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Abstract—Various applications in wireless networks, such as
routing and query processing, can be formulated as random walks
on graphs. Many results have been obtained for such applications
by utilizing the theory of random walks (or spectral graph theory),
which is mostly developed for undirected graphs. However,
this formalism neglects the fact that the underlying (wireless)
networks in practice contain asymmetric links, which are best
characterized by directed graphs (digraphs). Therefore, random
walk on digraphs is a more appropriate model to consider for such
networks. In this paper, by generalizing the random walk theory
(or spectral graph theory) that has been primarily developed for
undirected graphs to digraphs, we show how various transmission
costs in wireless networks can be formulated in terms of hitting
times and cover times of random walks on digraphs. Using these
results, we develop a unified theoretical framework for estimating
various transmission costs in wireless networks. Our framework
can be applied to random walk query processing strategy and
the three routing paradigms—best path routing, opportunistic
routing, and stateless routing—to which nearly all existing routing
protocols belong. Extensive simulations demonstrate that the pro-
posed digraph-based analytical model can achieve more accurate
transmission cost estimation over existing methods.

Index Terms—Digraph, random walk, spectral graph theory,
transmission cost, wireless networks.

I. INTRODUCTION

D UETO the unique characteristics of wireless technologies
and the dynamics in the environments (e.g., mobility and

interference) they operate in, wireless channels are known to be
time-varying, unreliable, and asymmetric [17], [21], [37]–[39].
Furthermore, wireless networks are often designed to support
certain applications or missions, and deployed in specific
environments. For these reasons, a plethora of wireless mech-
anisms—especially, routing algorithms and protocols—have
been proposed and developed to achieve a range of different
objectives such as throughput, latency, energy consumption,
network lifetime, and so forth. Evaluating the efficacy of wire-
less protocols in terms of various transmission cost metrics, and
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deciding on which one to employ in a specific environment so
as to attain certain performance objective, can be a challenging
task in practice. The ability to analyze, estimate, and quantify
various transmission costs is therefore imperative in the design
of wireless networks.
While experimentation and testing in realistic wireless envi-

ronments are indispensable and provide the most definite and
authoritative means to evaluate the efficacy of wireless routing
protocols, they are in general very expensive and are typically
utilized in the later stage of the network design and evaluation
process. Simulation-based evaluation is also important and nec-
essary. However, conducting realistic simulations is hard, and
simulation results often hinge on the settings and parameters
used. We believe that analytical models and theories also play a
critical role in the design of wireless networks, complementing
the roles played by real-world experimentation and simulations.
By generating performance bounds and theoretical limits, they
provide important insights on what is achievable and under what
conditions and produce useful metrics for understanding the key
design tradeoffs. Such insights and understanding are particu-
larly important in the early stage of wireless network design.
Guided by this belief, in this paper we develop a unified theo-

retical framework to quantify and estimate various transmission
costs of wireless routing protocols. To account for the stochastic
and asymmetric natures of wireless channels, we model a wire-
less network as a directed graph (in short, digraph), where each
directed edge (link) is associated with a packet delivery proba-
bility. We consider three wireless routing paradigms, the (tra-
ditional) best path routing (e.g., AODV [32], DSR [20], and
several energy-aware routing protocols [3], [7]), opportunistic
routing (e.g., ExOR [4], MORE [6]), and stateless (stochastic)
routing (e.g., as proposed in [9], [10], and [29])—nearly all ex-
isting routing protocols fall under one of these paradigms, or
use a combination thereof. Under the (simplifying) assumption
that packet delivery probabilities are independent, we demon-
strate how packet forwarding under each paradigm can be mod-
eled as a Markov chain on a digraph with an appropriately de-
fined transition probability matrix capturing the specifics of the
routing algorithm under consideration. In other words, the tra-
versal of a packet being forwarded in a wireless network can
be viewed as a random walk on a digraph. Consequently, var-
ious transmission costs of end-to-end packet delivery (e.g., the
expected number of transmissions, end-to-end packet delivery
ratio, throughput, latency, energy consumptions) can therefore
be formulated using well-known notions such as hitting times,
sojourn times associated with random walks.
The main contributions of this paper are summarized as

follows.
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• By building on top of our previous work in [24], we utilize
the random walk (Markov chain) model to formulate the
end-to-end transmission costs for various types of wireless
routing strategies.

• The theory of random walk (and the closely related spec-
tral graph theory) has been developed primarily for undi-
rected graphs (see, e.g., [11] and [28]). We successfully
extend the theory of random walks on undirected graphs
to directed graphs (digraphs), with a more general defini-
tion of normalized (graph) Laplacian matrix . We also
show how the hitting times, commute times, sojourn times
(or hitting costs), and (partial) cover time can be computed
using the Moore–Penrose pseudo-inverse of .

• Using three representative routing protocols (one from
each routing paradigm) and a query processing protocol as
examples, we systematically illustrate how our proposed
theoretical framework based on random walks on digraphs
can be used to estimate various transmission costs. Our
analysis subsumes earlier results obtained using more
ad hoc methods. We also perform extensive simulations
to show the relative errors in estimation when asymmetric
links are artificially symmetrized and undirected graphs
are used.

The remainder of this paper is organized as follows. The re-
lated work is briefly touched on below. In Section II, we first de-
scribe three wireless routing paradigms. We then illustrate how
packet forwarding under each of them can be modeled using
Markov chains/random walks, and various transmission costs
can be formulated using hitting times and hitting costs associ-
ated with the random walks. We outline the theory of random
walks on undirected and its generalization to directed graphs in
Section III. In Sections IV and V, we apply the theory of random
walks on digraphs to three representative routing protocols and
a query processing protocol. Simulation results are reported in
Section VI, and the paper is concluded in Section VII.
Related Work: We will present the three wireless routing

paradigms in Section II and discuss some related wireless
protocols in that context. Hence we do not discuss them
here. Many studies, e.g., [17], [38], and [39], have shown
that the wireless channels are unreliable and asymmetric.
Reference [38] provides both empirical and analytical results
on the asymmetric and unreliable characteristics of wireless
links and demonstrates that they can significantly impact the
performance of applications. Ganesan et al. [17] show that
the performance of simple flooding mechanism can be sig-
nificantly affected due to asymmetric, dynamic long-distance
links. Zhou et al. [39] report that unreliable and asymmetric
wireless links have adverse impact on performance of wireless
routing protocols. Digraphs are therefore a more appropriate
model to study the wireless networks with asymmetric links.
Our paper is partly inspired by the work in [9], where results
from random walks on undirected graphs are used to model
and derive a delay estimation formula for stateless routing
with heterogenous sojourn time. In contrast, our paper not
only supersedes the results in [9], which essentially assumes
symmetric wireless links, but develops a general theoretical
framework based on random walks on digraphs for estimating
various transmission costs under all three wireless routing
paradigms. As mentioned earlier, the theory of random walks
has been developed primarily for undirected graphs. Relatively

fewer attempts have been made to extend it to digraphs. In [12],
Chung defines a symmetrized Laplacian matrix for directed
graph and successfully generalizes the well-known Cheeger
Inequality to directed graphs. However, it is unclear whether
this generalization can be used to compute hitting times and
commute times for random walks on digraphs. Random walks
(on digraphs), or more generally irreversible Markov chains,
have been a well-studied topic (see, e.g., [1], [19], and [35]) in
probability theory. For instance, it is known the hitting times
on digraphs can be computed as an infinite sum involving the
transition probability or expressed in terms of the fundamental
matrix [1]. Our work provides a new spectral perspective to
study random walks in terms of the digraph Laplacian.

II. WIRELESS ROUTING, TRANSMISSION COSTS, AND RANDOM
WALKS IN DIRECTED GRAPHS

In this section, we briefly describe the three wireless routing
paradigms. We then show how packet traversals under each
routing paradigm can be modeled using Markov chains, and we
use the Markov models to estimate various transmission costs
in a wireless network.

A. Wireless Routing and Transition Costs

The existing (unicast) wireless routing schemes can be
roughly classified into three categories: the traditional best
path routing, opportunistic routing, and stateless (stochastic)
routing.
The traditional best path routing protocols (e.g., AODV [32],

DSR [20], and their variations/extensions to multipath or en-
ergy-aware routing) typically select a single best path, some-
times multiple paths, based on certain routing metric. Unlike
wired networks, these best paths are selected typically on-de-
mand instead of precomputed. Depending on the objective of
the routing protocols, different routing metrics may be designed
and used. For example, if the goal is to maximize the packet
delivery probability and minimize the number of transmission,
the ETX metric [14] may be used, which captures the expected
number of transmissions per link, and the best (least-cost) path
is the path that minimizes the overall path ETX. If the objec-
tive is to minimize the energy consumption and maximize the
network lifetime, an energy-aware metric should be used. For
example, [8] has proposed a lifetime maximization algorithm
for energy-aware routing in wireless sensor networks.
The key idea behind opportunistic routing is to take advan-

tage of the broadcasting nature of wireless communication
channels, while at the same time addressing the probabilistic
nature of packet reception. Instead of selecting one or multiple
fixed best paths, opportunistic routing protocols (e.g., [4] and
[6]) specify a set of forwarders, often arranged in a prioritized
list, referred to as a forwarder list. Using the (prespecified)
forwarder list, after each packet transmission, the “best”
forwarder among those that happen to receive the packet is
used to forward the packet towards the destination. Hence,
a packet may opportunistically traverse any path from the
source, among the set of forwarders, to the destination instead
of a fixed path. Through experiments in the MIT Roofnet [34]
testbed, ExOR [4]—one of the first practical opportunistic
routing protocols—is shown to increase the throughput by a
factor of two to four over traditional best path routing schemes.
Further improvements to ExOR [6], [22], [23], [26], [33] have



LI AND ZHANG: RANDOMWALKS AND GREEN’S FUNCTION ON DIGRAPHS 137

also been developed. For instance, in [23] the key problem of
how to optimally select the forwarder list is addressed, and
an optimal algorithm (MTS) that minimizes the expected total
number of transmissions is developed.
By its name, stateless (stochastic) routing does not main-

tain any routing state (e.g., topology, routing tables) and per-
forms packet forwarding in a purely “random” fashion. In con-
trast to opportunistic routing, no forwarder list is prespecified
in general; any node receiving a packet may decide to forward
the packet (some mechanisms to avoid and reduce unneces-
sary duplicate transmissions are generally employed). Stateless
(stochastic) routing is typically designed and best suited for
resource-constrained, dynamically varying, and highly unreli-
able wireless network environments (e.g., sensor or delay/dis-
ruption-tolerant networks). For instance, several studies have
suggested the stateless (stochastic) forwarding in wireless net-
works [15], [29] for its simplicity and scalability. A stateless
routing protocol is developed in [29] for wireless sensor net-
works. Due to its stateless feature, stateless routing schemes do
not involve control overhead, e.g., exchanging link-state infor-
mation, thus are easy to implement. However, due to the pure
randomness employed in these schemes, their efficacy, e.g., in
terms of end-to-end packet delivery and other performance met-
rics, may suffer.
Thanks to widely disparate wireless network environments

and diverse application objectives, no one routing paradigm al-
ways overperforms the others in practice. For instance, tradi-
tional best path routing may work very well in a static wireless
environment with fairly stable and reliable wireless channels,
while opportunistic routing may perform better where wireless
channels are less reliable with frequently varying conditions.
Hence, in the design of practical routing protocols for wire-
less networks, which routing paradigm (or a hybrid combina-
tion thereof) to use will depend critically on the specific wire-
less environment. The ability to analyze, estimate, and quantify
various transmission costs (e.g., the expected number of trans-
missions, latency, or energy consumption) is therefore imper-
ative in the design of wireless networks. In Section II-B, we
illustrate how we can model the packet traversal in a wireless
network under each of the wireless routing paradigms using
Markov chains. Through these Markov chain models, transac-
tions costs incurred by different routing schemes can then be
computed using the notion of hitting times and other related
quantities (e.g., sojourn times or hitting costs).

B. Modeling Packet Traversal Using Markov Chains

Here, we illustrate how we can model packet forwarding
under each of the three routing paradigms using Markov chains.
Due to the probabilistic nature of wireless transmissions, when
a packet is forwarded from one node, say , to another node, say
, it only has some probability to “transit” from node to node .
This suggests that we could model and trace the traversal of
a packet when it is forwarded from one node to another in a
wireless network as state transitions in a Markov chain. Before
we proceed to describe how packet forwarding under each
routing paradigm can be modeled using Markov chains, we
first present some general notations and basic assumptions.
We model a wireless network as a (weighted) directed graph

(i.e., a digraph) , where is the set of wireless

nodes, and is the set of directed wireless links. Here, each di-
rected link, , represents the relation that node is within
the transmission range of node . In other words, a packet trans-
mitted by node may be received by node with some proba-
bility. We denote this probability by . Hence, each link
is associated with a link weight . We will simply refer to
as the (link-level) packet delivery probability. More generally,
we associate a weight to any (ordered) pair of nodes, .
If (namely, node is not within the transmission
range of node ), we simply set . Hence, for any two
distinct nodes , , , we have , and

if and only if . Due to the asymmetric nature
of wireless communications, in general we have . In
particular, we may have , but . Furthermore, for
any node , we define .
Let denote the total number of nodes in the wireless

topology. Then, the matrix, , gives us a matrix
representation of (one-hop or link-level) packet delivery proba-
bilities of a wireless network. In general, is asymmetric. We
call the adjacency matrix of the (weighted) directed graph

. In modeling packet forwarding using Markov
chains, we assume that for any , when a packet is for-
warded by node , the probability that the packet is received by
node , i.e., , does not depend on where the packet was before
reaching node . Namely, except for node , does not depend
on who and where the previous forwarders are. In other words,
we assume that the Markov property holds. In modeling oppor-
tunistic routing and stateless routing, we will also make the sim-
plifying assumption that the (link-level) packet delivery proba-
bilities are independent.More precisely, let

be the direct neighbors of node that are within its trans-
mission range. We assume that for any , , and

are independent. We remark that to model the time-varying
dynamics of a wireless network, we can introduce a series of
time-dependent graphs with time-varying
node and edge sets as well as varying link-level packet delivery
probabilities ’s. For clarity andmodel simplicity, in this paper
we focus only on one instance of such a time-varying graph and
assume that during this instance except for a few of them, the
node/edge sets and ’s are largely unchanged. Finally, we as-
sume that the digraph graph is strongly connected,
namely, there exists a (directed) path from any node to any other
node in .
Best Path Routing: Consider a specific source–destination

pair . Let
denote the route (i.e., a best path) selected by a best path routing
protocol for forwarding packets from to . We use

to denote the subgraph (a path or line subgraph)
induced by , where , and

. We can model the traversal of a
packet being forwarded from to as a Markov chain with the
state space and the transition probability matrix
defined as follows:

if
if
if
otherwise.

(1)

Using the wireless topology shown in Fig. 1 as an example, let
be the best path (route) for
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Fig. 1. Example wireless topology.

Fig. 2. Markov chain for best-path routing.

Fig. 3. Markov chain for opportunistic routing .

the source–destination pair . The corresponding Markov
chain is schematically depicted in Fig. 2, where the arrows in-
dicate the state transitions. The transition probability matrix
captures the fact that when a packet is forwarded by node ,

, with probability the packet may be
received by the next hop (thus it transits or “walks” from
node to node with probability ), and with probability

it is not received by node (thus it stays
with node ). Hence, packet forwarding under best path routing
can be viewed as a random walk on the line subgraph with

as the transition probability matrix. We note that this is an
absorbing Markov chain, with node as the starting state and
the final absorbing state. As we will see later, using this Markov
chain (or random walk on a digraph), we can formulate var-
ious transmission costs in terms of quantities associated with
the Markov chain (random walk). For instance, the expected
number of transmissions is the expected number of steps for a
packet to “walk” from the source to the destination . Lastly,
the above Markov chain model can be also easily generalized to
(best-path-based) multipath routing.
Opportunistic Routing: Given a source–destination

pair , let
denote the (prioritized) forwarder list selected by an op-
portunistic routing protocol, say, ExOR. We first note that
unlike traditional best path routing, the forwarder list
used in opportunistic routing represents not a path, but
a subgraph connecting the source
to the destination (see Fig. 3 for an example, where

). Within
this subgraph , there are many (directed) paths from to
; which of them is actually traversed by a packet-during the
packet forwarding process depends on which nodes on the
forwarder list receive the packet and which nodes forward the
packet.
The priority of nodes is used in opportunistic routing to de-

cide which node should forward a packet when several of them
on the forwarder list receive the same packet. Here, we use the
convention that a node on the right has higher priority than a
node to its left; namely, for any , has higher priority
than . Using these priorities, we can describe the forwarding

process of a single packet as follows. Suppose node ,
is the current node to forward the packet. After its transmis-

sion, if the destination receives it, then the forwarding process
for this packet ends. Otherwise, suppose node , ,
receives it. Node will be the next forwarder if and only if no
higher priority node, , has received the packet. Hence,
to correctly capture the packet forwarding process under an op-
portunistic routing, we must track which node is the next for-
warder instead of simply which nodes receive the packet. In
other words, we say the packet has successfully “walked” from
node to node if and only if node is the highest-priority
node that receives the packet. This happens with probability

. The packet will stay with node if
none of the higher-priority nodes have received it. This happens
with the probability . Hence, we have a
Markov chain defined on the state space with the following
transition probability matrix :

if
if
if
otherwise.

(2)

It is not too hard to verify that . Using the topology
in Fig. 1 as an example, the corresponding opportunistic routing
Markov chain is shown in Fig. 3. Again this is an absorbing
Markov chain, with node as the starting state and the final
absorbing state. Using this Markov chain/random walk, we
can again formulate various transmission costs using quantities
associated with the chain/walk. As an aside, a key problem
in opportunistic routing is to determine the “best” forwarder
list , or subgraph , for a source and destination pair.
This problem is addressed in [23], where an optimal algorithm
is developed. In this paper, we will assume that the (optimal)
forwarder list is given and used.
Stateless (Stochastic) Routing: As no routing states are main-

tained or used, given a source–destination pair , any node
in may be involved in the forwarding process of a packet.
Suppose that node is the current forwarder. After node ’s
transmission, a subset of its direct neighbors, , may re-
ceive the packet. Unlike opportunistic routing where priorities
are used to determine which node should be the next forwarder,
any of these nodes may become the next forwarder with equal
probability. For example, the next forwarder may be selected by
using a random backoff mechanism where each node randomly
sets a backoff timer value uniformly chosen from , where
is an appropriately chosen contention slot. Hence, to track the

packet traversals under stateless routing, we see that the packet
stays with node if and only if none of its neighbors receive
the packet. This happens with probability .
Otherwise, the packet transits or “walks” from node to node ,

, with probability .

Hence, we have a Markov chain defined on the state space
(the entire node set) with the following transition probability
matrix :

if

if .
(3)

It is easy to verify that . Especially, when the graph
is symmetric, then the Markov chain will be reversible. The
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Fig. 4. Markov chain for stateless routing.

traversals of a packet under stateless routing are thus modeled
as a random walk on the digraph with the transition proba-
bility matrix . Using the topology in Fig. 1 as an example
with as the source–destination pair, the resulting Markov
chain is shown in Fig. 4.
Modeling the Transmission Costs: Given the Markov chain

(or “random walk on a digraph”) models of wireless routing,
we now briefly discuss how various transmission costs such as
the expected number of transmissions, latency, duty-cycle delay,
or energy consumption can be modeled using certain standard
notions or quantities associated with the Markov chain/random
walk.
We first use the expected number of transmissions as an ex-

ample and show how this cost can be formulated as the hitting
time. In a Markov chain (or random walk), the hitting time
is defined as the (expected) number of transitions (i.e., steps) for
a random walker that starts from node (state) to first reach (or
hit) node . The hitting time satisfies the following recur-
sive relation:

if
if .

(4)

Given the appropriately defined Markov chain for a wireless
routing scheme, it is not too hard to see that the (expected)
total number of transmissions needed to forward a packet from
source to destination is exactly . The recursive rela-
tion (4) plays a key role in computing the hitting time . The
remainder of this paper is devoted to addressing this and other
related computation problems.
To account for other transmission costs, we introduce a tran-

sition cost matrix associated with each one-hop tran-
sition, , . For example, depending on the con-
text and modeling objective, can be used to represent the
per-node processing/transmission latency, duty-cycle delay, or
per-node energy consumption, where , the one-hop
forwarding latency, energy consumption, etc. Analogous to the
notion of hitting time , we define the hitting cost (also
referred as the sojourn time associated with ) as the (expected)
total cost (or “delay”) incurred by a random walk that starts at
node to first reach node , where each state at any node in-
curs a cost (delay) and each transition from node to node
incurs a cost (delay) of . As in the case of , satisfies
the following recursive relation where is the
average transmission cost every time a packet visits:

if
if .

(5)
Hence, given the appropriately definedMarkov chain for a wire-
less routing scheme and the transition cost matrix , we can
use to capture the (expected) total cost of transmission
when forwarding a packet from source to destination . We

note that if for all , , i.e., is the all-1 matrix, then
.

III. RANDOM WALKS ON DIRECTED GRAPHS: HITTING,
COMMUTE, AND SOJOURN TIMES

In this section, we briefly overview the random walk theory
on undirected graphs and show how important quantities such
as hitting, commute, and sojourn times can be computed. We
then outline a generalization of the random walk theory to di-
rected graphs (digraphs) and show how the same quantities can
be computed.

A. Random Walks on Undirected Graphs

Given an undirected graph that is finite con-
nected (i.e., any node can reach any other node in ), let
be a symmetric weight (or adjacency) matrix appropriately de-
fined on . For , define , the
(weighted) degree of node , and , often referred to
as the volume of , denoted by . Let be a
diagonal matrix of node degrees. Then, is a transi-
tion matrix associated with a Markov chain (a random walk) on
, where . Let be its stationary dis-

tribution probability vector. It is well known (see, e.g., [1]) that
this Markov chain (random walk) on is reversible, namely

(6)

where for

(7)

Given this random walk on an undirected graph, hitting
times [cf. (4)], commute times , and the
hitting costs or (heterogeneous) sojourn times [cf. (5)]
can be computed using a number of methods through the
well-known connections between the Markov chain/random
walk theory, electrical resistance theory [16], and spectral graph
theory [11], [13]. Here, we present the results using the spectral
graph theory.
In [11], the normalized Laplacian matrix for undirected

graph is defined as

(8)

where is symmetric and positive semi-definite. Let and
, , be the eigenvalues and the corresponding

eigenvectors of , where ’s are arranged in the increasing
order where . Then, the hitting time

can be computed as follows (see [28]):

(9)

and the commute time is equal to

(10)
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In [9] and [10], Chau and Basu introduce a (diagonal) sojourn
timematrix1 , where represents a per-node tran-
sition cost or “delay” incurred at node , and define the following
( -extended) Laplacian matrix :

(11)

Let (again arranged in the increasing order) and ,
, be the eigenvalues and eigenvectors of . Chau and

Basu [9] obtain the following solution for the hitting cost matrix
, extending the above (homogeneous) result for the

hitting matrix :

(12)

where .
The (normalized) Laplacian matrix of an undirected

graph can be viewed as a (discrete) operator on , analogous
to a (continuous) Laplacian operator defined on a (continuous)
manifold. In [13], Chung and Yau define the (discrete) normal-
ized Green’s function (with no boundary) as a matrix with its
entries, indexed by vertices and , that satisfies the following
conditions:

(13)

where indicates the th entry of the matrix . Ex-
pressed in the matrix form, we have

(14)

where is the
(column) eigenvector of associated with the eigenvalue
.
We claim that the (discrete) normalized Green’s function

corresponding to the (discrete) normalized Laplacian operator
(with no boundary) is exactly the pseudo-inverse of , namely,

. This follows easily from [13, eq. (16)] and the re-
lation between and the singular value decomposition of :
Since is positive semi-definite, (as defined in
Section III-A) and , where , and

, and , .

B. Random Walks on Directed Graphs (Digraphs)

In this section, we develop the random walk theory for
digraphs. In particular, we generalize the graph Laplacian
defined for undirected graphs, and introduce the digraph
Laplacian matrix. We prove that the Moore–Penrose
pseudo-inverse of this digraph Laplacian is exactly equal
to (a normalized version of) the fundamental matrix of the
Markov chain governing random walks on digraphs and show
that it is also the Green’s function of the digraph Laplacian.
Using these connections, we illustrate how hitting and commute
times of random walks on digraphs can be directly computed
using the singular values and vectors of the digraph Laplacian.

1In contrast, in Section II-B, we have introduced a general transition cost
matrix , , with a transition cost associated with each node

and each link , where is not necessarily diagonal nor symmetric.

We also show that when the underlying graph is undirected, our
results reduce to the well-known results for undirected graphs.
Hence, our theory includes undirected graphs as a special case.
1) Random Walks on Directed Graphs and Fundamental

Matrix: Let be a (weighted) digraph defined
on the node set and be a nonnegative,
but generally asymmetric weight matrix such that
if and only if the directed edge (or arc) . Denote

as a diagonal matrix of the node out-degrees, and
define . Then, is the transition probability
matrix of the Markov chain associated with random walks on
, where at each node , a random walk has the probability

to transit from node to node , if .
Unlike undirected graphs, the Markov chain associated with
random walks on directed graphs is generally nonreversible,
and (6) and (7) for undirected graphs do not hold. We assume
that is strongly connected and aperiodic. i.e., there is a
(directed) path from any node to any other node , and the
greatest common divisor of the lengths of all closed directed
walks for any node in is equal to 1. The assumption that
is strongly connected and aperiodic yields the following

properties [1]: 1) the Markov chain is irreducible with no
transient states; 2) has a simple eigenvalue equal to 1 with
right (column) eigenvector and left (row)
eigenvector , the stationary probability vector; and 3) ,

.
For random walks on directed graphs, quantities such as

hitting times and commute times can be defined exactly as in
the case of undirected graphs. However, since the (normalized)
Laplacian matrix is (so far!) defined only for undirected
graphs, we cannot use the relations (9) and (10) to compute
hitting times and commute times for random graphs on directed
graphs. On the other hand, using results from the standard
Markov chain theory, we can express the hitting times and
commute times in terms of the fundamental matrix. In [1],
Aldous and Fill define the fundamental matrix for
an irreducible Markov chain with the transition probability
matrix

(15)

where is the th entry in the -step transition probability
matrix .

Let be the diagonal matrix containing the sta-
tionary probabilities ’s on the diagonal, and the
all-one matrix, i.e., , , . We can express
alternatively as the sum of an infinite matrix series

(16)

where is the all-one column vector. Hence
, and .

While the physical meaning of the fundamental matrix may
not be obvious from its definition (15) [or (16)], it plays a crucial
role in computing various quantities related to random walks
or, more generally, various stopping time properties of Markov
chains [1]. For instance, the hitting times and commute times of
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random walks on a directed graph can be expressed in terms of
as follows (see [1]):

(17)

and

(18)

In (15) and (16), the fundamental matrix is defined as an in-
finite sum.We show that in fact satisfies a simple relation (19)
and hence can be computed directly using the standard matrix
inverse.
Theorem 1: Let be the transition probability matrix for an

irreducible Markov chain. Then, its corresponding fundamental
matrix as defined in (15) satisfies the following relation2:

(19)

Proof: Note that . From and
, we have and . Using these two
relations, it is easy to prove the following equation by induction.

for any integer (20)

Plugging this into (16) yields Theorem 1.
As undirected graphs are a special case of directed graphs,

(17) and (18) provide an alternative way to compute hitting
times and commute times for random walks on fully connected
undirected graphs. In this paper, we will show that (9) and (10)
are in fact equivalent to (17) and (18).
2) Normalized Digraph Laplacian and Green’s Function

for Digraphs: We now generalize the existing spectral graph
theory defined for undirected graphs to directed graphs by
introducing an appropriately generalized Laplacian matrix for
(strongly connected and aperiodic) diagraphs. Let
be a strongly connected and aperiodic (weighted) digraph
defined on the vertex set , where in general
the weight (or adjacency) matrix is asymmetric.
For a strongly connected and aperiodic digraph , let

. We introduce the generalized normalized Laplacian
matrix for a strongly connected and aperiodic digraph

(and an associated Markov chain with the transition ma-
trix ) as follows.
Definition 1 (Generalized Normalized Laplacian ):

(21)

or in the scalar form

if

if
otherwise.

(22)

We see that the (normalized) digraph Laplacian3 for (strongly
connected and aperiodic) digraphs is redefined using the diag-
onal stationary distribution matrix instead of the diagonal de-
gree matrix . In the case of a (fully connected) undirected

2In [18], the matrix is directly defined as the funda-
mental matrix of an irreducible Markov chain instead of .
3An unnormalized digraph Laplacian matrix, , can also be defined as

[5].

graph, as , we have .
Hence, this definition of (generalized) normalized Laplacian for
digraphs reduces to the usual definition of normalized Laplacian
for undirected graphs.
Treating this (normalized) digraph Laplacian matrix as an

(asymmetric) operator on a digraph , we now define the (dis-
crete) Green’s function (without boundary conditions) for di-
graphs in exactly the same manner as for undirected graphs [1].
Namely, is a matrix with its entries, indexed by vertices and
, that satisfies the following conditions:

(23)

and expressed in the matrix form

(24)

In the following, we will show that is precisely , the
pseudo-inverse of the Laplacian operator on the digraph .
Furthermore, we will relate directly to the fundamental
matrix of the Markov chain associated with random walks
on the digraph . Before we establish this main result of the
section, we first introduce a few more notations and then prove
the following useful lemma.
Lemma 1: Define (the normalized funda-

mental matrix), and . The following
relations regarding and hold: 1) ; 2)

; and 3) .
Proof Sketch: These relations can be established using the

facts that , , , ,
, , , , and

. The last four equalities imply that the matrices
and have the same left and right eigenvectors, and ,

corresponding to the eigenvalue 0.
We are now in a position to prove the following main the-

orem of this section, which states the Green’s function for the
(normalized) digraph Laplacian is exactly its Moore–Penrose
pseudo-inverse, and it is equal to the normalized fundamental
matrix. Namely, . For completeness, we also in-
clude the key definitions in the statement of the theorem.
Theorem 2 (Laplacian Matrix and Green’s Function for

Digraphs): Given a strongly connected and aperiodic digraph
where , let be a (generally

asymmetric) nonnegative weight/adjancency matrix of such
that if and only if , and define
as the diagonal (out-)degree matrix, i.e., . Then,

is the transition probability matrix for the (irre-
ducible and generally nonreversible) Markov chain associated
with random walks on the digraph . Let
be the stationary probability distribution (represented as a
column vector) for the Markov chain , and
be the diagonal stationary probability matrix. We define the
(normalized) digraph Laplacian matrix of as in (21), i.e.,

. Define , where is the
fundamental matrix of the Markov chain as defined in (15).
Then, , is the pseudo-inverse of the Laplacian ma-

trix . Furthermore, is the (discrete) Green’s function for .
Namely

(25)
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where is the all-1 matrix and (a column
vector).

Proof Sketch: From (19) in Theorem 1

we have

Hence

(26)

Multiplying (26) from the right by , and using Lemma 1,
it is easy to see that

(27)

which establishes that is the Green’s function of the digraph
Laplacian .
Multiplying (26) from the left by , and using Lemma 1,

we can likewise prove that

(28)

Hence, , which is a real symmetric matrix.
Hence, and . Furthermore, as

, (27) yields . Similarly, as
, (27) yields . These establish that is

also the Moore–Penrose pseudo-inverse of . Therefore,
.

3) Computing Hitting and Commute Times for Digraphs
Using Digraph Laplacian: Using the relationship between the
(normalized) digraph Laplacian , its pseudo-inverse , and
the (normalized) fundamental matrix , we can now express
the hitting times and commute times of random walks on di-
graphs in terms of , or alternatively in terms of the singular
values and singular vectors of the digraph Laplacian matrix ,
as stated in Theorem 3.
Theorem 3 (Hitting and Commute Times for Random Walks

on Digraphs): Given the generalized normalized Laplacian ma-
trix defined in (21) and (22), and let be its pseudo-inverse.
Then, we have the hitting time as

(29)

or in the matrix form

(30)

The commute times, , can be computed as
follows:

(31)

Proof Sketch: From , and
using (17) and (18), we can compute the hitting times and

commute times for random walks on digraphs directly in terms
of the entries of as stated in Theorem 3

(32)

and

(33)

where is the th entry of , and is the stationary
probability of vertex .
We note that if the underlying graph is undirected, and the

transition probability matrix of the Markov chain is
(as defined in Section III-A, where is symmetric),

then . Furthermore, one can show that (30) and (31) are
equivalent to (9) and (10). Hence, our theory of random walks
on digraphs subsumes the existing theory of random walks on
undirected graphs as a special case. Moreover, computing the
Moore–Penrose pseudo-inverse is equivalent to solving a sin-
gular value decomposition, thus the computational time com-
plexity is [36].
We now extend the above results for hitting and commuting

times to hitting and commute costs. Given a (asymmetric) tran-
sition cost matrix , , with as the per-link
transition cost, and as the per-node transmission cost, define

a diagonal matrix with as the
average transmission cost every time a packet visits. We define
the following normalized cost Laplacian matrix, as
Definition 2 (Normalized Cost Laplacian ):

(34)

where the is the generalized normalized Laplacian matrix.
The corresponding scalar form is

if

if
otherwise.

(35)

The hitting costs as defined by the relation in (5) and the
commute costs can be computed using the (Moore–Penrose)
pseudo-inverse of Laplacian as stated in Theorem 4, and the
proof is delegated to the Appendix.
Theorem 4 (Hitting and Commute Costs for Random Walks

on Digraphs): Let denote the (Moore–Penrose) pseudo-
inverse of the cost Laplacian , and . Then, the
hitting costs and commute costs can be computed as follows:

(36)

and

(37)
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Moreover, we note that in our recent paper [25], we further
analyzed and obtained an upper bound on the mixing time of
random walks on digraphs in terms of the eigenvalues and sin-
gular values of the symmetric and skew-symmetric components
of the digraph Laplacian.

IV. ESTIMATING TRANSMISSION COST FOR DIFFERENT
ROUTING STRATEGIES

In this section, we apply the theory of random walks on di-
graphs to various routing strategies and see how it can be used to
estimate various transmission costs. We consider three specific
examples: the keep-connect routing, a class of energy-aware
best-path routing algorithms proposed in [31]; the opportunistic
routing protocol as defined in [4] and analyzed in [23]; and the
stateless routing protocol introduced and analyzed in [9].

A. Keep-Connect Routing for Network Lifetime Maximization

Many energy-aware routing protocols have been developed
for energy-constrained wireless networks, such as wireless
sensor networks. These protocols take the energy cost as a key
metric in selecting routes and attempt to forward packets along
a path that minimizes the energy consumption or maximizes the
overall network lifetime. The keep-connect routing (thereafter
referred to as KC) is a class of energy-aware routing algo-
rithms proposed in [31] that take into account both the energy
cost and the “importance” of nodes in the overall network
connectivity so as to maximize the network lifetime. Here,
the network lifetime is defined as the time until the network
becomes disconnected. In [31], the authors apply the spectral
graph theory—in particular, use the Fiedler value (the second
smallest eigenvalue of a graph Laplacian)—to the design and
analysis of the KC routing algorithms. We use KC as a simple
example to illustrate how to estimate the wireless transmission
costs (hitting costs).
In KC, the “importance” of a node in terms of its connec-

tivity in a graph is defined as follows:
, where is a graph resulting from with

node and its adjacent edges removed, is the graph
Laplacian of , and is the second smallest eigen-
value (the Fiedler value) of . For each link , let
denote the one-hop transmission energy cost from to . We

introduce the following transition cost matrix , where
, if , and otherwise. Given

a path or route for
a source–destination pair . Then, using the Markov chain
transition matrix defined on the line (sub)graph (with

) as given in (1) of Section II-B, we
can easily solve the hitting cost (5) and compute the hitting cost
matrix for as follows:

otherwise.
(38)

In particular, is the expected total cost associ-
ated with the route . Hence, to find the best path in KC that
minimizes the energy consumption and maximizes the network
lifetime is equivalent to finding the best route that minimizes

, for any given source–destination pair .

B. Opportunistic Routing

Following the description in Section II-B, given a (priori-
tized) forwarder list
for a source–destination pair , let be the transi-

tion matrix for the Markov chain on the subgraph (with
), as given in (2). Hence, the total

expected number of transmissions using this forwarder list
can be computed using the hitting time matrix associated
with defined on . In particular, is the
total expected number of transmissions from source to desti-
nation . We can apply the theory of random walks on digraphs
to compute . In this case, we can explore the special struc-
ture of and find a closed-form recursive formula for di-
rectly. From (2), we note that is an upper triangular matrix.
Hence, the hitting times satisfy the following recursive
relations:

(39)
We observe that these (upper triangular) linear recursive equa-
tions can be easily solved, starting from the bottom to the top.
Plugging the transition probabilities ’s in, using (2), we can
write the above recursive equation as follows:

(40)
The above equation is exactly the same formula obtained in [23]
through an event-based direct probability analysis approach.
The random walk method proposed here is far simpler. We can
further extend the above analysis of the expected number of
transmissions to other transmission costs. Let be a
diagonal average transition cost matrix in subgraph , as de-
fined in Section III-B. We can derive the following recursive
formula for computing the expected total transmission cost ma-
trix defined on :

(41)
Hence, for a given

, the total expected trans-
mission cost of is . In [23], using the
recursive relations (40) and (41), an optimal algorithm (MTS
stands for minimum transmission selection), and generalized
MTS algorithms have been developed to minimize respectively
the total expected number of transmission, total expected
energy consumption, total end-to-end transmission latency,
and so forth.

C. Stateless Routing

In [9], Chau and Basu analyze the stateless routing algo-
rithm using the random walk theory for undirected graphs and
apply (12) to derive an end-to-end delay estimation formula
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with heterogeneous sojourn times. Since the undirected graph
model, they assume that wireless links are symmetric. Given
the theory of random walks on digraphs we have developed, we
can now solve the same problem using (36), where the tran-
sition matrix for the Markov chain/random walk is given
in (3). A step-by-step procedure for constructing the Markov
chain and then computing the hitting time matrix is given in
Algorithm 1.

Algorithm 1: Delay Estimation Algorithm for Stateless
routing, given the adjacency matrix .

1: Form the transition probability matrix using (3).
2: Compute the stationary probability matrix .
3: Compute the generalized normalized Laplacian matrix
(See DEFINITION 1).

4: Compute the pseudo-inverse of .
5: Compute the hitting time matrix using (29).

Moreover, by introducing an arbitrary transmission matrix
to represent per-node and/or per-hop trans-

mission cost, we can apply Algorithm 1 (with and replaced
by and ) to compute various transmission costs associated
with the stateless routing, such as latency, energy consumption,
and so forth.

V. ESTIMATING (PARTIAL) COVER TIME FOR QUERY
PROCESSING

In this section, we consider another important practical
problem, in particular the (broadcast) query processing problem
in wireless sensor networks. We illustrate how quantities such
as hitting times and cover times of random walks on digraphs
can be used to provide theoretical estimates for (partial) broad-
cast covering time in wireless networks. This application is
based on the study in [2].
In [2], the authors proposed and analyzed random-walk-based

query processing techniques and demonstrated that such tech-
niques possess many desirable properties such as robustness,
simplicity, load balancing, and scalability in dynamic wireless
environments. We briefly describe the basic procedure behind
such techniques as follows. At the beginning, the base station
constructs a query message with description of the query infor-
mation. The message is transmitted in a “random walk manner”
in the network. Once the query message reaches a node , it up-
dates its information with the local data stored at node . Then, it
is randomly forwarded to one of ’s neighbors.When the answer
is satisfying or a sufficient number of steps have been taken or a
sufficient number of nodes have been visited, the query message
is sent back to the base station. For instance, if the minimum
temperature information is requested in the network, every time
the query message meets a lower temperature, it updates the
answer. After visiting enough nodes, the query message is for-
warded back to the base station.
The analysis of the techniques relies on a key quantity asso-

ciated with random walks, namely, the cover time. Let
be a digraph on which the random walk is performed, and let

. The cover time is the (worst) expected number
of steps taken by a random walk to visit every node in from
any node. The following theorem provides, in many cases,

tighter bounds on the cover time in terms of the maximum
(minimum) hitting time over all ordered pairs of
nodes.
Theorem 5 (Matthews’ Theorem [30]): For any Graph

and

(42)

where is the th harmonic number.
Extending the notation of cover time, the authors [2] intro-

duce the notion of partial cover time (PCT) to better model the
operations and performance of random-walk-based query pro-
cessing techniques in wireless sensor networks. For instance, in
many sensor network applications, it is not necessary to consult
every node in the network to gather and process information.
The PCT is defined as the expected time required to cover only
a constant fraction of the network (digraph). Based
on the well-known Matthews’ bounds (Theorem 5), the authors
establish the following bound on the PCT in terms of the max-
imum hitting time.
Theorem 6 (Upper Bound on PCT): For any Graph

, let and , we have

(43)

This result shows that by relaxing full coverage to a partial
coverage of the network, the partial cover time can be up to a
factor of more efficient.
Given the bounds in Theorems 5 and 6, our random walk

theory on digraphs provides a method to compute the bounds on
the cover time and partial cover time using the digraph Lapla-
cian (and its Moore–Penrose pseudo-inverse)

(44)

and

(45)

VI. PERFORMANCE EVALUATION AND COMPARISON

In this section, we use the stateless routing [9], and the query
processing protocol [2] as examples and conduct simulations to
compare the transmission cost and the (partial) broadcast cov-
ering time estimation results obtained using the random walks
on digraphsmodel versus using the randomwalks on undirected
graphs model, where the asymmetric packet delivery probabil-
ities of a link, and , are symmetrized using their average,

. The simulation results demon-
strate that compared to the random walks on (symmetrized)
undirected graph model, our random walks on digraph model
improves the accuracies of stateless routing transmission cost
estimation and partial broadcast covering time estimation by up
to 70% and 90%, respectively. Similar results are obtained for
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other routing schemes, which are not presented here due to space
limitation.
Simulation Setting: Before we present the detailed simula-

tion results, we first briefly describe the simulation settings, es-
pecially how parameters are chosen and varied. The wireless
topologies are generated with nodes distributed in a (square)
area of size measured in squared meters . For a given ,
the nodes are randomly placed in the area with a bivariate
uniform distribution. The (overall) density of the topology is
therefore measured by (i.e., nodes per ). Each node
has the same transmission radius of . The connectivity digraph

is constructed as follows: 1) an edge from node
to node and an edge from node to node present if and
only if the Euclidean distance from to is smaller than the
transmission radius, i.e., ; and 2) asymmetric edge
weights ’s are assigned to edges in using a uniform dis-
tribution . The edge weights represent the link quali-
ties (delivery probabilities) among wireless nodes (with 1 rep-
resenting 100% delivery probability, or 0 no connectivity). Via
symmetrization , we obtain an undirected
graph . Depending on the simulation setting, we
vary one or more of the simulation parameters , , and as
well as the variability and asymmetry in link qualities to study
how these factors affect the errors introduced when using the
random walks on undirected graph model versus digraph model
in estimating transmission costs and partial broadcast covering
times. For each simulation setting, we generate 1000 topolo-
gies with different seeds. The average of these 1000 simulations
is used for comparison. The simulations are conducted using
MATLAB on a standard PC server.

A. Estimating Transmission Costs in Stateless Routing

In this part, we discuss how different topology parameters,
such as network density, degree of asymmetry, and link quality
variation, affect the transmission cost estimation in stateless
routing.
Let represent the hitting time from node to node com-

puted using the digraph model, and the hitting time com-
puted using the undirected graph model. We use the relative
error in (46) to measure the inaccuracy in hitting time compu-
tation introduced by the symmetrization of link qualities (i.e.,
when using the undirected graph model)

(46)

1) Effect of Network Density on : To evaluate how
the network density affects the transmission cost estimation,
we generate topologies with size m , where
each node has the same transmission radius m. We
change the total number of wireless nodes as ,
which in turn varies the network density as
nodes per 300 m . Fig. 5 shows the results obtained for
the three network density settings. Here, we sort the node pairs
in each topology by their values, so that we can plot the

’s in a monotonically decreasing order. We see that the rel-
ative errors are overall lower in denser networks. To better il-
lustrate the effect of network density, we group the node pairs
based on the ranges of their ’s— , and

—and compute the percentage of node pairs that fall
within each range, and the results are shown in Fig. 6. We see

Fig. 5. Distribution of .

Fig. 6. ERR distribution for different network densities.

that using the undirected graph model, from 25% up to 50% of
all node pairs have an average relative error at least 30%, and
a few percentage have an average relative error of more than
60%. Both figures indicate that when the network density in-
creases, the percentage of node pairs having large relative er-
rors decreases. This is in fact not surprising: As the network is
dense (e.g., 40 nodes in a 300 300-m area, each having trans-
mission radius of 100 m), path diversity is high. In other words,
the number of random (and shorter) paths between two nodes is
typically high, thus reducing the hitting time between them. The
asymmetric links thus likely have less impact on the overall re-
sults. On the other hand, when the network is relatively sparse,
the asymmetric links have much higher impact, and therefore
how to perform routing effectively becomes more critical.
2) Effect of Degree of Asymmetry and Link Quality Variation:

In the second set of evaluations, we generate wireless topology
with size m and nodes and choose
node transmission radius as m. Then, we vary the
degree of asymmetry (percentage of asymmetric links) and the
(asymmetric) link quality variation (the extent to which and

differ). For the former, we utilize the asymmetric distribu-
tion probability to control the distribution of asym-
metric links in the topology. For the latter, we use a param-
eter defined below to control the link variation: For each node
pair chosen to have a pair of asymmetric links (determined by
a given ), we first randomly generate , and
then randomly generate with uniform distribution

. In the evaluations, we
select , 25%, 50%, 75%, 100%, and , 25%, 50%,
75%, 100%.
Fig. 7 shows the effect of the degree of link asymmetry,

on the worst-case ERR performance. We show the results with
25%, 75%, and 100%, while varying the degree of link

asymmetry, . We see that as the degree of asymmetry
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Fig. 7. Effect of degree of asymmetry.

Fig. 8. Effect of (asymmetric) link quality variation.

increases, the (worst-case) ERR increases rapidly, up to more
than 0.6 when and 75% or 100%.
Fig. 8 shows the effect of the (asymmetric) link-quality vari-

ation on the worst-case ERR performance. We show the results
with 50%, 75%, and 100%, while varying from 0 to
1. Similarly, we see that when we allow a larger extent that
the qualities of asymmetric link pair, and , can differ the
higher the (worst-case) ERR is. All in all, we conclude that when
the degree of asymmetry is high, and the link qualities of asym-
metric link pairs can differ to a larger extent, it is important to
take into account the asymmetric link qualities in routing deci-
sion making and estimation of various transmission costs. This
is especially the case in a relatively sparse network.

B. Estimating (Partial) Broadcast Cover Time

In this section, we use the query processing application
discussed in Section V as an example, comparing the bounds
on partial cover times estimated using the random walks on
digraphs model versus using the random walks on undirected
graphs model.
Let represent the upper bound of the partial cover

time for a given topology computed using the digraph model,
and be the upper bound of the partial cover time com-
puted using the undirected graph model. To compare and gauge
the inaccuracy introduced by the symmetrization of link qual-
ities (i.e., when using the undirected graph model) in the PCT
bound estimation, we compute the absolute error and relative
error formally defined as follows:

Fig. 9. Error distribution for different topology sizes in estimating the bounds
of partial cover time.

Fig. 10. Error distribution for different densities in estimating the bounds of
partial cover time.

1) Effect of Network Density and Size on : To eval-
uate how network density affects the partial cover time estima-
tion, we generate the topology with size m
and transmission radius . We vary the network den-
sity by increasing the total number of nodes as

.
Fig. 9 shows, given a fixed topology density (30 nodes per

m ), how network size affects the absolute error of
the PCT upper bound estimation. We see that the absolute error
increases as the topology scales up. Let represent the topology
cover ratio of query algorithm, we see that larger leads to
higher absolute error of PCT. When topology size grows up
to 540 with 80% cover ratio, the PCT obtained using the undi-
rected graph-based random walk theory can be more than 1500
steps different from result got with the digraph based random
walk theory. We could see that symmetrizing the directed links
to undirected links in fact introduces high inaccuracy for esti-
mating the PCT upper bound.
To evaluate how network size affects the partial cover time

estimation, we choose the node transmission radius of wireless
nodes as m and generate topologies by changing the
total number of nodes as and scaling
the topology size up accordingly as

m , which guarantees that all
topologies generated have the same network density as 30 nodes
per m .
Fig. 10 shows the similar results as in Fig. 9 that absolute

error increases as the density goes up. However, we notice that
the absolute error of PCT in fact grows much slower than in
Fig. 9 as the topology size increases. This happens because
increasing density not only introduces more transient states
in the random walks, but also establishes more possible paths
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Fig. 11. Effect of topology size on the absolute value of maximum hitting time
on digraphs.

Fig. 12. Effect of degree of asymmetry in estimating the bounds of partial cover
time.

Fig. 13. Effect of (asymmetric) link quality variation in estimating the bounds
of partial cover time.

among the topology, which must increase graph connectivity,
thus counteract part of the increase of the entire network PCT.
Moreover, Fig. 11 shows that as the network size (i.e., number
of wireless nodes) increases (with asymmetric links
and the fixed network density as 30 nodes per m ),
the maximum of random walk hitting time on the digraph
increases almost linearly.
2) Effect of Degree of Asymmetry and Link Quality Varia-

tion: We generate topologies with nodes in
m square area, where the node radius is .

Fig. 12 shows that when the link quality variation and
the degree of asymmetry increases as , 25%, 50%, 75%,
100%, the average relative errors of estimated PCT bounds in-
crease up to 33%. For the worst case, the relative errors of esti-
mated PCT bounds could achieve as high as 88%. Fig. 13 shows
that while the degree of asymmetry , and the link
quality variation increases as , 25%, 50%, 75%, 100%,
the average relative errors of estimated PCT bounds increase
accordingly.

Hence, the above simulation studies show that it is important
to take into account the asymmetric link qualities in wireless
networks when assessing and evaluating various wireless pro-
tocols and algorithms.

VII. CONCLUSION

In this paper, we have developed a unified theoretical
framework for estimating various transmission costs of packet
forwarding and query processing in wireless networks. We
illustrated how packet forwarding under each of three routing
paradigms—best routing, opportunistic routing, and stateless
routing—can be modeled as random walks on digraphs. By
generalizing the theory of random walks that has primarily
been developed for undirected graphs to digraphs, we showed
how various transmission costs can be formulated in terms of
hitting times and cover times of random walks on digraphs. As
representative examples, we applied the theory to three specific
routing protocols and a query processing protocol. Extensive
simulations demonstrate that the proposed digraph-based an-
alytical model can achieve more accurate transmission cost
estimation over existing methods.

APPENDIX

Proof Sketch for Theorem 4: First, let be a

column vector whose th entry is given by , and let
be a diagonal matrix whose th diagonal entry

is . Clearly, . Similar to
Lemma 1 and Theorem 2, one can verify that the (normalized)
cost Laplacian matrix satisfies the following properties:

(47)

(48)

Equation (47) states that is the Green’s function for the
cost Laplacian operator . Equation (48) implies that is the
left and right eigenvector of and corresponding to the
eigenvalue 0.
Given the hitting cost matrix , it is not too hard

to rewrite (5) in the matrix form as follows:

(49)

Multiplying (49) by from the left, and by from
the right, we have

As , plugging the definitions for and yields

(50)

We can now solve the matrix equation (50) using the Green’s
function, . Multiplying from the left and applying (47)
and (48), we have

(51)
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Since the diagonal entries of are all zero, we can separate
the diagonal entries and nondiagonal entries of (51) and solve
them separately to obtain Theorem 4.
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