picking up time. We denote
the total service time passenger experienced as the in-system time,
namely, the total of waiting time, pickup time, and in-vehicle time.
The in-system time is what passenger actually experiences, and is
considered as the quality of service the passenger received.

Taking 16 depots as an example, given the number of vehicles
9000,10000,11000,12000,15000,20000, we can simulate the whole
service in our SCCS system, and get the passenger in-system time,
which is shown in Fig 11.We can observe that as we increase the
number of vehicles, the passenger in-system time decreases.

Figure 12: Tradeoff

Moreover, Fig. 12
shows the average
in-system time and
the idle rate for dif-
ferent numbers of
AVs. With the in-
crease of the total
number of vehicles,
the in-system time
decreases, which is
because the waiting
time becomes shorter. However, the idle rate, which characterizes
the portion of time that a vehicle stays idle in the depot (Eq (4)),
increases due to the increasing number of over-deployed AVs.

Ridle =

∑k
i=1T

i
idle

k ·T
, (4)

with T as the total amount of time in a day (i.e., 24 hours), and T iidle
is the amount of time the vehicle i spent in depot during the day.

Fig. 12 clearly indicates the trade-off between the waiting time
and the idle rate when changing the number of vehicles.

The number of depots in our system can also have effects on the
customer’s experience. Taking k = 12000 for example, Fig. 13 shows
the change of the customer in-system time according to the number
of depots, when we fixed the number of AVs to be 12000. Fig. 13(a)–
(f) shows that as we increase the number of depots, the passenger
in-system time distribution evolutes from high to low in-system time.
Moreover, Fig. 14–15 indicates how the average in-system, waiting
time changes, over different numbers of depots. The phenomena
occur because the increase of the number of depots can reduce the
picking up time and the waiting time for each service.

4.3 System Efficiency Gains
By comparing our SCCS with the current taxi system, we now show
that the SCCS system can achieve efficiency gains in several aspects,
including (1) the higher vehicle utilization, (2)the less number of
vehicles needed.

4.3.1 Vehicle utilization. In Fig. 1, we show that most of the
taxis are idling on the road over days, which means the utilization of
the taxis in current taxi system is low. At each time slot, e.g., in 1

3Note that the system waiting time is different from the passenger waiting time, where
the former is the time from the request arrival to the time a vehicle is dispatched, and
the latter includes both the system waiting time and pickup time.

(a) 1 depot (b) 2 depots

(c) 3 depots (d) 4 depots

(e) 8 depots (f) 16 depots

Figure 13: The impact of number of depots (k=12,000)

Figure 14: Average in-system
time

Figure 15: Average passenger
waiting time

Figure 16: utilization of vehicles

hour, we can obtain a ratio of in-service vehicle vs the total number
of vehicles. We quantify the utilization of the vehicles as average
ratio of in-serve vehicles over all time slots, defined as follows.
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Table 4: V-values

# Vehicles 7k 7.5k 8k 9k 12k 20k
V 0.465 0.426 0.429 0.462 0.586 0.801

U =

∑Tslots
i=1 (N

busy
i /Ni )

Tslots
, (5)

where Tslots is the total number of time slots in a day, Nbusy
i and

Ni are the number of in-service and all vehicles at time slot i.
The utilization of the vehicles in our system is shown in Fig. 16

when d = 16. Taking k = 11000 as an example, the utilization is
79.1%, while the utilization of the taxis in Shenzhen was 42.02%.

4.3.2 Number of vehicles needed. We can count the number
of taxis in Shenzhen taxi system from our trajectory data, which
was in total 9, 606 taxis. When using SCCS to serve the same trip
demands, the number of vehicles would have impacts on the trade-off
between the passenger in-system time Tin−system and the vehicle
idle rate Ridle (see Fig. 12). Notice that the Tin−system implies the
Quality of Experience (QoE) of a passenger. The smallerTin−system
is, the better QoE is. On the other hand, Ridle indicates the system
operation cost. A large Ridle infers a low utilization of vehicles,
which will increase system operation cost, thus the passengers’ travel
cost. So we define a measure V-value in Eq.(6) as a combination of
the two measures to quantify the system performance.

Vk = αTin−system + (1 − α) · Ridle , (6)

with α as a design trade-off parameter within [0, 1], which captures
the design trade-off between the passenger QoE and passenger travel
cost. The smaller V-value indicates better performance. Taking 32
depots and α = 0.01 as an example, the V-values are listed in Table
4. The most appropriate number of vehicles in 32 depots is 7500,
which shows a 22% reduction on needed vehicles.

5 RELATED WORK
To the best of our knowledge, we are the first to propose a Smart
Cloud Commuting System (SCCS) for future smart cities with AVs,
and quantify its feasibility and efficiency gains. In this section, we
introduce two research areas that are related to our work, including
(1) mobility-on-demand system, and (2) urban computing.

Mobility-on-demand system (MoD). MoD ([4, 15, 19–21, 23,
27, 29]) is an emerging concept in solving urban transportation prob-
lems, such as unbalanced supply-demand rates and traffic congestion.
MoD aims to provide transit supplies, such as shuttle/taxi services
according to dynamic urban trip demands. In [20], authors design
a simulation platform to explore the performance of autonomous
vehicle based MoD system under various vehicle dispatching mod-
els. In another work [4], a general mathematical model is proposed,
which could make real-time assignment decision in high-capacity
ride-sharing system. This model is designed to handle a large number
of passenger demands and dynamically generate optimal assignment
solution to urban trip demands. In [27] and [21], authors propose
two spatial queueing-theoretical models, that capture salient dy-
namic and stochastic features of customer demand, for Autonomous
mobility-on-demand system which has autonomous vehicles in it.

Differing from these works with focus on the (ride-sharing) dispatch-
ing algorithms for load balancing of vehicles, we employ real world
data (rather than simulation) to analyze the underlying trip demand
patterns and evaluate design trade-offs and efficiency gains under a
unifying SCCS framework.

Urban Computing is a thriving research area which integrates
urban sensing, data management and data analytic together as a
unified process to explore, analyze and solve crucial problems related
to people’s everyday life [5–7, 10, 12–14, 16–18, 22, 24–26, 28].
For examples, [12] presents a data-driven optimization framework
to deploy charging stations and charging points with the goal of
minimizing the seeking and waiting time of electric vehicle drivers.
[22] develops novel models to predict future crowd flow traffic in
subway stations. [24] introduces a method to estimate the travel time
in a road segment using sparse trajectories data. [26] proposes a
model to discover urban function zones by exploring latent activity
trajectory data. In [28], the authors propose a method to diagnose
the noises environment in New York city by extracting ubiquitous
data over the city. Differing from these works, in this paper, we
propose a future smart cloud commuting system (SCCS) with shared
autonomous vehicles, and quantitatively evaluate the feasibility and
efficiency gains of SCCS.

6 CONCLUSION AND FUTURE WORK
In this paper, we advocate a Smart Cloud Commuting System
(SCCS) for future smart cities with shared AVs to meet daily com-
muting demands of a large urban city. We have outlined four aspects
of system efficiencies that can potentially be attained via the en-
visaged SCCS. As a first attempt at studying its feasibility, in this
paper we develop generative models to capture fundamental trip
demand arrival and service patterns, and develop a novel framework
to explore the impact of design choices on the temporal multiplexing
gains (through time-sharing of AVs) that can be achieved by SCCS.
We conducted extensive evaluations using a large scale urban taxi
trajectory dataset from Shenzhen, China. The results demonstrate
that SCCS can reduce the number of vehicles by 22%, and improve
the vehicle utilization by 37%.

As part of our future work, we plan to further incorporate the
vehicle rebalancing algorithms that allow vehicles to serve other pas-
sengers without going back to depots in this study. Furthermore, we
will extend our current modeling framework to investigate the other
three aspects of the system efficiencies afforded by the envisaged
SCCS by the effects of ride-sharing, smart trip scheduling and AV
routing, and so forth.
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