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Abstract—This documents provides numerical illustration results obtained by applying the routing continuum theory in two synthetic networks and
a real network topology. Moreover, besides the generalizations of the mixed L1- and L2-norm network flow optimization problem discussed in the
main file, in this document, we discuss one more application in analyzing network robustness, by introducing the generalized shortest path and

random walk betweenness centrality measures.

Index Terms—Routing continuum, network flow, betweenness centrality.

1 NUMERICAL ILLUSTRATION OF ROUTING CON-
TINUUM THEORY

We use two synthetic networks and a real network to show
how the routing continuum grows as the parameter 6 changes.
Fig. 1 shows an example topology, with three disjoint paths
between the source 1 and the destination 5, and each link
is with 1-unit weight. As the parameter § > 0 increases,
the longer paths P3 = {1 — 3 — 4 — 5} and P2 =
{1 — 2 — 5} are truncated gradually, and the shortest path
P1 = {1 — 5} is obtained when 6 increases to 1. Fig. 2 shows
the routing continuum, i.e. the optimal flow distributions at
each 6. We see that within the interval 6 € [0,0.4], the flows
on the longer paths P2 and P3 get linearly redistributed to the
shortest path P1, and the longest path P3 gets truncated when
6 = 0.4. Then the flow of the second longest path P2 keeps
decreasing as 6 increases, until the second boundary condition
@ = 1 holds, where P2 is truncated. During the routing
evolution process, the network flows are always redistributed
from longer paths to the shorter path, while increasing 6. When
6 > 1, namely, the largest boundary condition, the routing
solution is stabilized to the shortest path, i.e. P1.

Fig. 3 shows another example with five connected nodes
in the topology. Weights w;;’s are marked on the links. The
flow initiates at source 1 and is removed from destination 5.
Fig. 4~Fig. 8 show the optimal flow distributions (marked on
individual links) under five boundary conditions, [0y = 0,6, =
0.0914, 62 = 0.2850, 65 = 0.5700, 6, = 2|, In Fig. 4(6p = 0),
every link is active and follows the potential based “all-path”
routing. Then, as 6 increases to #; = 0.0914 (in Fig.5), link
(1,4) is truncated, and within the interval 6 € [0, 6], only the
flow on path {1 — 4 — 5} decreases, and gets redistributed
to other paths, because this path with total length 11 is the
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longest path in P(0), i.e. the “all-path” routing graph. Then,
when 6 increases to 03 = 0.2850, the flows on links (2, 3)
and (3,5) are truncated, because these two links are on the
second longest path {1 — 2 — 3 — 5}, with path length
5. Similarly, when 6 keeps increasing to 03 and 64, the rest
two longer paths {1 — 2 — 5} and {1 — 2 — 4 — 5} get
removed, respectively, and only the shortest path {1 — 5} is
left at last.

Now, we apply the routing continuum theory to Internet2
Abilene Network [1]. The Abilene network was a high-
performance backbone network established by the Internet2
community in the late 1990s. The Abilene Network was retired
and became the “Internet2 Network™ in 2007. Fig. 15 shows its
11 regional network aggregation points and backbone connec-
tions across them (primarily OC192 or OC48 backbone). We
consider the transmission cost between two end points roughly
proportional to their actual geographic distance, because the
velocity of light in an optical fiber becomes 60-70% compared
to it in vacuum [13], [26], [33]. Hence, in the numerical
analysis, we simply use the geographical distance as the link
weight for the transmission cost as marked in Fig. 9. We
choose the flow demand from Sunnyvale to New York.
As we increase 6 from 0, we observe a sequence of five
boundary 6’s, i.e., [p = 0,61 = 0.1082,02 = 0.2498,03 =
0.4943, 604 = 3.2108], in which order links (4 — 6), (5 — 1),
(10 59 - 3)and (10 - 7 -4 -1 = 11 — 8)
get truncated in sequence, and the optimal flow distribution
evolves from the “all-path” routing to “shortest-path” routing.
When 6y = 0, all paths are present in delivering the contents,
whereas only the shortest path {10 -3 — 6 — 5 — 2 — 8}
is active for 8 > 3.2108.

2 NETWORK ROBUSTNESS ANALYSIS VIA GENER-
ALIZED CENTRALITY MEASURE

The optimal flow distribution X*(6) to the mixed L;—
and Lo—norm network flow optimization problem indicates
exactly the loads on each link (resp. node) for certain flow
demands. When considering flow demands from all source
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Fig. 1. Example 1 with uni-
form weight w;; = 1

Fig. 2. Flow distribution evo-
lution of graph Fig. 1

Fig. 5. Flow distribution with
6, = 0.0914

Fig. 6. Flow distribution with
6, = 0.2850

Fig. 12. Flow distribution 6; = 0.2498

destination pairs, the average network flow on each link (resp.
node) infers the “importance” of the link (resp. node), namely,
the influence of the link (resp. node) in case of failure or being
attacked, which in turn reveals the robustness structure of
networks, i.e., which area of the network is more vulnerable to
attacks. The robustness centrality measure of links and nodes
in the network has been extensively studied, and has been ap-
plied to design topology control algorithm and routing protocol
in wireless sensor networks and delay tolerant networks [14],
[19]. Below, we show how our routing continuum theory can
be used to generalize various robustness centrality measures
of links/nodes in networks, where the ranking of links/nodes
in terms of their betweenness infer the network robustness
structure, i.e., those areas with high betweenness links/nodes
expose more risks to attacks or failures, as when removing
these links/nodes, more flows have to be rerouted or failed.

Fig. 7. Flow distribution with
03 = 0.5700

Fig. 13. Flow distribution 65 = 0.4943

Fig. 3. Example 2: Weight Flow distribution,
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Fig. 14. Flow distribution 8, =

2.1 Centrality measures for mixed network flow

Centrality measures were first developed in social network
analysis [9], [25], for example, how influential a user is
in a social network, with applications in robust community
detection [18], [23], mobility prediction [5], and etc. There
are four widely used centrality measures [25], that capture
the relative importance of a vertex or an edge within a
network from various aspects: degree ', eigenvector central-
ity 2 betweenness [10], [16], and closeness [28]. Betweenness
and closeness centrality measures are directly interpretable in

1. The node degree centrality is simply defined as the number of links
associated with a node, which reflects locally (i.e., within one hop,) how well
the node is connected to other nodes.

2. Eigenvector centrality takes the leading Eigenvector, i.e., the Eigenvector
corresponding to the largest Eigenvalue, of the adjacent matrix A as relative
scores to all nodes in the network, which follows the concept that connections
to nodes with higher scores contribute more to the score of the node than con-
nections to nodes with lower scores. PageRank [27] and Katz centrality [20]
can be viewed as two variations of the Eigenvector centrality measure.
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Fig. 15. Abilene network topology

terms of the shortest path and all-path routing, thus can be
generalized using our routing continuum theory to account
for mixed network flows. In the following, we will introduce
the mixed-flow betweenness for nodes or edges, a natural
generalization of the existing betweenness centrality measures.
The mixed-flow betweenness measures indicate the importance
of nodes or edges in terms of the degree to which a node
or an edge is participating in the communication between
node pairs in the network, which has implications in network
resource relocations and detecting robust subgraphs that are
resilient to attacks and failures. Note that closeness centrality
can similarly be generalized, and we omit these results here
for brevity.

2.2 Node Betweenness centrality

Node betweenness has been studied in the past as a measure
of the centrality and influence of nodes in networks.
Shortest-path betweenness. A simple example of such a
betweenness measure initially proposed by Freeman [8],
[16], [17] is shortest-path betweenness. Given a node i, its
shortest-path betweenness is defined as the number of shortest
(geodesic) paths between pairs of all other nodes that run
through 4. To be precise, given a graph G = (V, E), node
i’s betweenness centrality [16], [17] Cis is defined as®

c? = 2> sctev 9"

Fe s M

(s

where g; ") is the number of shortest paths from node s to node
(st) _

t that pass through i. Since the graph is undirected, g, =
9! always holds, thus computing ¢*" for only half of all
node pairs (i.e., for s < t) is sufficient. If there is more than
one shortest path between a node pair, each path is given equal
weight such that the total weight of all of the paths is unity.
Since when 6 is large enough, the optimal flow distribution

denoted by X*(co) represents the shortest path solution, the

3. Here, the normalizing constant is n(n — 1), where ¢ may also be a start
or end node of a source destination pair. Some definitions only count for those
node pairs without ¢ as a start or end node, where the normalizing constant
becomes (n — 1)(n — 2) instead.

3
shortest path betweenness centrality C¥ can be written as
CS = 23 ey 2pev X pi(00) @)
! n(n —1)

Current-flow betweenness*. Considering that the circuit cre-
ated by placing a resister on each edge of the network and unit
current source and destination at a particular node pair. The
resulting current flow in the network will follow Kirchhoff’s
and Ohm’s laws, going from source to destination along a
multitude of paths. Hence, The current-flow betweenness [24]
for a node ¢ is defined as the absolute value of the currents
summed over all node pairs that run through ¢. The optimal
optimal flow distribution X (" (0) of the Ly norm flow
optimization problem represents exactly the current flow for
source destination pair (s,t) with § = 0. The current-flow
betweenness C of node 4 can be written in terms of X (st)* (0)
as

C _ 2 ZS<1¢€V ZkEV X(St)Z’L(O)

Ci n(n —1)

3)

Mixed-flow betweenness. Shortest-path betweenness and
current-flow betweenness present two extremes. One uses
only shortest paths, and the other favors all-path to deliver
network flow. Our routing continuum theory naturally leads
to a generalized mix-flow betweenness, C; (), which captures
how much mixed flow X*(6) runs through a node given a
flow combination parameter 6.

_ 20 crev Lnev XO5(6)
n(n —1) ’

with # > 0. Note that the shortest-path betweenness (eq.(2))
and the current-flow betweenness (eq.(3)) are two special
cases of mixed-flow betweenness, as C7 = C;(co0) and
C’ic = C;(0), respectively. Given a specific § > 0, C;(0)
captures the importance of node ¢, in terms of the average
optimal flow going through node ¢ over all source destination
pairs.

Ci(0) 4)

2.3 Edge betweenness centrality

Analogically, the betweenness centrality can be defined for
edges, capturing how much network flow going through a
particular edge, summed over all node pairs in the network.
The shortest-path betweenness of an edge (i, 7) is the total
number of shortest paths running along (i,7), which was
first introduced by Anthonisse in [6], and Newman formally
defined it in [23]. It can be written in terms of the optimal
shortest path flow distribution denoted by X*(co) as

2 Zs<t€V X(St)ij(oo)
n(n —1)

G = 5)

Similarly, the current-flow betweenness of an edge (i, 7) is
the current flow running along (4, j) [10], [23], which can be

4. Current-flow betweenness is proven to be equivalent to random walk
(RW) betweenness [24]. For a node ¢, we calculate the expected number of
times that a random walk between a particular node pair will pass through 7,
and RW betweenness is the summation over all node pairs.
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computed using the following eq.(6) in terms of the optimal
Lo network flow distribution denoted by X*(0) as

2 Zs<t€V X(St)ij (0)
n(n—1)

cf = (6)

The mixed-flow betweenness of an edge (i, 7) is then a natural
generalization of eq.(5) and eq.(6) for 6 > 0.

2% e XED5(0)
Cig(0) = n(n —1)

(7

As discussed earlier, the trade-off parameter # > 0 governs
how much shortest path flow vs current flow is considered
in the mixed flow optimization problem. The mixed-flow
betweenness centrality measure for a link/node captures how
crucial the link/node is in carrying the network flow for all
possible node pairs. In communication networks, the link/node
betweenness measures in fact indicate how much (mixed)
network flow has to go through a particular link/node for all
source-destination pairs. An attack or failure to the links/nodes
with high betweenness leads to more influential impacts to the
network traffic. Hence the ranking of the links/nodes in terms
of their betweenness infer the network robustness structure,
namely, areas with high betweenness links/nodes are more
vulnerable to attacks or failures, since more flows have to be
rerouted or failed if these links/nodes fail.

TABLE 1
Edge ranking in mixed-flow betweenness (8 > 0).
Edge when 6 € when 6 € when
ranking || [0,0.002) | [0.002,0.06) | 6 > 0.06
#1 1,2 1,2) 24
#2 4,5 24 1,2
#3 24 “5) 4,5
#4 2.3) 2.3) 2.3)
#5 3.5) (3.5) 3.5)
#6 (1,5) (1,5) (1,5)
#7 2.5) 2.5) 2.5)
#3 (1,4 [§XD) (1,4

2.4 Numerical examples

Next, we use the topology in Fig. 3 and a real network
topology, i.e., Internet2 Abilene Network [1], as examples, to
show how the ranking of node/link in terms of betweenness
changes over 6.

When computing the betweenness centrality measures for
the five node topology in Fig. 3, we observe that as increasing
6 > 0, the ranking of links in terms of their mixed-flow
betweenness keeps relatively robust, namely, there are only
three different link ranking orders (See Tab 1). The highest
betweenness links are (1,2), (4,5) and (2,4), which all have
the smallest link weights. The link (2, 4) steps up to the highest
ranking, when 6 > 0.06. The node betweenness ranking is
more stable, which is unchanged over 6’s for topology in
Fig. 3 with nodes ranked as {2, 5,4, 1, 3} in a decreasing order.
Nodes with more links and lower link weights are ranked
higher, since they are more likely to serve as hubs to carry
more network flows.

Now we investigate how the link and node betweenness
ranking vary over 6 in Abilene network. As we increase 6 > 0,
there are twelve boundary 6’s, governing the different ranking
of link betweenness in Abilene network as shown in Table 2.
We observe that when 6 changes, namely, the network flow
evolves from “all-path” flow to “shortest-path” flow, the ranks
of links with the highest betweeness keep high ranking over 6,
i.e., links at rank # 1 to # 5 are unchanged. On the other hand,
the betweenness centrality link (3, 10) increases from the rank
#11 to #6 gradually (as highlighted in Table 2), which happens
because the high link weight of (3,10) suppress the “all-path
(current)” flow going through it, but it resides on more shortest
paths among node pairs, thus generates higher shortest-path
flow when 6 is large. Moreover, the ranks of links such as
(1,11), (2,8), and (8,11) decrease as 6 increases. The ranks
of some other links, including (1,5) and (4,7), keep stable
at rank #7-#9. When looking at the node betweenness, the
ranking is more stable than links, which is unchanged for all
0’s as shown in Table 3. The nodes placed in central US,
such as Kansas City and Indianapolis posses highest
node betweenness centrality, namely, being the busiest nodes
in carrying network flow.

We also computed the ranking of link/node betweenness
in other real networks, such as Roofnet [3] (with 38 nodes),
CERNET [4] (with 36 nodes), GEANT [2] (with 23 nodes),
where similar results are obtained and we omit them here for
brevity. From all these results, the node betweenness centrality
ranking is overall more stable than link betweenness centrality
ranking, through the entire routing continuum, i.e., all § > 0.

3 DiscussioN

In a broader context, the mixed L;/Ls optimization formu-
lation has been widely used, e.g., in the classical LASSO
problems [30], namely, the least square optimization problems
with a L;-norm penalty term, and more recently, in compres-
sive sensing [11], [31]. It is therefore well-known that the
L;-norm penalty forces the least-square solution, X *, to meet
certain sparsity constraints, i.e., || X*||; < e. Compared with
LASSO and compressive sensing settings, our setting has a
set of additional flow conservation constraints — these are
what makes the problem unique and leads to solutions that
have interesting interpretations and consequences, where the
solutions to the more general LASSO and compressive sensing
settings may not have, apart from the sparsity of the solutions.

Indeed, our routing continuum theory and the mixed L;-
and Lo-norm flow optimiaztion can be interpreted in terms of
the “sparsity” of the solutions also: the optimal flow solution
X*(0) to the mixed L1/Ly-norm flow optimization leads to a
sparser routing graph, where the path length of routes used for
routing the optimal flow from a source to a destination can not
be (1 + 0~1) longer than the shortest paths. More surprising
and interesting is that we can generate the entire routing
continuum from the mixed L;/Le-norm flow optimization.
The flow conservation constraints in fact play a key role
here: it leads to the duality of the optimal flows, X*(0), a
function defined on the edges of a network, and the optimal
(generalized) potential functions, U*(0), a function defined on
the nodes of a network. This allows us to solve U*(#) through
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TABLE 2
Edge ranking in mixed-flow betweenness in Abilene network (6 > 0).

0 0 0.0535 0.0617 0.0647 0.0839 0.0918 0.0964 0.1079 0.1335 0.2650 0.2874 0.3176
#1 (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6)
#2 (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6)
#3 (2,5) (2,5) (2,5) (2,5) (2,5) (2,5) 2,5) 2,5) (2,5) 2,5) 2,5) 2,5)
#4 (7,10) (7,10) (7,10) (7,10) (7,10) (7,10) (7,10) (7,10) (7,10) (7,10) (7,10) (7,10)
#5 (1,4) (1,4) (1,4) (1,4) (1,4) (1,4) (1,4) (1,4) (1,4) (1,4) (1,4) (1,4)
#6 2,8 2,8 2,8 2,8 2,8) 2,8) 2,8) 2,8) 2,8) 2,8) (3,10) (3,10)
#7 8,11) (8,11) (8,11) (8,11) 4,7 4,7 (1,5) (1,5) (1,5) (3,10) 2,8) (1,5)
#8 4,7 4,7 4,7 4,7 (8,11) (1,5) 4,7 4,7 (3,10) (1,5) (1,5) 2,8)
#9 (1,11) (1,5) (1,5) (1,5) (1,5) 8,11) 8,11) (3,10) 4,7 4,7 4,7 4,7
# 10 (1,5) (1,11) (1,11) (3,10) (3,10) (3,10) (3,10) 8,11) 8,11) 8,11) 8,11) (8,11)
# 11 (3,10) (3,10) (3,10) (1,11) (1,11) (1,11) (1,11) (1,11) (1,11) (1,11) (1,11) (1,11)

TABLE 3
Node betweenness ranking in the Abilene network for all &'s.

Rank # 1 #2 #3 #4 #5 #6 #7 #38 #9 #10 # 11

Kansas City | Indianapolis | Denver | Atlanta | Sunnyvale | Houston | Chicago | Los Angeles | New York | Washington | Seattle

a set of linear equations, and yields an efficient process to
compute the entire routing continuum and the optimal flow
X*(0) for any & > 0. Last but not the least, we remark
that although we only focus on network routing in this paper,
we believe that our results can be applied to many other
applications where the problems can be cast in terms of flows
in a network.

Another line of works that is related to our study is
parametrized dissimilarity measure (or distance) between
nodes. Yen et al. [32] develop a family of link-based dissim-
ilarity measures, namely, the randomized shortest-path (RSP)
dissimilarity, which generalizes both the weighted shortest
path distance and the resistance distance. It is interpreted as
the path probability distribution that minimizes the expected
energy for transiting from a source node to a destination
node, constrained by a fixed relative entropy (Kullback-Leibler
divergence) with respect to the reference probability. Cheb-
otarev [12] introduces a similar parametric family of node
distance to [32] by matrix forest theorem and the transition
inequality, which possess a unique graph-geodetic property:
d(i,j) + d(j,k) = d(i, k) if and only if every path from i to
k passes through j. Different from our work, the constraints
exploited in these works are no longer flow conservation law,
thus the solutions obtained have different interpretations of the
underlying “flow”.

Various algorithms have been proposed to identify the
potential based “all-paths” and the shortest paths for a given
node pair in the literature. The former [21] requires solving
a linear equation system [29] with O(n?), where n is the
total number of nodes in the graph. On the other hand,
Dijkstras algorithm [15] and Bellman-Ford algorithm [7] were
introduced to compute shortest paths between a node pair in a
time complexity of O(n?) and O(nm) (roughly O(n?®) when
the graph is dense), respectively, with m as the total number of
edges in the graph. These algorithms aim to extract a routing
graph (i.e., the flow distribution) for a particular €, where our
routing continuum algorithm computes the complete set of
routing graphs between shortest path routing and “all-path”
routing by scanning all possible 6’s, thus taking at the worst
case O(n®m). However, in many applications with relatively
stable link status, the set of routing graphs do not need to be

computed frequently, e.g., in wireless sensor networks with
static link transmission delay and energy consumption, and in
intradomain administrative network with small chance of link
failure. It is interesting to develop more efficient algorithm that
can better deal with dynamic link weights, where we leave this
as part of our future work.
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