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Abstract—As a crucial operation, routing plays an important role in various communication networks. In the context of data and sensor networks,
routing strategies such as shortest-path, multi-path and potential-based (“all-path”) routing have been developed. Existing results in the literature
show that the shortest path and all-path routing can be obtained from L1 and L2 flow optimization, respectively. Based on this connection between
routing and flow optimization in a network, in this paper we develop a unifying theoretical framework by considering flow optimization with mixed
(weighted) L1/L2-norms. We obtain a surprising result: as we vary the trade-off parameter ✓, the routing graphs induced by the optimal flow
solutions span from shortest-path to multi-path to all-path routing – this entire sequence of routing graphs is referred to as the routing continuum.
We also develop an efficient iterative algorithm for computing the entire routing continuum. Several generalizations are also considered, with
applications to traffic engineering, wireless sensor networks, and network robustness analysis.

Index Terms—Routing continuum, network flow, betweenness centrality.
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1 INTRODUCTION
Routing is a crucial operation in many types of networks
from communication networks to transportation networks. For
instance, in modern IP-based data networks, shortest path
routing is most commonly used. In traditional telecommu-
nication networks, dynamic alternative routing strategies that
employ paths that are longer than shortest paths have been also
proposed to reduce call blocking probabilities (see, e.g., [1],
[17]). In wireless networks, due to the unstable channel charac-
teristics, using a single “shortest” path (e.g., with link quality
as link weights) for routing is often not the best choice; routing
strategies that go beyond shortest path routing (see, e.g., [4],
[16], [22], [31] and references therein) using multiple paths are
often more effective. In the other extreme, in wireless sensor
networks – due to their power and other resource constraints
– potential-based routing [26] has been proposed, where the
source essentially utilizes all (eligible) paths to transmit data
to the destination. In [26], it is shown that such “all-path”
routing minimizes the total energy dissipation of routing and
thus maximizes the network lifetime. Clearly, what routing
strategies to employ in a network hinges on what objectives are
important in practice, therefore should be optimized. However,
from a theoretical perspective, when using multi-path routing
that goes beyond a single shortest path, two questions arise:
i) what set of paths should be used for routing? and ii) how
traffic should be split (and merged) at any node along the
multiple paths, especially when the paths are not all disjoint?

In addressing these questions, in this paper we consider
routing as flow optimization in a network. Our idea is inspired
by the earlier results where it has been shown that shortest
path routing can be derived from network flow optimization
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with L
1

norm [35], whereas potential-based, “all-path” routing
can be derived from network flow optimization with L

2

-norm
objective [17], [26]. We introduce the network flow opti-
mization problem, with mixed L

1

/L
2

-norm objective, which
intuitively can be interpreted as a trade-off between the latency
and energy dissipation of paths used for routing (collectively,
the paths form a routing graph): shorter paths lead to better
routing with low latency, while diffusing traffic along more
paths generally reduces energy dissipation. Using this formu-
lation, we obtain a surprising result: as we vary the trade-
off parameter ✓, the routing graphs induced by the optimal
flow solutions span from the shortest-path routing to multi-
path routing with increasing path lengths to the potential-
based (“all-path”) routing – this entire (finite) sequence of
routing graphs is referred to as the routing continuum. Our
theory therefore subsumes the earlier L

1

and L
2

network flow
optimization results [17], [35] as two extreme points in the
entire routing continuum.

Furthermore, by considering the dual of the mixed
L
1

/L
2

-norm network flow optimization problem, we develop
an efficient iterative algebraic process as well as algorithms for
identifying precisely the boundary conditions separating the
finite sequence of routing graphs, and for computing the entire
routing continuum and optimal flow solutions X⇤

(✓) for any
✓ � 0. In particular, X⇤

(✓) specifies how traffic should be split
and merged in the induced routing graph. We also generalize
the theory to account for multiple flows (traffic demands), link
capacity constraints and heterogeneous L

1

/L
2

link weights,
with applications to traffic engineering and wireless sensor
networks. For instance, given a set of link weights and traffic
demands on a network, our theory can be used to find the
“best” routing graph (i.e., the best mix of shorter and longer
paths) that minimizes the overall maximum link utilization.

In summary, our contributions are i) we develop a unifying
theory using mixed L

1

/L
2

-norm network flow optimization
and show that it can generate the entire routing continuum
from shortest-path to “all-path” routing; ii) we develop an
efficient iterative process for computing the entire routing
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continuum and optimal flow solutions X⇤
(✓) for any ✓ � 0;

iii) the basic theory is further generalized to account for
multiple flows (traffic demands), link capacity constraints and
heterogeneous L

1

/L
2

link weights, with applications to traffic
engineering and wireless sensor networks. iv) Moreover, by
applying the routing continuum theory, we generalize the
betweenness centrality measure using mixed network flow,
with applications in network robustness analysis. Last but
not the least, while we focus on network routing in this
paper, we believe that our results can be applied to many
other applications where the problems can be cast in terms
of flows in a network. Going beyong a preliminary version
of this work [24], we provide numerical analysis using a
real network topology, i.e., the Abilene network topology, to
illustrate the routing continuum theory. Moreover, we discuss
an application of the routing continuum theory in analyzing
network robustness. Lastly, in section 3.1, we introduce new
theoretical results that the mixed L

1

- and L
2

-norm network
flow problem can achieve the optimal trade-off between the
average delay and the average energy consumption in the
network. Due to the limited space, we delegate parts of these
results to the supplementary file [25] of the paper.

The remainder of the paper is organized as follows. In
Section 2 we introduce the basic notations and re-state the
known L

1

and L
2

flow optimizations using our notations.
In Section 3 the general theory and results using the mixed
L
1

/L
2

-norm flow optimization are established, and the iter-
ative computation process and algorithms are described in
Section 4. In Section 5, we consider several generalizations,
with applications to traffic engineering, wireless sensor net-
works, and network robustness analysis. Section 6 discusses
the related work, and the paper is concluded in Section 7.

2 SHORTEST PATH AND “ALL-PATH” ROUTING AS
NETWORK FLOW OPTIMIZATION

In this section, we first introduce the basic notations that
will be used throughout the paper. Then, we illustrate how
shortest path routing and potential-based “all-path” routing can
be formulated as the flow optimization problems in a network
using metric norms (on the flow space). More specifically, the
shortest path routing results from minimizing the (weighted)
L
1

-norm of flows between a given source-destination pair in a
network, whereas the potential-based, “all-path” routing results
from minimizing the corresponding L

2

-norm.

2.1 Network and Flows: Basic Notations
We represent a n-node network as an undirected, weighted
graph, G = (V,E,W ), where V = {1, 2, . . . , n} is the set
of vertices, E is the set of edges, and each edge (i, j) 2 E
is assigned a positive weight wij . W is an n ⇥ n matrix,
where each (i, j)-th entry denotes the link weight wij . As G is
undirected, (i, j) and (j, i) represent the same edge in E, and
wij = wji > 0. Define wij = 0 if (i, j) 62 E, then the weight
matrix W = [wij ] is symmetric. In particular, if all edges
have a unit weight, i.e., W is a 0-1 matrix, then G represents
a simple graph, and W is the corresponding adjacency matrix.

Let d = [s, t], s, t 2 V, s 6= t, denote a source-destination
(or source-sink) pair in the network G. A flow of I(d)-unit

amount that flows from source s to destination t is mathe-
matically defined as a function, X(d)

: V ⇥ V ! R+ (R+ is
the set of non-negative real numbers), satisfying the following
constraints:

along one direction: if X(d)
ij > 0 then X

(d)
ji = 0, (1)

along network edges: if (i, j) 62 E then X
(d)
ij = 0, (2)

flow conservation at s: I(d) +
Pn

k=1

X
(d)
ks =

Pn
j=1

X
(d)
sj ,(3)

intermediate node i 6= s, t:
Pn

k=1

X
(d)
ki =

Pn
j=1

X
(d)
ij , (4)

at destination t:
Pn

k=1

X
(d)
kt =

Pn
j=1

X
(d)
tj + I(d).(5)

Note that in this flow definition, for each (undirected) edge
(i, j) 2 E, both X

(d)
ij and X

(d)
ji are defined, and the constraint

in eq.(1) states that if X(d)
ij > 0, then X

(d)
ji = 0; or if X(d)

ji >

0, then X
(d)
ij = 0. It is possible that for (i, j) 2 E, both

X
(d)
ij = X

(d)
ji = 0. In particular, by the constraint in eq.(2),

X
(d)
ij = X

(d)
ji = 0 for (i, j) 62 E. The flow constraints in

eqs.(3)-(5) state that an amount of I(d) units of flow is injected
at source s, and the same amount is removed from destination
t, while the amount of flow entering any intermediate node i
is the same as the amount leaving the node.

Given a flow X(d) between a source-destination pair d =

[s, t], it induces an oriented (or directed) sub-graph of G,
GX(d) = (VX(d) , EX(d)), where an arc hi, ji 2 EX(d) and
i, j 2 VX(d) if and only if X

(d)
ij > 0. As a directed acyclic

graph (DAG) between s and t, GX(d) represents the routes
used to route the flow X(d) (of I(d) units) from source s to
destination t, and we refer to it as the routing graph for the
flow X(d). When GX(d) consists of more than a single path
between s and t, then X

(d)
ij indicates how much flow is routed

along the edge (arc) hi, ji. In general, the flow may be split or
merged1 at nodes in GX(d) , and routed along different paths
between s and d. We will use F (d) to denote the collection
of flows, i.e., all functions that satisfy eqs.(2)-(5).

In the next two subsections we will use two well-known re-
sults [17], [35] to illustrate that certain common routing strate-
gies, namely, shortest path routing and potential-based, “all-
path” routing, can be derived by minimizing the (weighted)
L
1

-norm and L
2

-norm, respectively, of flows between a given
source-destination pair in a network. In Section 3 we will
generalize these results and establish that by minimizing
flows using mixed L

1

-norm and L
2

-norm, we can generate
a continuum of routing strategies, resulting in a sequence of
routing graphs with varying numbers of paths of differing costs
selected, from the shortest paths to all paths (between a source-
destination pair). Table 1 provides notations used in the paper.

2.2 Shortest-Path Routing & L
1

-norm Flow Optimization
Without loss of generality, unless otherwise specified, we
assume that s = 1 and t = n, and I(d) = 1. For clarity

1. The flow definition implicitly assumes that flows are “infinitely divisible
fluid” – they can be split and merged arbitrarily at any node of the network,
as long as the above flow conservation constraints are met. This mathematical
definition of network flows thus provides an idealized (fluid) abstraction of,
e.g., traffic demands routed from a source to a destination in a communication
network, or commodities transported from a source to a destination in a
transportation network, and so forth.
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TABLE 1
Notations

G = (V,E,W ) G is an undirected graph, with link weight
matrix W , with |V | = n.

d = [s, t] d is a network demand, with source s and
destination t.

✓ Trade-off parameter between L1- and
L2-norm objectives in the mixed network
flow optimization problem eq.(18).

X(d) = [X(d)
ij ],

X = [Xij ],
X⇤(✓) = [X⇤

ij(✓)]

X(d) is the network flow matrix for the
demand d, where each entry X(d)

ij rep-
resents the flow distributed on the edge
hi, ji. When d = [1, n] is considered, the
superscript (d) is omitted. X⇤(✓) is the
optimal flow for the mixed network flow
optimization problem eq.(18).

U = [Ui],
U⇤(✓) = [U⇤

i (✓)]
Ui’s are the Lagrange multipliers of
the flow conservation constraints eq.(7).
U⇤

i (✓)’s are the optimal values of Ui’s
to the mixed flow optimization problem
eq.(18).

R(✓), R(0),
R(1)

R(✓) is the routing graph induced by
X⇤(✓). In particular, R(0) and R(1) are
the routing graphs for “all-path” routing
and shortest path routing, respectively.

�(+)(✓) = [�(+)
i (✓)]

�(�)(✓) = [�(�)
i (✓)]

�(✓) = [�i(✓)]

�(+)
i (✓) (resp. �(�)

i (✓)) is the number of
incoming (resp. outgoing) edges of node
i with no-zero flow in X⇤(✓). �i(✓) =
�(�)

i (✓)��(+)
i (✓).

of notation, we drop the superscript d from X(d). In other
words, the flow X (as a function) is equivalently specified by
a set of n2 variables, Xij’s, 1  i, j  n.

Consider the following L
1

-norm network flow optimization
problem, which can be solved using linear programming (LP).
L
1

-norm Network Flow Optimization (L
1

Primal):

min

X

nX

i=1

nX

j=1

wijXij (6)

subject to the flow conservation constraints eqs.(2)-(5), which
are more compactly represented below using Xij’s:

X

j:(i,j)2E

Xij �
X

k:(k,i)2E

Xki =

8
<

:

1 if i = 1

0 if i = 2, . . . , n� 1

�1 if i = n,
(7)

and Xij � 0, 1  i, j  n. (8)

Note that the feasible solutions to eq.(6) subject to eqs.(7)
and (8) satisfy constraints eqs.(2)-(5), and an optimal solution
to this must also satisfy eq.(1) automatically. Hence without
loss of generality, when considering the optimization in eq.(6),
we can restrict ourselves to X’s that are flows, i.e., X 2 F .
Thus we can re-state the optimization in eq.(6) as

min

X2F

nX

i

nX

j

wijXij .

In other words, the optimization solution to eq.(6) is the flow
that minimizes the weighted L

1

-norm.
To show that the optimal solution to this L

1

-norm network
flow optimization gives rise to the shortest-path routing, we
consider its dual, stated below in terms of the Lagrange

multipliers �Ui’s (corresponding to the flow conservation
constraints eq.(7)2):
Dual of L

1

-norm Network Flow Optimization (L
1

Dual):

max

U
U
1

(9)

subject to Un = 0 and Ui � Uj  wij , 8(i, j) 2 E. (10)

Let X⇤ denote the optimal flow solution to the primal problem
eq.(6), and U⇤ the optimal solution to the dual problem. The
duality and complementary slackness give us the following
relations between X⇤

ij’s and U⇤
i ’s (cf. Lemma 1 in [35] and

the transportation and network flow problems in Chapter 5
in [27]).

if X⇤
ij > 0,then U⇤

i � U⇤
j = wij ; (11)

and if X⇤
ij = 0,then U⇤

i � U⇤
j < wij . (12)

Using these relations, the authors in [35], show that the
optimal solution to the dual problem, U⇤

i ’s, have the following
properties (cf. Theorem 1 and its proof in [35]):

LEMMA 1. Let P be a path from node 1 to node n. If for
each edge (arc) hi, ji 2 P , U⇤

i �U⇤
j = wij , then P is a shortest

path from node 1 to node n (with respect to the weights wij’s),
and U⇤

1

=

P
hi,ji2P wij . Alternatively, if Q is a path from

node 1 to node n that is not a shortest path, then U⇤
1

<P
hi,ji2Q wij .

The above lemma implies that for any node i on a shortest
path, U⇤

i is the shortest-path distance from node i to node
n (the destination). Furthermore, the optimal flow X⇤ is
only routed along the shortest paths between source 1 and
destination n. In other words, the resulting routing graph GX⇤

is the DAG formed by the shortest paths from 1 to n only.
When there are multiple shortest paths between 1 and n, X⇤

ij

specifies the amount of flow carried on the edges of node i
that are on the shortest paths, thus how the flow should be
split among multiple shortest path at node i.
2.3 Potential-based (“All-path”) Routing and L

2

-norm
Flow Optimization
We now consider the following (weighted) L

2

-norm network
flow optimization problem:
L
2

-norm Network Flow Optimization (L
2

Primal):

min

X2F

nX

i=1

nX

j=1

wijX
2

ij . (13)

To show that the optimal solution to this L
2

-norm network
flow optimization gives rise to the potential-based, “all-path”
routing, we again consider its dual, stated below in terms
of the Lagrange multipliers Ui’s (where for convenience we
have used �2Ui’s as the multipliers for the flow conservation
constraints eq.(7)), where the proof is similar to that in [17],
and we omit it here:
Dual of L

2

-norm Network Flow Optimization (L
2

Dual):

max

U
U
1

� 1

2

nX

i=1

X

j:Ui>Uj

(Ui � Uj)
2

wij
. (14)

2. Note that our Lagrange multipliers are negatives of those used in the
“Dual Shortest Path Formulation (D-SP)” in [35], p. 3.
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subject to Un = 0.
Let X⇤ denote the optimal flow solution to the primal

problem eq.(13), and U⇤ the optimal solution to the dual
problem. The duality and complementary slackness give us
the following relations between X⇤

ij’s and U⇤
i ’s: for any edge

(i, j) 2 E,

if U⇤
i > U⇤

j , then X⇤
ij =

U⇤
i �U⇤

j

wij
> 0; (15)

and if U⇤
i  U⇤

j , then X⇤
ij = 0. (16)

If we treat wij as the resistance on edge (i, j) 2 E, then the
relation eq.(15) gives us precisely Ohm’s law [17], and U⇤

i

is the voltage (potential) at node i when a unit of current is
injected at source node 1 and removed at sink node n (and
grounded with U⇤

n = 0). For any (i, j) 2 E, if U⇤
i > U⇤

j ,
then the current Iij flowing from node i to node j along edge
(i, j) is exactly X⇤

ij , as Iij = (U⇤
i � U⇤

j )/wij = X⇤
ij > 0. (In

a electrical network, the reverse current flow, i.e., the current
from node j to node i is defined as Iji := �Iij = �X⇤

ij < 0.)
Hence the optimal solution to the dual problem eq.(14), U⇤,
is a potential function (the voltage potential in the electrical
network G): U⇤

i is the voltage potential from node i to
destination node n (ground).

For (i, j) 2 E, define aij := 1/wij , the conductance
on edge (i, j), and for (i, j) 62 E, aij = 0. From the
flow conservation constraints (or directly by solving the dual
optimization problem eq.(14)), we see that

U⇤
i =

8
><

>:

Pn
j=1

aijP
k aik

U⇤
j +

1P
k aik

if i = 1Pn
j=1

aijP
k aik

U⇤
j if i = 2, . . . , n� 1

0 if i = n

,

(17)
which gives the Kirchhoff’s law for voltage in an electrical
network. The dual problem eq.(14) gives us the Dirichlet
principle [17]: the voltage potentials, U⇤, taken within the
electrical network G minimizes the total energy dissipation.
Likewise, the L

2

-norm flow optimization problem also has a
physical interpretation (Thompson’s Principle [17]): among all
flows X 2 F , the optimal (current) flow, X⇤, minimizes the
energy dissipation in the (electrical) network.

This connection between currents (and voltage) in electrical
networks and L

2

-norm network flow optimization is well
known in the literature (see, e.g., [8], [13], [17], [18], [34]),
where the expected round-trip commute times between two
nodes in a random walk over a network, whose link weights
are conductances (reciprocals of resistances), is the same as the
effective resistance between the those two nodes treating the
graph as an electrical network. These connections give rise to
potential-based (“all-path”) routing (or “stochastic routing”)
in communication and wireless sensor networks [17], [26].
Using the relations eq.(15) and eq.(16), it is easy to see that
for any path P from node 1(source) to node n (destination)
in the network G, the (current) flow along P is nonzero (i.e.,
X⇤

ij > 0, 8hi, ji 2 P ) if and only if the potential (voltage) at
any node i along the path from node 1 to node n is strictly
decreasing (i.e., 8hi, ji 2 P , U⇤

i > U⇤
j ). Hence the routing

graph GX⇤ induced by the optimal flow to the L
2

-norm flow
minimization problem is a DAG consisting of any path from

source node 1 to destination node n with strictly decreasing
potentials – that is what we also refer to the potential-based
routing as “all-path” routing. Moreover, Ohm’s law specifies
how flows along the paths are split – proportional to the
potential difference along an edge and inverse to the resistance
of the edge, namely, X⇤

ij = (U⇤
i � U⇤

j )/wij .

3 MIXED L1 AND L2-NORM NETWORK FLOW OP-
TIMIZATION AND THE ROUTING CONTINUUM

The results in the previous section show that the optimal
flows that minimize the (weighted) L

1

-norm and L
2

-norm in a
network yield the shortest path and (potential-based) “all-path”
routing, respectively. Intuitively, if we treat wij as “delay” on
each link (i, j), then the L

1

-norm minimization produces an
optimal flow routing that minimizes the total delay; whereas
the L

2

-norm minimization produces an optimal flow routing
that minimizes the total energy dissipation (treating wij as the
resistance of link (i, j)). This gives rise to a natural question:
can we generate other routing strategies between these two
extremes, e.g., routing using shortest paths as well as second-
shortest paths, via network flow optimization with respect to
some other forms of cost metrics? In particular, can these
routing strategies be derived by trading off the total delay (the
L
1

-norm) and the total energy (the L
2

-norm)? This leads us
to posing the following mixed L

1

- and L
2

-norm network flow
optimization problem with ✓ � 0, subject to flow conservation
law eqs.(7) and (8), denoted as X 2 F .

Mixed L
1

- and L
2

-norm Network Flow Optimization
(Primal):

min

X2F

nX

i=1

nX

j=1

wijX
2

ij + 2✓

nX

i=1

nX

j=1

wijXij . (18)

The objective function of the above mixed network flow
optimization problem consists of a linear combination between
the L

1

- and L
2

-norm via the tradeoff parameter ✓ � 0.
Alternatively, the mixed objective function can be designed
as a convex combination between L

1

- and L
2

-norm, i.e.,
(1��)

Pn
i=1

Pn
j=1

wijX
2

ij+�
Pn

i=1

Pn
j=1

wijXij , with 0 
�  1, which leads to exactly the same problem as eq.(18),
by taking the relation � = 1/(1 + 2✓). In the paper, we focus
on the linear combination form objective function for brevity.

Theorem 1 below presents the dual and optimal solution
to this flow optimization problem, by introducing Lagrange
multipliers �2Ui.

THEOREM 1. Mixed L
1

- and L
2

-norm Network Flow
Optimization (Dual):

max

U
U
1

� 1

2

X

i

X

j:Ui�Uj>✓wij

(Ui � Uj � ✓wij)
2

wij
(19)

s.t.Un = 0. (20)

Let X⇤
(✓) be the optimal solution to the primal problem

eq.(18), and U⇤
(✓) the optimal solution to the dual problem

eq.(19). X⇤
(✓) and U⇤

(✓) follow the following relations.

X⇤
ij(✓) =

(
U⇤

i (✓)�U⇤
j (✓)

wij
� ✓ if U⇤

i (✓)� U⇤
j (✓) > ✓wij

0 if U⇤
i (✓)� U⇤

j (✓)  ✓wij .
(21)
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Proof : By introducing Lagrangian multiplier 2Ui (1  i  n)
for each equality constraint in eq.(7), and Lagrangian multi-
plier 2tij (1  i, j  n) for each inequality constraint in
eq.(8), the Lagrangian function of the problem eq.(18) can be
written as
L(X,U, t) =

X

i

X

j

�
X2

ijwij � 2(Ui � Uj � ✓wij + tij)Xij

�

+ 2(U
1

� Un). (22)

Then, we take the partial derivative of L(X,U, t) (eq.(22))
with respect to Xij , and solve the equation that the partial
derivative equals 0 for each i, j = 1, . . . , n.
@L(X,U, t)

@Xij
= 2 (Xijwij � (Ui � Uj � ✓wij + tij)) = 0,

(23)

Xij =
Ui � Uj + tij

wij
� ✓. (24)

Plugging the eq.(24) into eq.(22) yields the following dual
problem.

max

U
U
1

� 1

2

X

i

X

j

(Ui � Uj � ✓wij + tij)
2

wij
(25)

s.t. Un = 0 and tij � 0, for i, j = 1, . . . , n, (26)

Since the primal problem is convex, the strong duality and
complementary slackness hold, thus the Karush-Kuhn-Tucker
(KKT) conditions [7] are sufficient and necessary to be the
optimal solution to both of the primal and dual problems. The
KKT conditions include the primal constraints eq.(7)–(8) and
the following three conditions.

tij � 0, (27)
tijXij = 0, (28)
Xijwij � (Ui � Uj � ✓wij + tij) = 0. (29)

From the eq.(28), Xij or tij cannot both be zero. By setting
one of them to be zero, we can solve the other. Then by
checking the positivity of the solution, we get the optimal
solution.

t⇤ij =

⇢
0 if U⇤

i � U⇤
j > ✓wij ,

�(U⇤
i � U⇤

j � ✓wij) if U⇤
i � U⇤

j  ✓wij , (30)

X⇤
ij =

(
U⇤

i �U⇤
j

wij
� ✓ if U⇤

i � U⇤
j > ✓wij ,

0 if U⇤
i � U⇤

j  ✓wij .
(31)

Since the optimal t⇤ij is a function of U⇤
i ’s, we can plug it

in eqs.(25)-(26) to simply the dual problem, and eliminate the
variable tij , which yields eq.(21).

3.1 Optimal trade-off
Now, we are in a position to prove that the mixed L

1

-
and L

2

-norm network flow optimization problem and its
solution (in eq.(18) and Theorem 1) reflect the optimal trade-
off between the shortest path routing and the “all path”
routing, namely, for a given average delay (upper) bound, the
optimal solution in Thoerem 1 leads to the minimal energy
consumption, and vice versa.

Given a unit network flow from node 1 to node n, let
y be a given average delay bound as a constraint, that is,

the distribution of the flow in the network yields a L
1

-norm
objective (the average delay) less than or equal to y. Then, the
problem is to find the optimal flow distribution that minimizes
L
2

-norm objective (the energy consumption). This problem
can be formulated as follows.

L
1

-norm constrained L
2

-norm network flow optimiza-
tion problem(Primal):

min

X2F

nX

i=1

nX

j=1

wijX
2

ij . (32)

s.t.
nX

i=1

nX

j=1

wijXij  y (33)

LEMMA 2. The L
1

-norm constrained L
2

-norm network flow
optimization problem in eq.(32) and (33) is equivalent to the
mixed L

1

- and L
2

-norm problem in eq.(18).

Proof Sketch: Let 2Ui, 2tij , and 2✓ be the lagrange multipli-
ers for the flow conservation constraints eq.(8), Xij � 0, and
the inequality (33), respectively. Then, by the KKT condition,
the dual problem is obtained as follows.

L
1

-norm constrained L
2

-norm network flow optimiza-
tion problem(Dual):

max

U,✓
U
1

� 1

2

X

i

X

j:Ui�Uj>✓wij

(Ui � Uj � ✓wij)
2

wij
(34)

s.t.Un = 0 and
nX

i=1

nX

j=1

wijXij  y. (35)

The optimal solutions to the dual problem, denoted as
U⇤

(✓), and ✓⇤, can be obtained as following relations.

X

j:U⇤
i �U⇤

j �✓wij

�U⇤
i � U⇤

i

wij
� ✓⇤

�
=

⇢
1 i = 1

0 1 < i < n, (36)

U⇤
n = 0, and

nX

i=1

nX

j=1

(U⇤
i � U⇤

i � ✓⇤wij) = y. (37)

From the strong duality and the complementary slackness, we
have the optimal solution for the primal problem as

X⇤
ij(✓) =

(
U⇤

i �U⇤
j

wij
� ✓⇤ if U⇤

i � U⇤
j > ✓⇤wij

0 if U⇤
i � U⇤

j  ✓⇤wij .
(38)

where ✓⇤ can be obtained by solving the dual problem
in eq.(36) and (37), in terms of y. Hence, the L

1

-norm
constrained L

2

-norm network flow optimization problem has
exactly the same optimal solution of X⇤

ij as the mixed L
1

-
and L

2

-norm network flow optimization problem, where the
trade-off parameter ✓⇤ is governed by the L

1

-norm (or average
delay) constraint y, which in turn illustrates that both problems
are identical.

Similarly, given a certain average energy consumption
bound, the problem of minimizing the average delay, is
also equivalent to the mixed L

1

- and L
2

-norm optimization
problem, with the trade-off parameter ✓⇤ determined by the
average consumption constraint.
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3.2 Routing Continuum

Clearly, ✓ = 0 gives us the L
2

-norm network flow opti-
mization. In the following we will show that for sufficiently
large ✓, the routing graph induced by the optimal solution
to eq.(18) gives the same shortest path DAG as the L

1

-norm
flow optimization. In other words, for sufficiently large ✓, the
optimal solution to eq.(18) yields the shortest path routing.
Furthermore, for ✓ in between, the optimal solution to eq.(18)
yields a continuum of routing graphs with the “all-path” and
shortest-path DAGs as two extremes in the continuum.

Fix ✓ � 0, and let GX⇤
(✓) denote the routing graph (DAG)

induced by the optimal flow solution X⇤
(✓) to eq.(18), i.e.,

for any edge (i, j) 2 E, the arc hi, ji is included in GX⇤
(✓) if

and only X⇤
ij(✓) > 0. We use P 2 GX⇤

(✓) to denote a path P
from node 1 (source) to node n (destination) where the flow
along this path is nonzero, i.e., for any hi, ji 2 P , X⇤

ij(✓) > 0.
We have the following lemma:

LEMMA 3. Consider any path P 2 GX⇤
(✓), and Q be any

path from node 1 to node n. The following holds:

✓
X

hi,ji2P

wij < U⇤
1

(✓)  (✓ + 1)

X

hi,ji2Q

wij . (39)

Proof : For any hi, ji 2 P , since X⇤
ij(✓) > 0, from eq.(21)

we have U⇤
i (✓) � U⇤

j (✓) = ✓wij + wijX
⇤
ij(✓). ThereforeP

hi,ji2P (U
⇤
i (✓) � U⇤

j (✓)) =

P
hi,ji2P (✓wij + wijX

⇤
ij(✓)).

Hence

U⇤
1

(✓) =
X

hi,ji2P

(✓wij + wijX
⇤
ij(✓)) > ✓

X

hi,ji2P

wij , (40)

as X⇤
ij > 0 for any hi, ji 2 P . On the other hand, for any

hi, ji 2 Q, from eq.(21) we have U⇤
i (✓) � U⇤

j (✓)  ✓wij +

wijX
⇤
ij(✓), where the inequality holds when X⇤

ij(✓) = 0.
Summing up along all edges hi, ji 2 Q, we have

U⇤
1

(✓) 
X

hi,ji2Q

(✓wij + wijX
⇤
ij(✓))  (✓ + 1)

X

hi,ji2Q

wij ,

where the last inequality follows from the fact that X⇤
ij 

1. Combining this and the inequality in eq.(40) proves the
lemma.

From Lemma 3, the following holds for any ✓ > 0,
X

hi,ji2P

wij < (1 + ✓�1

)min

Q

X

hi,ji2Q

wij . (41)

Using this Lemma, we establish the following theorem.

THEOREM 2 (Routing Continuum). Let R(0) denote the
(potential-based) “all-path” routing graph in Section 2.3,
namely, the routing graph induced by the optimal L

2

-norm
flow X⇤

(0), the optimal solution to eq.(18) with ✓ = 0. Let
P denote the collection of all paths (with nonzero flow), P 2
R(0), from source node 1 to destination n. Sort and group the
paths based on their length, i.e., |P | :=

P
hi,ji2P wij , which

yields a partition (equivalent classes) of P: P
1

, . . . ,PM ,
where Pm = {P 2 R(0) : |P | = Lm}, m = 1, . . . ,M ,
and L

1

< . . . < LM . Clearly L
1

is the length of the shortest
paths.

For ✓ > 0, let R(✓) denote the routing graph induced by
the optimal flow X⇤

(✓), the solution to the mixed L
1

- and
L
2

-norm flow optimization problem. Then for (Lm�L
1

)/L
1

<
✓�1  (Lm+1

� L
1

)/L
1

, m = 1, . . . ,M (here we define
LM+1

= 1), we have

R(✓) ✓ [m
k=1

Pk. (42)

In other words, paths in R(✓) have length at most Lm.

Proof : We prove by contradiction. Given any m, m =

1, . . . ,M , and ✓ > 0 where (Lm � L
1

)/L
1

< ✓�1 
(Lm+1

� L
1

)/L
1

, suppose there exists P 2 R(✓) such that
|P | > Lm (thus |P | � Lm+1

). From Lemma 3, the length of
any path in the routing graph R(✓) used to route the optimal
flow X⇤

(✓) is less than (1 + ✓�1

)L
1

 Lm+1

. This leads to
a contradiction.

Theorem 2 states as ✓ increases from 0 to 1, or equivalently
✓�1 decreases to 0, longer paths in R(0) are pruned, yielding a
“sparser” routing graph R(✓) that contains only paths of length
less than (1 + ✓�1

)L
1

. In fact, there are a finite sequence of
routing graphs Rm, 1  m  M , where Rm only contains
paths of length at most Lm. We refer to this sequence of
routing graphs as the routing continuum.

In the next section we will present an algorithm for explic-
itly constructing the routing continuum, and in particular, for
computing the optimal flow solution, X⇤

(✓), which specifies
how the optimal flow is routed among the paths in Rm.

4 COMPUTING THE ROUTING CONTINUUM

In this section we describe an efficient algorithm for com-
puting the routing continuum and the associated optimal flow
X⇤

(✓) for all ✓’s, and use two simple examples to illustrate
the algorithm and results obtained thereof.

We introduce an iterative process for computing the routing
continuum and the optimal flow X⇤

(✓), starting with ✓ = 0,
where each step involves solving a set of linear equations in
U⇤
i (✓)’s. Below, we provide detailed derivations of how to

compute the routing continuum of a given graph, which in
turn serve as a formal proof of the correctness of our proposed
algorithm.

For any ✓, let R(✓) = (V (✓), E(✓)) denote the routing
graph induced by X⇤

(✓), a subgraph of G = (V,E), where
(i, j) 2 R(✓) if and only if X⇤

ij(✓) > 0. In the following,
we will treat R(✓) as an undirected graph. Hence an edge
(i, j) 2 R(✓) if and only if either X⇤

ij(✓) > 0 or X⇤
ji(✓) > 0,

or equivalently, (i, j) 2 R(✓) if and only if |U⇤
i (✓)�U⇤

j (✓)| >
✓wij . For i 2 V (✓), let �(+)

i (✓) denote the number of edges
(k, i) with incoming flow (i.e., X⇤

ki(✓) > 0); or formally,
�

(+)

i (✓) :=

P
k 1{U⇤

k (✓) � U⇤
i (✓) > ✓wki}. Likewise, let

�

(�)

i (✓) denote the number of edges (i, j) with outgoing flow
(i.e., X⇤

ij(✓) > 0); thus �

(�)

i (✓) :=
P

j 1{U⇤
i (✓) � U⇤

j (✓) >

✓wij}. Define �i(✓) := �

(�)

i (✓) � �

(+)

i (✓), and di(✓) =P
j:|Ui�Uj |>✓wij

aij =

P
j:(i,j)2E(✓) aij , where aij := w�1

ij
if wij > 0, and aij := 0 if otherwise. Then from eq.(19) (by
letting the first order derivative of the objective function equal
to zero), we see that the optimal U⇤

i (✓)’s satisfy the following
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conditions:

di(✓)U
⇤
i (✓)�

X

j:(i,j)2E(✓)

aijU
⇤
j (✓)� ✓�i(✓) =

n
1 i = 1
0 1 < i < n,

(43)
and U⇤

n(✓) = 0. (44)

We can rewrite eq.(43) more compactly in the matrix form:

L(✓)U⇤
(✓)� ✓�(✓) = b. (45)

Here, L(✓) := [Lij(✓)] is the n � 1 by n � 1 submatrix of
the standard graph Laplacian [10] of R(✓) (with the adjacency
matrix A(✓) := [aij ], i, j 2 V (✓)), restricted to V (✓) � {n},
namely, Lii(✓) := di(✓), and Lij(✓) := �aij , i, j 2 V (✓) �
{n}. �(✓) := [�i(✓)], the vector consisting of �i(✓), and
b = [1, 0, . . . , 0]T is the vector corresponding to the right hand
side of eq.(43). Since R(✓) is connected, L(✓) is non-singular
and thus

U⇤
(✓) = L�1

(✓)(✓�(✓) + b). (46)

Hence given ✓, we can explicitly solve for U⇤
(✓) using eq.(46).

However, the definitions of both L(✓) and �(✓) hinge on the
routing graph R(✓) = (V (✓), E(✓)), which is itself defined
assuming we know X⇤

ij(✓)!
This circular dependency fortunately can be broken. From

Theorem 2, we know that there exist only a finite sequence of
routing graphs, R(✓m), 0  m  M , where 0 = ✓

0

< ✓
1

<
. . . < ✓M . In other words, for ✓m  ✓ < ✓m+1

, 0  m  M
(and define ✓M+1

= 1), R(✓) = R(✓m). Hence if we know
R(✓m), we can solve U⇤

(✓) for any ✓m  ✓ < ✓m+1

and
thus X⇤

(✓). This leads to the following recursive process for
computing the routing continuum and X⇤

(✓) for all ✓ � 0.
Phase 1: from ✓

0

= 0 to ✓
1

:
When ✓ = 0(= ✓

0

), L(0) is n � 1 dimensional square
submatrix of the graph Laplacian on the original network G
(restricted to V �{n}). Then U⇤

(0) = L�1

(0)b is the optimal
solution to the L

2

-norm flow optimization, and R(0) is the
“all-path” routing graph induced by the optimal L

2

-norm flow
X⇤

(0).
Now consider any sufficient small ✓ > 0 (any ✓ < ✓

1

would
suffice) such that R(✓) = R(0) (thus X⇤

ij(✓) > 0 for any
(i, j) 2 R(0). Hence �(✓) = �(0), L(✓) = L(0), and U⇤

(✓)
is given by

U⇤
(✓) = L�1

(0)(✓�(0) + b) = U⇤
(0) + ✓L�1

(0)�(0).
(47)

From eq.(21) and eq.(47), if Ui(✓)� Uj(✓) > ✓wij ,

X⇤
ij(✓) =

U⇤
i (✓)� U⇤

j (✓)

wij
� ✓ = X⇤

ij(0)� ✓↵ij(0), (48)

where ↵ij(0) = 1 � (�i(0) � �j(0))/wij is a constant, with
�i(0) = [L�1

(0)�(0)]i, if i 2 V � {n}; and �i(0) = 0, if
i = n. Eq.(47) shows that U⇤

(✓) is linear function of ✓, and
for any edge (i, j) where X⇤

ij(0) > 0, X⇤
ij(✓) is also linear

in ✓. Clearly, on edge (i, j) with ↵ij(0) > 0, the optimal
flow X⇤

ij(✓) decreases when ✓ increases; whereas on those
with ↵ij(0) < 0, the optimal flow X⇤

ij(✓) increases (✓ has
no impact on those edges with ↵ij(0) = 0). Hence we know

precisely the (first) boundary condition, namely, the smallest
positive ✓, when the first set of edges are to be truncated from
R(0), namely, those where X⇤

ij(✓) becomes 0:

✓
1

:= min

hi,ji:↵ij(0)>0

{X⇤
ij(0)/↵ij(0)}.

Removing these edges yields the next routing graph R(✓
1

), for
which L(✓

1

) and �(✓
1

) can now be defined. Using eqs.(47)
and (48), we can solve for the optimal solution, U⇤

(✓
1

) , and
consequently, X⇤

(✓
1

).
Phase 2: from ✓k to ✓k+1

:
More generally, given R(✓k), and the corresponding optimal

solutions, U⇤
(✓k) and X⇤

(✓k), we can solve for U⇤
(✓) and

X⇤
(✓) for any ✓k  ✓ < ✓k+1

, using a similar argument.
Again from eq.(46), with L(✓) = L(✓k) and �(✓) = �(✓k),
we have

U⇤
(✓) = L�1

(✓k)(✓�(✓k) + b)
= U⇤

(✓k) + (✓ � ✓k)L
�1

(✓k)�(✓k), (49)

and if Ui(✓)� Uj(✓) > ✓wij ,

X⇤
ij(✓) =

U⇤
i (✓)� U⇤

j (✓)

wij
� ✓ = X⇤

ij(✓k)� (✓ � ✓k)↵ij(✓k),

(50)

where ↵ij(✓k) = 1 � (�i(✓k) � �j(✓k))/wij is a constant,
with �i(✓k) = [L�1

(✓k)�(✓k)]i, if i 2 V (✓k) � {n}; and
�i(✓k) = 0, if i = n. This gives us the next boundary, ✓k+1

,
for the next set of links to be truncated (from R(✓k)), where

✓k+1

= min

hi,ji:↵ij(✓k)>0

{X⇤
ij(✓k)/↵ij(✓k)}+ ✓k. (51)

Removing these edges from R(✓k) yields R(✓k+1

), using
which we can then solve for the optimal solutions, U⇤

(✓k+1

)

and X⇤
(✓k+1

).
A pseudo-code algorithm for computing the boundary con-

ditions ✓m’s, 0  m  M , is given in Algorithm 1, and
for computing the optimal flow solution, X⇤

(✓), is given in
Algorithm 2.

Complexity analysis. Since each step of the recursive
process involves solving a set of linear equations [33], the
worse case complexity of which is O(n3

), and M is at
most |E| (the number of edges), the worst-case complexity
of computing the entire routing continuum is O(n3|E|), or
O(n5

) in the worst case.
In [25], we provide some numerical results from two

synthetic networks and a real network, illustrating how the
routing continuum grows as the parameter ✓ changes.

5 GENERALIZATIONS AND APPLICATIONS

In this section, we present some extensions to the mixed
L
1

/L
2

-norm network flow optimization, and briefly touch on
their potential applications to traffic engineering and wireless
sensor networks. In [25], we also discuss how to apply the
routing continuum theory to analyze network robustness.
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Algorithm 1 Routing Continuum Algorithm
1: INPUT: Weight matrix W , source-id 1, destination-id n;
2: OUTPUT: Boundary vector [✓

0

= 0, . . . , ✓M ], the corre-
sponding [X⇤

(✓
0

), . . . , X⇤
(✓M )];

3: k = 0;
4: Compute All-path flow distribution X⇤

(✓
0

= 0) from
eq.(15)(16);

5: Compute the shortest path flow distribution X⇤
(1) from

eq.(11)(12);
6: while (X⇤

(✓k) 6= X⇤
(1)) do

7: k = k + 1;
8: Compute ✓k and X⇤

ij(✓k) using eq.(51) and eq.(50)
respectively;

9: end while

Algorithm 2 Solving the Optimal Flow Distribution X⇤
(✓),

for a ✓ � 0.
1: INPUT: [✓

0

= 0, . . . , ✓M ], [X⇤
(✓

0

), . . . , X⇤
(✓M )],✓, W ,

source-id 1, destination-id n;
2: OUTPUT: Optimal flow distribution X⇤

(✓);
3: Search for the interval, such that ✓ 2 [✓k, ✓k+1

);
4: Compute the X⇤

(✓) from eq.(50), for ✓.

5.1 Multiple Flows, Link/node Capacity Constraints and
Traffic Engineering
In the previous sections, for simplicity we have assumed a
single flow of unit 1 from source node 1 to destination n. The
formulation can be easily extended to accommodate multiple
flows [29], [32], [35] between different source-destination
pairs and with different units, as flows are additive on (links
of) the network. Consider K flows, where the k-th flow X(k)

of I(k) units is routed from source node sk to destination node
tk, 1  k  K. Thus each flow X(k) satisfies the following
conservation constraints:

X

j:(i,j)2E

X
(k)
ij �

X

l:(l,i)2E

X
(k)
li =

8
<

:

I(k) if i = sk (Src)
�I(k) if i = tk (Dst)
0 if i 6= sk, tk,

(52)

We use Fk to denote the collection of flows satisfying eq.(52).
Then the mixed L

1

/L
2

-norm multi-flow optimization is given
in eq.(53). It is not too hard to see that this problem can
be decomposed into K subproblems, each of which forms a
single-flow mixed L

1

and L
2

-norm optimization problem, and
thus can be solved using the method presented before.

min

X(k)2Fk
1kK

KX

k=1

nX

i=1

nX

j=1

(wijX
(k)
ij

2

+ 2✓wijX
(k)
ij ) (53)

subject to X
(k)
ij � 0, 1  i, j  n, 1  k  K.

In addition to having multiple flows (demands), many
practical network flow problems, e.g., traffic engineering in
a data network, also impose the link capacity constraints [14],
[19]. Namely, given a network G = (V,E), for each edge
(i, j) 2 E, let Cij(= Cji) denote the link capacity. Then
the total amount of flows on link (i, j) cannot exceed Cij .

Given any set of K flows, X(k) 2 Fk, 1  k  K, let
↵ be a variable representing the maximum link utilization
in the network, i.e.,

P
k X

(k)
ij  ↵Cij . Similar to [35], we

consider the following maximum link utilization optimization
and mixed L

1

/L
2

-norm flow optimization with link capacity
constraints (where ✏ = ✓�1):
Capacity Constrained Mixed Flow Optimization (Prime):

min

X(k)2Fk
1kK

↵+

KX

k=1

nX

i=1

nX

j=1

⇣ ✏

2

wijX
(k)
ij

2

+ wijX
(k)
ij

⌘
(54)

subject to X
(k)
ij � 0, 1  k  K; and (55)

KX

k=1

X
(k)
ij  Cij↵, 1  i, j  n. (56)

Let U (k)
i be the Lagrange multipliers for the flow conservation

constraints eq.(52), and sij the Lagrange multipliers for the
inequality constraints

PK
k=1

X
(k)
ij � Cij↵  0. Then the dual

problem is given by
Capacity Constrained Mixed Flow Optimization (Dual):

max

U,s

KX

k=1

I(k)U (k)
1

� 1

2

KX

k=1

nX

i=1

X

j:U
(k)
i �U

(k)
j >wij+sij

(U (k)
i � U (k)

j � (wij + sij))
2

✏wij

subject to sij � 0,

nX

i=1

nX

j=1

sijCij = 1, and U (k)
n = 0.

Let ↵⇤ and X(k)⇤
ij’s be the optimal solution to the primal

problem and U (k)⇤
i ’s and s⇤ij’s the optimal solution to the

dual problem. Then by the complementary slackness, we have
X(k)⇤

ij > 0 if and only if U (k)⇤
i � U (k)⇤

j � wij + s⇤ij ; and
furthermore, if s⇤ij > 0, then

PK
k=1

X(k)⇤
ij = Cij↵

⇤. The latter
implies that any link (i, j) 2 E with s⇤ij > 0 is a “bottleneck”
link where the (optimal) maximum link utilization is attained.
We see that on a bottleneck link (i, j), if X(k)⇤

ij > 0, then
X(k)⇤

ij = (U (k)⇤
i � U (k)⇤

j � (wij + s⇤ij))/(✏wij); whereas on
a non-bottleneck link (i.e., s⇤ij = 0), if X(k)⇤

ij > 0, then
X(k)⇤

ij = (U (k)⇤
i � U (k)⇤

j � wij)/(✏wij).
Comparing this with the optimal flow solutions to the mixed

L
1

/L
2

-norm without the capacity constraints, an additional
s⇤ij/(✏wij) amount is reduced from each flow X(k)⇤

ij on the
bottleneck links (i, j). Intuitively, it is as if the weights on the
bottleneck links were replaced with w0

ij = wij + s⇤ij to dis-
courage and shift away flows on the bottleneck links. In fact,
suppose s⇤ij’s are known a priori. We can convert the network
flow optimization eq.(54) with link capacity constraints to one
(without link capacity constraints) as eq.(53), where wij’s in
the L

1

-norm term are replaced by w0
ij := wij + s⇤ij’s, but not

those in the L
2

-norm term. This yields an example of net-
work flow optimization with heterogenous L

1

/L
2

costs to be
discussed in the next subsection. Intuitively, this implies that
the optimal flow with link capacity constraints that minimizes
overall maximum link utilization is the one that discourages
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the usage of bottleneck links by increasing the (L
1

) link costs
on these links and thus shifting flows away from them.

Finally, for each ✏(= ✓�1

), we can use the optimal solution
↵⇤

(✓) to eq.(54) to determine the best trade-offs between using
shorter paths and longer paths, namely, the best routing graph
R(✓) which minimizes the overall network link utilization
↵(✓) among any choice of ✓ � 0:

✓⇤ := argmin✓�0

↵⇤
(✓). (57)

In general, with the link capacity constraints, finding the
optimal ✓⇤ requires search in the solution space, {✓ : ↵⇤

(✓)}.
On the other hand, assuming that wij’s are fixed, we can
find the optimal ✓⇤ in polynomial time by first computing
the entire routing continuum using Algorithms 1 and 2, and
then calculating the corresponding maximum link utilization
↵⇤

(✓) := max

(i,j){
P

k X
(k)⇤

ij/Cij} for each ✓ > 0. Thus
with respect to a fixed set of link weights wij’s, the routing
graph R(✓⇤) yields the best trade-offs in usage of shorter and
long paths: it minimizes the overall network utilization among
all routing graphs.

Moreover, practical network flow problems, e.g., routing in
bandwidth constrained wireless networks, may involve node
capacity constraints [6], [12], [37], where for node i 2 V ,
with node capacity Ci, the total amount of flows going through
node i cannot exceed Ci. For a set of K flows, X(k) 2 Fk,
1  k  K,

P
k

P
j X

(k)
ij  ⇠Ci holds true, where ⇠ is

the maximum node capacity utilization in the network. While
considering node capacity constrained mixed L

1

/L
2

-norm
flow optimization problem, similar results can be obtained
as the link capacity constrained L

1

/L
2

-norm optimization
problem. We omit the details here for brevity.

5.2 Flow Optimization with Heterogeneous L
1

/L
2

Link
Weights
We consider the following generalization where L

1

-norm and
L
2

-norm have different sets of link weights, wij’s and rij’s:
Flow Optimization with Heterogeneous L

1

/L
2

Weights
(Prime):

min

X(k)2Fk
1kK

KX

k=1

nX

i=1

nX

j=1

⇣
rijX

(k)
ij

2

+ 2✓wijX
(k)
ij

⌘
, (58)

subject to X
(k)
ij � 0, 1  k  K.

We have already seen one instance of such generalization in
the application of traffic engineering with link/node capacity
constraints. Another application arises more naturally in wire-
less sensor networks, where deciding on the best strategies
hinge on trading off different cost considerations [22], e.g.,
transmission latency as well as energy consumption – the latter
is important, for example, to maximize the sensor network
life time, where it is shown in [26] that potential-based
routing using L

2

-norm maximizes the network life time. Let
wij’s denote the per-hop transmission latency, and rij’s be
the transmission energy costs. Then, eq.(58) represents the
mixed L

1

/L
2

-norm network flow optimization problem with
heterogeneous L

1

/L
2

link weights. The dual problem can be
formulated as follows:

Flow Optimization with Heterogeneous L
1

/L
2

Weights
(Dual):

max

U,s

KX

k=1

I(k)U (k)
1 � 1

2

KX

k=1

nX

i=1

X

j:(i,j)2E(k)(✓)

(U(k)
i �U(k)

j �✓wij)
2

rij

subject to U (k)
n = 0, 1  k  K,

where E(k)
(✓) is the edge set, link (i, j) 2 E(k)

(✓) if
and only if U

(k)
i � U

(k)
j > ✓wij . Let X(k)⇤

ij’s and U (k)⇤
i ’s

be the optimal solution to the primal and dual problems,
respectively. By complementary slackness, we have X(k)⇤

ij =

(U (k)⇤
i � U (k)⇤

j � ✓wij)/rij > 0 if and only if U (k)⇤
i �

U (k)⇤
j > ✓wij . Using this relation, we can generalize Lemma 3

as below:

✓
X

hi,ji2P (k)

wij < U (k)⇤
1

(✓)  ✓
X

hi,ji2Q(k)

wij +

X

hi,ji2Q(k)

rij ,

(59)

where P (k) is a routing path with nonzero flow X(k)⇤ from
source sk to destination tk (i.e., P (k) 2 GX(k)⇤ ), whereas Q(k)

is an arbitrary (simple) path in the network G from source
sk to destination tk. For any given ✓ � 0 and 1  k  K,
using eq.(59) we can again characterize all paths in the routing
graph R(k)

(✓) – the routing graph induced by X(k)⇤
(✓): for

any P 2 R(k)
(✓), its path length, |P | < L

(k)
min,1 + ✓�1L

(k)
max,2,

where L
(k)
min,1 := minQ(k)

P
hi,ji2Q(k) wij is the path length

of the shortest (in terms of L
1

link weights ) paths from
sk to tk, and L

(k)
max,2 := maxQ(k)2R(k)

(0)

P
hi,ji2Q(k) rij is

the the path length of the longest (in terms of L
2

link
weights) paths in the routing graph R(k)

(0), the routing graph
induced by the optimal L

2

-norm flow X(k)
(0). Therefore,

we can establish a generalized routing continuum theorem
analogous to Theorem 2, yielding a finite sequence of routing
graphs, R(k)

(✓
(k)
m )’s. Furthermore, the boundary conditions for

✓
(k)
m ’s can be precisely characterized using a similar iterative

process as presented in Section 4, and Algorithms 1 and 2
can be analogously generalized to compute the entire routing
continuum and {X(k)⇤

(✓), 1  k  K} for all ✓ > 0. We
omit the details here for brevity.

6 RELATED WORK
Routing in networks has been extensively studied under prac-
tical settings, with a literature too vast to cite completely. Here
we will mention a few that are most relevant. For example, the
authors in [28] propose an optimization model for QoS routing
protocol design with multiple L

1

-norm performance objec-
tives, where the objectives are linearly combined with tunable
parameter. In the context of traffic engineering in IP data
networks, the authors in [15] show that given a set of traffic
demands, optimizing the link weights in a network (assuming
shortest-path routing) is NP-hard, and develop heuristics. The
authors in [36] propose a new link-state routing protocol PEFT
that goes beyond shortest paths by allowing longer paths and
splitting traffic over multiple paths with an exponential penalty
on longer paths. Via convex optimization, the authors show
PEFT achieves optimal traffic engineering. The studies in [2],
[3], [11], [30] analyze the trade-offs between shortest path
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routing and multi-path routing in both wired and wireless
network settings.

Different from earlier works, which focus on routing pro-
tocol designs for specific (wired/wireless) network scenarios,
our work studies routing from a more general and theoretical
perspective. It is partly inspired by the finding in [35], where
motivated by traffic engineering in IP networks, the authors
show that shortest path routing results from the optimal flow
minimizing the L

1

-norm in a network. In contrast, the optimal
flow minimizing the L

2

-norm in a network and its connection
to currents in resistive electrical networks (and random walks
on a graph) are well-known (see [17] and references thereof);
it leads to the potential-based, “all-path” (or stochastic)
routing that has been applied in wireless sensor networks,
e.g., to maximize network life time [26], or to minimize state
maintenance [9]. Our work generalizes these earlier results to
show that using the mixed L

1

/L
2

-norm flow optimization, we
can construct the entire routing continuum from the shortest-
path to all-path, with routing graphs consisting of paths of
increasing path lengths.

7 CONCLUSION

In this paper, we have formulated the network routing prob-
lem as flow optimization problem in a network with mixed
L
1

/L
2

-norms. Using this formulation, we established a sur-
prising result: the routing graphs induced by the optimal flow
solutions span the entire routing continuum from the shortest-
path to all-path routing. Using the duality theory, we also
developed an efficient iterative process for computing the
entire routing continuum and optimal flow solutions X⇤

(✓)
for any ✓ � 0. The basic theory is further extended to account
for multiple flows (traffic demands), link capacity constraints
and heterogeneous L

1

/L
2

link weights, with applications to
traffic engineering and wireless sensor networks, and network
robustness analysis.

As part of future work, we plan to investigate the routing
continuum theory on directed graphs (with both uni- and bi-
directional links) or signed graphs (with both positive and neg-
ative links), by applying the spectral graph theory developed
for directed graphs [5], [21]–[23] and signed graphs [20].
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