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Abstract—This paper defines and investigates a novel trajectory query, namely, Traversal Trajectory Aggregate (TTA) Query: Given a
trajectory database and a pair of upstream and downstream spatio-temporal (ST) regions (i.e., spatial area coupled with a time
interval), a TTA query aims to retrieve the total number of unique trajectories that traverse through these two ST regions. Such TTA
queries play an important role in various urban applications, such as route planning, taxi dispatching, and location-based advertising.
Two baselines can answer such TTA queries: (a) exact search (over the entire ST query regions) can obtain the exact answer, but it
leads to extremely long running time when the ST query regions are huge; (b) uniform-sampling-based approaches estimate the query
answer with sampled trajectories. However, the uniform sampling distribution may lead to significant estimation variance for TTA query,
because traversal trajectories are relatively few and unevenly distributed in the query regions. To tackle these challenges, this paper
proposes a novel Targeted Index Sampling (TIS) framework to answer TTA queries with high estimation accuracy. TIS employs a
two-stage framework, with a Pilot Sampling Estimation (PSE) stage to estimate the distribution of trajectories in ST query region, and
an Integrated Importance Sampling (IIS) stage, which collects trajectories with the importance sampling distribution obtained in PSE,
and estimates the query result with an asymptotically unbiased estimator. Extensive experiments and case studies using a large-scale
real taxi trajectory dataset from Shenzhen, China demonstrate that our TIS framework achieves ≤10% estimation error with ≥ 90%
computational time reduction over exact search, and 50% reduction on estimation error (with similar running time) over
uniform-distribution-based sampling approaches.

Index Terms—Traversal Trajectory, Aggregate Query, Importance Sampling.

F

1 INTRODUCTION

With the advanced development of location-acquisition
technologies, an increasing amount of trajectories are gen-
erated over time from various moving objects (such as
vehicles and mobile phone users). Integrating such large-
scale trajectory data with road network structures, human
mobility, points of interest makes it possible to facilitate and
enable various emerging applications including transporta-
tion system [1], [2], [3], urban computing [4], [5], [6], [7] and
other location-based pattern discoveries [8], [9], [10], [11],
[12], [13].

Statistical aggregate queries over large-scale trajectory
data, such as total number, average length, speeds of trajec-
tories are essential building blocks toward complex urban
computing tasks. In this paper, we define and investigate
a novel trajectory aggregate query, namely, the traversal
trajectory aggregate (TTA) query. Given a trajectory database
and a pair of upstream and downstream spatio-temporal
(ST) regions (i.e., spatial area coupled with a time window),
the traversal trajectory aggregate query returns the total
number of unique trajectories that go through these two ST
regions sequentially. For example, “finding the number of
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unique trajectories that traversed the airport and the hotel
zone sequentially between 8pm and 10pm” is a TTA query.
Answering such traversal trajectory aggregate queries have
great potentials to facilitate many urban applications includ-
ing but not limited to: (1) Location-based advertising and
recommendations, such as recommending trip plans with
multiple stops for tourists based on trip popularity in can-
didate locations, and (2) Event and congestion detection and
prediction based on traversal trajectories across different
locations [14].

It is computationally challenging to answer traversal
trajectory aggregate queries. First, due to the large number
of trajectories and the varying sizes of the ST query regions,
checking all the trajectories in the query regions is very time-
consuming. Alternatively, sampling [15], [16] becomes a
promising approach to TTA query. Instead of checking every
trajectory in the query regions, a subset of trajectories is
obtained through sampling and the query result is estimated
based on sampled trajectories. However, traditional sam-
pling methods for trajectory aggregate queries are designed
for single-region aggregate queries and typically employ
a uniform distribution [17] to conduct sampling in query
regions. For TTA queries, with relatively few and unevenly
distributed traversal trajectories in the query regions, such
uniform-sampling-based approaches, e.g., Random Index
Sampling algorithm (RIS) [17], would yield a low estimation
accuracy.

In this paper, we propose a novel Targeted Index Sam-
pling (TIS) framework to answer TTA queries with high
estimation accuracy. TIS employs a two-stage framework,
with a Pilot Sampling Estimation (PSE) stage to estimate
the distribution of trajectories in ST query regions, and an



2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2830780, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, AUGUST 2018 2

Integrated Importance Sampling (IIS) stage, which collects
trajectory samples with the importance sampling distribu-
tion [18] obtained from PSE, and estimate the query result
with an asymptotically unbiased estimator. Our contribu-
tions are summarized as follows.
• We introduce a novel trajectory query type, namely, the

traversal trajectory aggregate (TTA) query. TTA query is
challenging to answer, since the traditional (uniform) sam-
pling approaches fail to provide an accurate estimation
result, due to the small number of qualified trajectories
and their uneven distributions in ST query regions.

• We develop a novel Targeted Index Sampling (TIS) frame-
work, with Pilot Sampling Estimation (PSE) stage to obtain
an importance sampling distribution of traversal trajec-
tories in a query region; and an integrated importance
sampling (IIS) stage that sample and estimate the query
results with a provably asymptotically unbiased estimator,
that guarantees a high accuracy estimation to answer the
TTA queries.

• We conduct extensive experiments and case studies using a
large scale taxi trajectory dataset from Shenzhen, China, to
evaluate the efficiency and effectiveness of the proposed
approach. Results demonstrate that the proposed TIS
framework achieves ≤ 10% estimation error with ≥ 90%
computational time reduction over exact search, and 50%
reduction on estimation error (with similar running time)
over uniform-distribution-based sampling approaches.

The rest of this paper is organized as follows. Section 2
discusses related work. We formally define our TTA query
in Section 3. In Section 4–5, we present our proposed solu-
tion framework. Section 6 presents comprehensive evalua-
tion results. Section 7 discusses various generalizations and
extensions of our TIS framework. Finally, we conclude the
paper in Section 8.

2 RELATED WORK

Prior work related to this paper can be generally classified
into three categories: (1) spatio-temporal data management,
(2) trajectory query processing, and (3) sampling and esti-
mation methods.

2.1 Spatio-temporal Data Management

With the rapid increase in the popularization of location-
aware sensors in a variety of new applications like GPS, 4G
network, a large amount of trajectory data are generated
over time, which requires appropriate indexing structures
to enable efficient query processing over such big trajectory
datasets. In the literature, various spatio-temporal indexing
structures have been proposed. R-tree is widely used to
index two-dimension data [19], [20]. G-tree takes road net-
work structure into consideration for effective KNN search
over road network [21]. A 3D-Rtree includes the time as
the third dimension, e.g., the Spatio-Temporal R-tree (STR-
tree) and the Trajectory-Bundle tree (TB-tree) [22]. By di-
viding the time dimension into multiple time intervals and
linked to corresponding spatial index, multiple version R-
trees are developed, such as Historical R-tree (HR-tree),
HR+-tree [23], and mv3r-tree [24]. Moreover, a grid-based
index partitions a geographical space into grids, e.g., the

Compressed Start-End Tree (CSE-tree) [25] and the Scalable
and Efficient Trajectory Index (SETI) [26]. These grids are
built by Quad-tree [27] or multidimensional binary search
tree (k-d tree) [28], while temporal range indexed by the
hybrid B+-tree [29] or B-tree [30] even time list. The inverted
index [31] is also an efficient index for trajectory query.

With a well-built spatio-temporal index, we are able to
access trajectory data efficiently. However, when the query
range is large, e.g., containing a large amount of spatio-
temporal data, it is still very time-consuming to examine the
entire query range to get an exact answer of the query. As
a result, approximate query processing becomes a promis-
ing solution under stringent query requirements. In this
work, we propose a sampling based approach to provide
estimated answer of traversal trajectory query (TTA), with
guaranteed accuracy.

2.2 Trajectory Query Processing
Various spatio-temporal data queries have been extensively
studied in the literature, which are primarily in two main
categories, including Range query and K-Nearest Neighbor
(KNN) query [32], [33]. A range query retrieves the trajecto-
ries falling into or intersecting with a given spatio-temporal
region [34], [35], [36]. KNN query can be classified into KNN
point query [37], [38] and KNN trajectory query [39] for
aggregating minimum distance of a few points or a specific
trajectory. Differing from these works, we define and in-
vestigate a novel traversal trajectory aggregate (TTA) query,
that extracts the counts of unique trajectories traversing two
spatio-temporal regions in order.

2.3 Importance Sampling and Estimation
In the big data era, the ability to approximately answer
aggregate queries accurately and efficiently is of great im-
portance for decision support and data mining tools [40],
[41]. Random sampling via uniform distribution [15], [16] is
a simple approach for statistic estimation. For example, [42]
proposes a random prefix sampling algorithm to sample
and estimate statistics of YouTube videos. [43], [44], [45]
introduce various random region sampling approaches to
sample and estimate statistics of venues (i.e., locations) in
large-scale geographic regions. Moreover, the RIS algorithm
[17] employed a uniform distribution to sample and esti-
mate the total number of unique trajectories that go through
a given spatio-temporal region. However, in Section 3,
we demonstrate that when the underlying distribution of
traversal trajectories in a query region greatly differs from
uniform distribution. Therefore the estimation accuracy of
methods using uniform sampling will be low. Our proposed
framework introduces a pilot sampling stage to estimate
a trajectory data distribution, with which we employ im-
portance sampling to estimate TTA query answer, namely,
the total number of distinct traversal trajectories, with high
estimation accuracy.

3 OVERVIEW

In this section, we first define key terms used in the paper
and provide a formal definition of traversal trajectory aggre-
gate queries. Then we describe our key insights which leads
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to the proposed algorithms. Finally, we give an overview of
our system framework.

3.1 Basic Concepts
• Spatio-Temporal (ST) Cube and Region. A spatio-

temporal (ST) partitioning divides the three-dimensional
space into uniform ST cubes. For example, each ST cube
in a ST partitioning could be 500m by 500m by 5 minutes.
A spatio-temporal (ST) region R = (A, Tp) is a subset
of cubes in the underlying ST partitioning, where A is a
rectangular spatial area and Tp is a time interval.

• Trajectory. A trajectory r is a sequence of spatio-temporal
points. Each point consists of a trajectory ID, latitude,
longitude, a time stamp. Each trajectory is formed by
points with the same trajectory ID in the order of time
stamp.

• Traversal Trajectory. Given a pair of upstream and down-
stream ST regions, a traversal trajectory is one that se-
quentially traverses the two ST regions. For example,
a traversal trajectory r traversing two ST regions Rup
= {Aup, Tpup} and Rdown={Adown, Tpdown} indicates it-
self traversing upstream area Aup at time period Tpup
and then passing destination area Adown at time period
Tpdown.

• Valid Cube and Invalid Cube. Given a pair of upstream
and downstream ST regions, a Valid Cube is a cube in
one of the ST regions, which is traversed by at least one
traversal trajectory. Cubes in the given ST regions without
any traversal trajectories are Invalid Cubes.

3.2 Problem Definition
Traversal Trajectory Aggregate (TTA) Query. Given a tra-
jectory database and a pair of upstream and downstream
ST regions Rup = {Aup, Tpup}, Rdown = {Adown, Tpdown},
a Traversal Trajectory Aggregate (TTA) query q returns the
total number of unique trajectories that first traverse area
Aup during time Tpup and then area Adown during time
Tpdown. We call a traversal trajectory satisfying the above
query conditions a “qualified trajectory”.

Figure 1 shows an example of TTA Query, where blue
lines represent trajectories traversing only the upstream
or the downstream query region while the red lines rep-
resent qualified trajectories traversing both the upstream
and downstream query regions sequentially. Left and right
cuboid represent upstream and downstream ST query re-
gions, respectively.

The objective of our work in this paper is to maximize
the query result accuracy, while keeping the query cost
within a user-specified range. For each TTA Query, a user
may give a Query Budget B, which is the total number of
different cubes accessed while processing a TTA query. 1

In database implementation, each ST cube is stored in a
disk page, with roughly same running time to access and
processing the trajectory data in it. So the query budget
B is equivalent to query processing time. We also define
Budget Ratio Br, as the ratio between B and the number of

1. Let R{A,Tp} be the set of ST cubes of a ST region {A, Tp}. When
B ≥ min(|R{Aup,Tpup}|, |R{Adown,Tpdown}|), all the cubes in the one
of the ST regions can be exhaustively searched and an exact result is
guaranteed. Otherwise, an estimation of the result is returned.

Fig. 1. An illustration of a traversal trajectory traversing from up-
stream query region to downstream query region.

cubes in one of the ST query regions |R{A,Tp}| selected (e.g.,
upstream), 0 < Br ≤ 1.

3.3 Challenges and Motivation of Solution

Answering TTA queries through exact search is computa-
tionally expensive and not scalable. First, the number of
queries could be huge in practical systems. Second, due to
query diversity, the potentially huge number of different ST
query regions makes it infeasible to pre-compute and save
the query results in a static database. Moreover, the database
may not be static in reality and new trajectories might be
added over time so that query results need to be updated
accordingly. Hence, it is a better choice to answer the query
using sampling based method to improve flexibility and
efficiency, as well as saving costs.

One direct way along this path is to estimate the result
via uniform sampling. For example, the random index sam-
pling (RIS) algorithm [17] is a uniform sampling method
with guaranteed efficacy and efficiency. However, RIS is
designed to query the number of trajectories passing only
one ST query region rather than a sequence of upstream
and downstream query regions. We illustrate the limitation
of uniform sampling using the example below.

We randomly generate 600 TTA queries over a trajectory
dataset. and test the cube rareness of the upstream and
downstream regions, which represents the number of valid
cubes as a percentage of the total number of cubes in the
upstream (downstream) query region. Figure 2 shows that
the cube rareness is a non-uniform distribution, with 70%
queries covering no more than 60% cubes and 30% queries
covering less than 40% cubes for both of the query regions.
This shows that the distribution of qualified traversal trajectories
in the query regions are very different from uniform. Details
query examples could be referred to Section 6.

Clearly, sampling and estimation of the query answer
with a uniform distribution may lead to high estimation
variance, thus an inaccurate result. Hence, we propose a tar-
geted index sampling (TIS) framework to tackle this issue.
TIS includes a pilot sampling estimation (PSE) algorithm
to first estimate an importance sampling distribution of the
qualified trajectories among cubes in the query regions,
and an Integrated Importance Sampling (IIS) algorithm
to estimate the query result with high estimation accu-
racy guarantee. Our proposed system overcomes issues
in prior work such as high search costs and unable to
handle rareness of qualified trajectories by identifying valid
cubes efficiently and effectively. Besides, the proposed TIS
framework could also be applied to answer other traversal
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Fig. 2. Cube rareness of randomly generated TTA queries.

Fig. 3. An overview of our proposed framework.

trajectory aggregate queries like average trajectory length of
trajectories traversing particular query regions with speed
constraints.

3.4 System Overview
Figure 3 gives an overview of our proposed Targeted Index
Sampling (TIS) system, which consists of two main compo-
nents: Indexing Structures and Sampling and Estimation.
• Indexing Structures. This component is the data access

building block of the system, which contains a spatio-
temporal index and an inverted index. It provides effi-
cient access to the trajectories and cubes. First we parti-
tion entire spatio-temporal region of study into equally-
sized cubes based on a given spatio-temporal granularity
(e.g., 500 meters-500 meters-5min). Then, we build two
indices. (1) Spatio-temporal Index: Each cube is used
to index all the trajectories traversing it. For simplicity
we use a 3-D grid to index the trajectories. However,
other indexing structures such as Quad-tree for spatial
indexing and B tree for temporal indexing could also
be used. Besides, other spatio-temporal indices are also
appropriate like R-tree or B+-tree. (2) Inverted Index: We
also build an inverted index [17], [31] to efficiently access
all the ST cubes traversed by a given trajectory.

• Sampling and Estimation. This component contains two
stages to answer a traversal trajectory aggregate query:
1) the Pilot Sampling Algorithm and 2) the importance
sampling and estimation stage. Stage 1 estimates the

distribution of qualified trajectories among cubes in one
of the query regions. Stage 2 samples cubes in the same
region according to importance sampling distribution ac-
quired from stage 1 and devise an unbiased estimator N̂q .
The details are discussed in Section 5. Note for each TAA
query, we only sample one of the ST query regions, e.g.,
the upstream region. For every sampled cube in this re-
gion, we check the number of unique trajectories that also
traverse the other region by utilizing the Inverted Index
structure. In this paper, we always sample the upstream
ST region. However, one can sample the downstream
region instead and get the same result. A smart strategy to
decide which ST region to sample for a TTA query might
be of interest but due to page limits we leave it for future
work.

4 INDEXING CONSTRUCTION

In this section, we present the details in the indexing con-
struction component, which builds two types of indexing
structures on the trajectory data.
Spatio-Temporal Index. To build the ST index, we partition
spatio-temporal regions into equally-sized ST cubes based
on a given spatio-temporal granularity (e.g., 500 meters-500
meters-5min). For each cube, we link it with all the trajecto-
ries that go through it. We also maintain a list of cubes that
are traversed by at least one trajectory to avoid examining
empty cubes. This 3-D grid index is employed due to its
simplicity. However, other state-of-art indexing structures
such as Quad-tree [27] and R-tree [19] for spatial indexing,
and B-tree/B+-tree [29], [30] for temporal indexing could
also be used.
Inverted Index. In this step, we build an inverted index
[17], [31] to efficiently access all the ST cubes traversed by
a given trajectory. As shown in Figure 4, each record of
inverted index represents a trajectory and all the valid cubes
the trajectory traverses. By checking these traversed cubes
with {R{Adown,Tpdown}}, cubes in destination query region,
we are able to effectively identify whether this trajectory is
a qualified traversal one or not and accordingly identify its
source cube(s) as invalid or valid cube(s).

Using these indices built, one can obtain the exact result
of a TTA query by searching each cube (with at least one
trajectory) in the upstream (downstream) region to get a list
of trajectories and verify if they goes through the down-
stream (upstream) region using the inverted index. We call
this method Exact Search (ES). ES is efficient given the index
structures. However, when the total number of trajectories
increases and the query regions are large, the query time
could be extremely long. In the next section we introduce
our TIS framework to provide fast response to such queries.

5 SAMPLING AND ESTIMATION

This section presents the Sampling and Estimation com-
ponent of our system. We first propose a Pilot Sampling
Estimation (PSE) algorithm to obtain importance sampling
distribution of cubes in one (e.g., upstream) ST query region.
Then, we design two asymptotically unbiased traversal
trajectory estimators to answer the traversal trajectory ag-
gregate query. To keep the cost below the given budget,
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TABLE 1
Notations and terminologies

Notation Description

R{Aup,Tpup} =
{Rq1, · · · , R

q
n}

The set of n cubes in the upstream ST query
region.

R{Adown,Tpdown} The set of cubes in the downstream ST
query region.

B,Br B is the sampling budget for answering
query q, Br is the budget ratio.

Rr The set of all cubes traversed by trajectory
r.

T The total number of iterations in the Pilot
Sampling Estimation algorithm.

R̂qb,t The b-th sampled cubes from R{Aup,Tpup}

at iteration t.

kqr The number of valid cubes in R{Aup,Tpup}

that traversal trajectory r traverses.

Nq , N̂q Nq is the number of distinct trajectories
satisfying the query condition of q. N̂q is the
estimator of Nq .

we define the budget for the two stages as B1 and B2

where B1 + B2 = B. Let n be the number of cubes in the
upstream ST region, Br1 = B1

n , Br2 = B2

n . Note that budget
ratios at state 1 and stage 2 are separately defined while
conducting experiments. They are only subject to the total
budget. Specifically, we increase Br1 to improve estimation
accuracy of importance distribution in order to improve
final estimation as well. Meanwhile, increasing Br2 could
directly improve final estimation. Note the total number of
distinct cubes used in stage 2 might exceed Br2 × n since
cubes sampled in stage 1 could be saved and reused in stage
2. Table 1 provides a summary of the notations frequently
used in this paper.

5.1 Stage 1: Pilot Sampling
The PSE algorithm aims to provide an importance distri-
bution superior to uniform distribution by sampling more
valid cubes under the same budget constraint. Figure 4
offers the framework of PSE algorithm for better under-
standing the iterative update process. First we set an initial
distribution P0, which is a uniform distribution. Then we
update the distribution through sampling cubes with re-
placement in each iteration. If enough valid cubes have been
sampled, we update the probability of each cube. Otherwise,
no update is performed. The iteration stops when the query
budget is reached.

The pseudo code of the PSE algorithm is presented in
Algorithm 1. First we initialize current budget cb = 0,
iteration time t = 0 and all of distinct sampled cube set
Sample, valid cube set validc and invalid cube set invalidc
as empty set (line 3). Then we set the stopping criteria as
the ratio of cubes accessed reaching the sampling budget
ratio Br1 (line 4). At each iteration t, with sample size bt,
we obtain independent and identically distributed samples
(i.e., cubes) R̂qi,t, i ∈ [1, · · · , bt] according to the current
probability distribution P t (line 5-6) and compute the counts
S(R̂qi,t), i ∈ [1, · · · , bt], which are the number of distinct
qualified trajectories of R̂qi,t (line 7-10). Specifically, for each
sampled cube, we examine all the trajectories passing this

Fig. 4. Pilot Sampling Estimation algorithm framework.

cube, and use the Inverted Index to check how many of
these trajectories also passed the downstream region.

Before updating the probability distribution, we need to
make sure that sufficient valid cubes have been sampled.
This is necessary since in an update we will lower the
probability of invalid cubes and increase the probability
of valid cubes to make the total probability 1. If only a
very small portion of the samples are valid cubes, then
each of them will receive a much higher probability in the
next iteration, which may lead to significant overestimation.
Therefore, we calculate the (1-ρ) quantile S(1−ρ) of all the
count values from sampled cubes: S(R̂qi,t), i ∈ [1, · · · , bt]. A
zero value of S(1−ρ) indicates that insufficient valid cubes
have been sampled so we skip the probability update in
this iteration (line 11-13) and increase the sample size by
a factor of α > 1, but not exceeding an upper bound of
sample size bupper(line 12). Alternatively, if S(1−ρ) > 0 then
the probability distribution can be updated (lines 14-22). The
value choice of parameters ρ, α and bupper will be discussed
in Section 6.

Then we add the newly-sampled valid and invalid cubes
into the corresponding sample lists (line 17-20). Finally,
we update the probability distribution PT according to
Equation 1 and 2 (line 21-24). In Equations 1, Aprob is the
total probability allocated for all the valid cubes, where
n is the total number of cubes in the upstream ST query
regions, |validc| and |invalidc| are the number of valid and
invalid cubes, respectively, and λ is a smoothing parameter.
In order to fully utilize all sampled valid cubes, we increase
the probability of all the valid cubes sampled, and reduce
the probability of invalid cubes sampled to ensure the total
probability equals 1. Instead of reducing the probability of
invalid cubes to 0, we introduce a smoothing parameter
λ ∈ [0, 1) to smooth the probability change between itera-
tions to avoid overestimating the probability of valid cubes.
Then each sampled valid cube gets the same new probability
as shown in Equation 2. The probability of each invalid cube
is reduced to λ

n . All the other non-sampled cubes still have a
probability of 1

n , i.e., the initial probability. We also discuss
λ value in Section 6.

Aprob =
1

n
|validc|+

1− λ
n
|invalidc|. (1)
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probt,j =


S(R̂q

j,t)∑m
j=1 S(R̂

q
j,t)
Aprob R̂qj,t ∈ validc

λ
n R̂qj,t ∈ invalidc
1
n others

(2)

As a result, the PSE algorithm outputs terminal impor-
tance sampling distribution PT (line 25).

Algorithm 1 Pilot Sampling Estimation (PSE) algorithm

1: INPUT: Query q={Aup, Tpup, Adown, Tpdown}, Br1, P 0, ρ,
λ, b0,α, bupper .

2: OUTPUT: Importance sampling distribution PT

3: Initialize cb = 0, t = 0, valid cube set validc = ∅, invalid
cube set invalidc = ∅,distinct sampled cube set Sample = ∅

4: while cb ≤ n×Br1 do
5: Sample R̂q1,t, · · · , R̂

q
bt,t
∈ R{Aup,Tpup} according to P t.

6: Sample← Sample
⋃
{R̂q1,t, · · · , R̂

q
bt,t
}.

7: for 1 ≤ i ≤ bt do
8: for ∀r in R̂qi,t do
9: if |Rr

⋂
R{Adown,Tpdown}| > 0 then

10: S(R̂qi,t) + = 1
11: if S(1−ρ)bt ≡ 0 then
12: bt+1 ← min{bupper, αbt}
13: P t+1 ← P t

14: else
15: bt+1 ← bt

16: for 1 ≤ i ≤ bt do
17: if S(R̂qi,t) > 0 then
18: validc ← validc

⋃
{R̂qi,t}

19: else
20: invalidc ← invalidc

⋃
{R̂qi,t}

21: Compute probt,j in P with Equation 1 and 2.
22: P t+1 ← P

23: t + = 1
24: cb = |Sample|
25: return terminal importance sampling distribution PT

5.2 Stage 2: Importance Sampling and Estimation
In this subsection, we introduce our proposed sampling
and estimation stage. First we sample bT ST cubes, R̂qi,T
with i ∈ [1, · · · bT ], based on the final importance sampling
distribution PT obtained in stage 1. These are the only
samples we draw in Stage 2 thus bT = B2. Then we design
two estimators to calculate the answer to the TTA query.
The first one, Primary Estimator, only uses those bT ST cubes
sampled with PT in stage 2. The second one Integrated
Estimator, utilizes both the bT cubes sampled in this stage as
well as the list of samples drawn during Stage 1 to further
improve the result accuracy. Finally, we present the entire
algorithm in stage 2 as an Integrated Importance Sampling
(IIS) algorithm.

5.2.1 Primary Estimator
The Primary Estimator uses the samples collected with
importance sampling distribution PT (in stage 2) to estimate

the query answer. According to PT , bT cubes R̂qi,T , i ∈
[1, · · · , bT ] were sampled from q’s upstream query region,
with replacement. All the sampled cubes are examined and
all qualified traversal trajectories from the sampled cubes
are identified. If a sampled cube is sampled more than once,
we only exhaustively search it at the first time of being
sampled, with the count cached. If that cube is sampled
again, we will obtain the qualified traversal trajectory count
from the cache without costing additional query budget.
Given a trajectory r traversing cube R̂qi,T , the number of
distinct valid cubes that r traverses in the upstream ST
region (denoted as kqr ) is proportional to the probability
that trajectory r is found in any sampled cube under the
final importance sampling distribution PT . Define a map-
ping fq : Rq → R+ as fq(R̂

q
i,T ) =

∑
r∈R̂q

i,T
{ 1
kqrPT (R̂q

i )
}.

Obviously, the ground truth answer of the TTA query
q = {Aup, Tpup, Adown, Tpdown} is Nq =

∑n
i=1 fq(R

q
i ).

Note that after obtaining a qualified trajectory r in
Stage 1, the value of kqr can be computed by checking the
inverted index of r and comparing with cube set in the
upstream query region, kqr = |Rr

⋂
R{Aup,Tpup}|. Next,

we develop an unbiased estimator of Nq using sampled
cubes R̂qi,T , i ∈ [1, · · · , bT ] collected via the final importance
probability distribution PT . We define primary estimator in
Theorem 1 and denote R̂qi,T and PT (R̂qi ) as R̂qi and P (R̂qi )
for short, respectively.

Theorem 1 (Primary Estimator). With a sampling budget bT ,
we collect bT sampled cubes {R̂q1, · · · , R̂

q
bT }, with each R̂qi ∈ Rq

for 1 ≤ i ≤ bT . Then, N̂q in Equation 3 is the asymptotically
unbiased estimator of Nq :

N̂q =
1

bT

bT∑
i=1

f(R̂qi ) =
1

bT

bT∑
i=1

∑
r∈R̂q

i

1

kqrP (R̂
q
i )
. (3)

Proof. Since each cube R̂qi , i = 1, · · · , bT is independently
sampled from the same population space Rq using the law
of large number, we have

lim
bT→∞

1

bT

bT∑
i=1

f(R̂qi )
a.s.−→

n∑
j=1

f(Rqj )P (R
q
j )

n∑
j=1

f(Rqj )P (R
q
j ) =

n∑
j=1

∑
r∈Rq

j

1

kqrP (R
q
j )
P (Rqj )

=
∑
r∈Rq

n∑
j=1

1

kqr
= Nq.

Estimator variance analysis. Our PSE stage is designed
to yield an importance sampling distribution closer to the
ground-truth distribution of qualified trajectories in query
ST regions than the uniform distribution, which will be
verified in Sec 6 (system evaluation and case studies). With
this nice property, the primary estimator is not only unbi-
ased, but also with a lower variance, than that of uniform
distribution (i.e., P (Rqi ) = 1/n for all i’s) (We omit the proof
here for brevity and please refer to [46] for more details).
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Fig. 5. An illustration of importance sampling distribution evolution-
ary process and estimator comparison.

5.2.2 Integrated Estimator

Clearly, the Primary Estimator only utilizes the sampled
cubes from stage 2, where the samples collected during
stage 1 are ignored, and not utilized. To further improve
the estimation accuracy, we develop the Integrated Estimator,
by employing sampled cubes at Stage 1 Pilot Sampling as
well as sampled cubes from Stage 2. Figure 5 illustrates how
the integrated estimator works, with comparison to primary
estimator and RIS estimator (proposed in [17]). Theorem 2
below introduce the integrated estimator N̂ ′q , with proof of
its unbiasness.

Theorem 2 (Integrated Estimator). During Pilot Sampling
Estimation (PSE) algorithm in stage 1 and importance sampling
in stage 2, a list of sampling distributions {P 0, P 1, · · · , PT }
are obtained with the corresponding samples collected. With a
sampling budget bt (t ∈ [0, 1, · · · , T ]), bt sampled cubes were
collected, i.e., {R̂q1,t, · · · , R̂

q
bt,t} according to sampling distri-

bution P t, with each R̂qi,t ∈ Rq for 1 ≤ i ≤ bt. Denote
B =

∑T
t=0 b

t, namely, the total budget (used during stage 1
and stage 2), we define P (t) = bt

B = bt∑T
j=0 b

j as the budget
proportion at iteration t. Then, the following integrated estimator
is an unbiased estimator to the query answer.

N̂ ′q =
1

BT

B∑
i=1

T∑
t=0

f ′(R̂qi,t) =
1

BT

B∑
i=1

T∑
t=0

∑
r∈R̂q

i,t

1

kqrP t(R̂
q
i )P (t)

.

(4)

Proof. Since each cube R̂qi , i = 1, · · · , B is independently
sampled from the same population space Rq using the law
of large number, we still have

lim
B→∞

1

BT

B∑
i=1

T∑
t=0

f ′(R̂qi,t)
a.s.−→ 1

T

n∑
j=1

T∑
t=0

f ′(Rqj,t)P
t(Rqj )P (t)

=
1

T

n∑
j=1

T∑
t=0

∑
r∈Rq

j,t

1

kqrP t(R
q
j )P (t)

P t(Rqj )P (t)

=
1

T

∑
r∈Rq

n∑
j=1

T∑
t=0

1

kqr
=

1

T
NqT = Nq.

Algorithm 2 Integrated Importance Sampling (IIS) algo-

rithm
1: INPUT: Query q={Aup, Tpup, Adown, Tpdown}, Br1, Br2,
P 0, ρ, λ, b0,α, bupper , bT , Estimator.

2: OUTPUT: Integrated estimator N̂ ′q .
3: Initialize cb = 0, t = 0, f = 0, Kq = ∅, Sample = ∅,
validc = ∅, invalidc = ∅.

4: Stage 1: Pilot Sampling
5: while cb ≤ n×Br1 do
6: Same as line 5−6 in Algorithm 1
7: for 1 ≤ i ≤ bt do
8: for ∀r in R̂qi,t do
9: if |Rr

⋂
R{Adown,Tpdown}| > 0 then

10: S(R̂qi,t) + = 1
11: kqr = |Rr

⋂
R{Aup,Tpup}|

12: Kq = Kq⋃ kqr

13: Same as line 11−25 in Algorithm 1
14: Stage 2: Importance Sampling
15: Sample R̂q1,T , · · · , R̂

q

bT ,T
according to PT ,

where bT = Br2 × n.
16: if Estimator= Primary then
17: N̂q =

1
bT

∑bT

i=1

∑
r∈R̂q

i,T

1

k
q
rP

T (R̂
q
i,T

)

18: else if Estimator= Integrated then
19: for 0 ≤ t ≤ T do
20: for 1 ≤ i ≤ bt do
21: for ∀r in R̂qi,t do
22: if kqr not in Kq then
23: if |Rr

⋂
R{Adown,Tpdown}| > 0 then

24: kqr = |Rr
⋂
R{Aup,Tpup}|

25: Kq = Kq⋃ kqr

26: else
27: Find kqr in Kq

28: if kqr > 0 then
29: f + = 1

k
q
rP

t(R̂
q
i )P (t)

, where P (t) = bt∑T
t=0 b

t

30: N̂ ′q =
f
BT

31: return N̂ ′q

We summarize the detailed process of sampling and
estimating the query answer with integrated estimator as
Integrated Importance Sampling (IIS) algorithm in Algo-
rithm 2. Besides budget bT at stage 2 Importance Sampling,
the input of the IIS algorithm also includes all input param-
eters of PSE. In addition to initialization of PSE, we also
initial the mapping value f = 0 and a list Kq recording
kqr value of each traversal trajectory. For each iteration, IIS
also computes kqr , the total number of distinct valid cubes
that traversal trajectory r traverses for further estimation
of Nq (line 11) and records it in the list Kq (line 12). At
stage 2 Importance Sampling, we generate bT i.i.d samples
R̂q1,T , · · · , R̂

q
bT ,T according to PT . The Primary Estimator

is computed by using these samples. For the Integrated
Estimator, after sampling all given budget B, we finally
estimate Nq by checking all sampled cubes throughout the
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TABLE 2
Time Complexity

Algorithm Time Complexity
Exact Search O(n)
PSE O(n×Br1)
IIS O(n× (Br1 +Br2))

whole sampling process and compute kqr for each traversal
trajectory (line 19-27). Then we count the mapping value
f according to Equation 4 (line 28-29). Finally, IIS returns
value of integrated estimator N̂ ′q .

5.3 Complexity Analysis
In this subsection, we analyze time complexity for both Al-
gorithm 1 PSE and Algorithm 2 IIS. For PSE, we can assume
that fetching each cube and checking traversal trajectories
inside takes on average the same time. Then what matters
is the number of cubes fetched. Thus, in terms of sampled
cubes, the complexity of PSE is O(n × Br1), where n is the
number of cubes in the upstream query region.

The time complexity of IIS consists that of stage 1 and
stage 2. In terms of sampled cubes, the complexity of IIS
with primary estimator isO(n×(Br1+Br2)). For integrated
estimator, it takes extra time to collect results from sampled
cubes at stage 1 and costs O(n × (2 × Br1 + Br2)) =
O(n×(Br1+Br2)) in total. In addition, compared with exact
search (O(n)), the proposed TIS framework saves running
time for sampling process (Br1+Br2 � 1). Table 2 provides
a summary of time complexity.

6 EVALUATIONS AND CASE STUDIES

In this section, we conduct extensive experiments to eval-
uate our proposed TIS framework using a taxi trajectory
dataset collected from Shenzhen, China in November, 2014.
Specifically, we evaluate under varying query budgets (1)
the quality of the importance distribution obtained by the
PSE algorithm, (2) the final query result accuracy of TIS,
(3) the total running time of TIS, and (4) the impact of
cube size choice on result accuracy. For (1), (2) and (4) we
use the Random Index Sampling (RIS) [17], which employs
a uniform distribution sampling approach, as the baseline
for comparison. For (3) we compare the run-time of TIS
with that of RIS and an exact search (ES) on the upstream
query region. The ES method utilizes the 3-D grid index
introduced in Section 4 to retrieve all the trajectories in the
upstream region and verifies if each trajectory also traverses
the downstream query region using the inverted index. The
ES algorithm always returns the accurate result.

6.1 Dataset and Experiment Settings
We use a large-scale trajectory dataset collected from taxis
in Shenzhen, China, with an urban area of about 400 square
miles and three million people. The dataset was collected
for 30 days in November, 2014. These trajectories represent
21,490 unique taxis. They are equipped with GPS sets, which
periodically (i.e., roughly every 30 seconds) generate GPS
records. For each taxi, we combine all its GPS points in a
day to form one single trajectory. Thus we obtained 21,490
distinct trajectories for each day.

TABLE 3
Dataset Descriptions

Statistics Value
City Size 400 square miles
City Population three million people
Duration 30 days in November, 2014
Number of taxis 21,490 unique taxis
Number of trajectories 2.3 billion (2,335,874,676)

TABLE 4
Evaluation Configurations

Item Settings
Budget ratio at stage 1 [10%,20%]
Budget ratio at stage 2 [1%,3%,· · · , 15%]
Candidate methods TIS vs. RIS vs. ES
Grid Granularity [250m, 500m, 750m, 1000m]
Time Interval [5 minutes]

The TIS parameter values we use for all experiments
are sample size b0 = 20, percentile ρ = 0.95, smooth
parameter λ = 1

3 , augmented parameter α = 1.1 and upper
bound of sample size bupper = 100, which are obtained
via performance tuning. Intuitively, larger sample size and
smaller percentile could reduce the number of iteration for
sampling but also decrease the chance to better estimate the
importance distribution. Besides, parameter λ controls the
degree of change in the sampling probability. A value that
is too small leads to trivial update while a value that is too
large leads to overfitting of the sampled cubes. The current
value setting is the best for datasets similar to ours. The
settings could be tuned to fit other data in future.

Each experiment is run 200 times and the average results
are reported. All the experiment are conducted on a DELL
PowerEdge R370 rack server, with 2x12-core Intel Xeon E5-
2690 processors(2.6 GHz/30M Cache) and 192 GB memory.
Data statistics and detailed experiment settings are summa-
rized in Table 3 and Table 4, respectively.

6.2 Benchmark Query Descriptions
In order to evaluate our proposed TIS framework, we
generate three different types of queries with different tra-
jectory distribution in the upstream region as the bench-
mark. Figure 6 compares the percentages of cubes with
each distinct number of qualified trajectories. Query Type
1 has over 75% cubes with no qualified trajectory and 15%
with only 1. Query Type 2 has around 40% cubes with
no qualified trajectory and most valid cubes contain no
more than 5 qualified trajectories. Query Type 3 has more
diverse distribution of counts among the cubes, ranging
from 0 to 19. Table 5 describes three types of queries we
generated in our evaluations. As discussed in Section 3.3,
rareness is the percentage of cubes in the upstream ST region
that contain qualified trajectories. Note that one traversal
trajectory could traverse several valid cubes so the sum of
all the cube counts might be larger than the total number of
distinct traversal trajectories of a particular query.

Case Studies: In order to better illustrate the different
query types, we randomly generate one example query for each
query type introduced above, respectively. The details of the
example queries are presented in Table 5. Figure 7, 8,and 9



2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2830780, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, AUGUST 2018 9

TABLE 5
Query Descriptions

Type # R Range (%) a {Aup, Tpup} {Adown, Tpdown} Tra Traj (#) b Rareness (%) Valid Cu(#)c Total Cu(#)c

1 (0,40%) {Shekou, 6− 9am} {Jixia, 6− 9am} 21 14.29 252 1764
2 [40%, 60%) {Buji, 5− 8am} {Bantian, 6− 9am} 382 54.17 936 1728
3 [60%, 100% ) {Futian, 6− 9am} {Center, 6− 9am} 3207 85.19 184 216

a

Rareness range of a particular query type. b The total number of distinct traversal trajectories satisfying query demands. c The number of valid
cube and total cubes in {Aup, Tpup}.

Fig. 7. Example of Query Type 1 Fig. 8. Example of Query Type 2 Fig. 9. Example of Query Type 3

Fig. 6. Cube trajectory count distribution of the three types of queries.

visualize the query regions and traffic flow of the three
queries on our real dataset. Example Query Type 1 has the
smallest traffic flow as well as rareness. Because Shekou
is a manufacturing district and it rarely occurs that people
transit from here to Jixia, a residential district in morning
rush hours. In contrast, it is common that lots of people
transit from Futian, a port area to downtown Center, a
commercial district during the same rush hour time period
as shown in Figure 9. Meanwhile, Figure 8 illustrates that
many people live in Buji village and work at nearby
Bantian, a high-tech industrial zone. Overall, in morning
rush hours, people always transit from residential districts
or transportation hubs to work area. But it is very rare to
observe the opposite.

6.3 Evaluation of the PSE Algorithm

In order to evaluate Pilot Sampling Estimation (PSE) algo-
rithm, we sample cubes according to the terminal impor-
tance sampling distribution PT and uniform distribution
P 0, respectively, with varying budget ratios and compare
how many valid cubes can be sampled using each method.

Figure 10, Figure 11 and Figure 12 show the compari-
son of total identified valid cubes in the three benchmark
queries. We increase the budget ratio Br1 from 10% to 20%.
Results show that with the terminal importance sampling
distribution PT obtained by the PSE algorithm, we are
able to identify more valid cubes with qualified traversal
trajectories than using a uniform distribution. Besides, the
gaps between PSE and the baseline (uniform distribution)

Fig. 13. Estimation results of example Query Type 1.

Fig. 14. Estimation results of example Query Type 2.

grow bigger as we increase the budget ratio. Particularly, the
gap reduces as we move from Query Type 1 to Query Type
2 and then Query Type 3, suggesting that the PSE algorithm
works always better when cube rareness is high, i.e., the
distribution is far from non-uniform.

6.4 Evaluation of the IIS Algorithm
Besides identified valid cubes in upstream query region,
we also use the IIS algorithm to estimate the total number
of distinct traversal trajectories for each example query of
Query Type 1, 2 and 3. To evaluate the accuracy of the
estimation result, we define the relative error ratio of an
estimation as

ε(N̂) =
N̂ −N
N

which is the normalized difference from the ground truth
value N . All of Figure 13, Figure 14 and Figure 15 show
the box plot of the relative error ratios of each benchmark
query. For each one, we draw two box plots with different
sampling budget ratio Br1: 10% and 20% in Stage 1. We
vary the budget ratio Br2 in Stage 2 from 1% to 15% with
a step of 2%. The box plots display differences between
populations, where the spacings between the different parts
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Fig. 10. Comparison of Sampling results of
Query Type 1

Fig. 11. Comparison of sampling results of
Query Type 2

Fig. 12. Comparison of sampling results of
Query Type 3

Fig. 15. Estimation results of example Query Type 3.

of the box indicate the degree of dispersion (spread) and
skewness in the data, and show outliers. The bottom and
top of the box are always the first and third quartiles filled
in different degree of blue color, and the band inside the box
is always the second quartile (the median) in red line. The
lowest datum still within 1.5 interquartile (IQR) of the lower
quartile, and the highest datum still within 1.5 IQR of the
upper quartile [47]. The whiskers are represented by dashed
blue line. Any data not included between the whiskers are
plotted as an outlier with the marker ’+’ in green.

From left to right, bars in each group with different
degree of blue represent the RIS algorithm, the primary
estimator via terminal importance sampling distribution,
and the integrated estimator via Integrated Importance
Sampling (IIS) algorithm, respectively. Results show that all
estimators are asymptotically unbiased in the box plot of
each query. With budget ratios 10% and 20% in Stage 1 pilot
sampling, it can be concluded that the baseline method (RIS)
fluctuates while the integrated estimator via utilizing IIS
algorithm always performance best and converges at budget
ratio Br2 around 3%.

6.5 Evaluation on Runtime

In addition to accuracy, we also evaluate the query process-
ing time of the entire IIS algorithm with both Stages 1 and 2
for the three queries with varying Stage 2 budget ratio Br2
values. For each query we choose different budget ratios
Br1 for Stage 1 (10% and 20%). We also compare the run
time with RIS, where the runtime is calculated by running
RIS for upstream ST query region.

Figure 16-18 show the runtime in seconds. The runtime
of IIS grows linearly with Stage 2 budget ratio from 1%
to 15% but always less than 1 second. By contrast, the
ES method takes 55, 53, and 39 seconds, respectively. Also
lower budget ratio in Stage 1 leads to less runtime in Stage
2. Although IIS has an extra time cost compared to RIS due
to the pilot sampling and estimation steps, the total query
processing time is still within 1 second for all the queries.

Figure 19-21 show the runtime reduction rate against Ex-
act Search (ES) over the same index. The runtime reduction
is the percentage of computational time saved compared
to the cost of the Exact Search (ES) method. Note that the
Exact Search (ES) method also uses the same grid index
and the inverted index described in Section 4. Therefore, the
performance of ES has been optimized. So the comparison
is fair. However, ES is still much slower than the proposed
IIS algorithm.Each figure represents a benchmark query and
the three bars in each color represent one baseline (RIS) and
the IIS with two different choices of budget ratios in Stage
1 (10% and 20%). For all the parameter settings, IIS saves
at least 98% query time of the ES, while savings for Query
Type 3 is the highest.

6.6 Evaluation on Granularity
Finally, we evaluate our algorithms with different grid gran-
ularity settings to understand how the grid partitioning af-
fects our algorithms’ performance. We conduct experiments
with four different spatio-temporal granularities varying
from (250 meters -250 meters -5 min) to (1000 meters -1000
meters -5 min). Figure 22 shows that our IIS algorithm is
more accurate and more stable than RIS algorithm with
varying grid granularity for all the three types of queries.
The relative error ratio of IIS is always within 10% while
that of RIS fluctuates between 20% and 50%.

Note when using a finer granularity, the trajectory dis-
tribution will become sparser among cubes and the count
in each cube will decrease. Therefore choosing very small
grid size might not always give the best result. Taking this
factor into consideration, we set (500 meters -500 meters -5
min) as our default granularity for our dataset. However,
this parameter should be adjusted accordingly on different
datasets.

Summary: The proposed PSE algorithm can better esti-
mate the distribution of traversal trajectories in the query
region than the baseline method RIS. The entire IIS algo-
rithm achieves better accuracy and stability compared to
RIS under varying budget ratio and grid size. The runtime
of IIS is still orders of magnitudes faster than simple exact
search using spatial index (ES) and comparable with RIS.

7 DISCUSSION

In this section, we extend our traversal trajectory aggregate
query from a pair of upstream and downstream ST regions
to a sequence of different query regions. Throughout this
paper, we take all example queries with upstream and
downstream spatio-temporal query regions as a simplified
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Fig. 16. Processing Time of Query Type 1
(ES=53s)

Fig. 17. Processing Time of Query Type 2
(ES=55s)

Fig. 18. Processing Time Query Type 3
(ES=39s)

Fig. 19. Processing Time Reduction for
Query Type 1

Fig. 20. Processing Time Reduction for
Query Type 2

Fig. 21. Processing Time Reduction for
Query Type 3

(a) Query Type 1 (b) Query Type 2 (c) Query Type 3

Fig. 22. Result error with varying granularity.

example of traversal trajectory aggregate query. In fact,
our proposed TIS framework with the PSE and IIS algo-
rithms are generic to complex traversal trajectory aggregate
querye.g., with more than two spatio-temporal query re-
gions. As illustrated in Figure 23, where blue lines represent
trajectories traversing subset of given query regions while
the red line represents one qualified trajectory sequentially
traverse all m (> 2) query regions. Each cuboid identifies
one spatio-temporal query region including three dimen-
sions which are latitude, longitude and time. Taking an
example query, we briefly discuss how our sampling and
estimation algorithms can be applied to it by checking more
than one query regions. We also demonstrate evaluation
results of this example query.

Extension Query. Given an example of extension query
q = {Jixia, 6 − 9am,Center, 11am − 2pm, Tourist, 3 −
7pm} with m = 3, the rareness of the first spatio-temporal
query region {Jixia, 6−9am} is 58.06%, i.e., 418 valid cubes
out of 720 total cubes. According to query type classification
listed in Table 5, it belongs to Query Type 2. Intuitively, it
should have similar evaluation result compared to examples
of Query Type 2. Figure 24 and 25 show comparisons
between TIS and RIS on the relative error for the extension
query and the number of valid cubes identified, respectively.
The trends are similar as in Figure 11 and Figure 14: our

Fig. 23. An illustration of a traversal trajectory aggregate query
extension to traverse a sequence of different m(≥ 3) spatio-temporal
query regions.

proposed TIS framework outperforms RIS for the extension
query with lower error rate.

Figure 26 shows that the TIS consumes more time for
the extension query than simple TTA queries as shown
in Figure 17. This is intuitive as for the extension query
we need to check two other query regions to verify each
sampled trajectory, compared to only one other query region
in the simple TTA queries. However there is no additional
time cost introduced in the sampling/estimation phases.
Figure 27 shows that, similar to Figure 20, the IIS algorithm
of the proposed TIS framework still saves up to 98.8%
running time of ES.
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Fig. 25. Sampling results of example exten-
sion query

Fig. 26. Processing time of example exten-
sion query (ES=60s)

Fig. 27. Time Reduction Rate of example
extension query

Fig. 24. Estimation results of example extension query.

8 CONCLUSION

This paper defined and investigated a novel trajectory
query, the Traversal Trajectory Aggregate (TTA) Query. TTA
queries play an important role in supporting various urban
intelligent applications, such as vehicle route planning, taxi
dispatching, and location-based advertising. Exact solutions
such as exhaustive searching may lead to extremely long
running time on large query regions, while traditional
sampling-based approaches assume uniform distribution
of trajectories in the ST query region and may lead to
significant estimation variance. This paper proposed a novel
Targeted Index Sampling (TIS) framework with a Pilot
Sampling Estimation (PSE) stage to estimate the importance
distribution of trajectories in ST query region, an Integrated
Importance Sampling (IIS) stage to collect trajectory samples
with obtained importance sampling distribution to estimate
the query result with an asymptotically unbiased estimator.
Extensive experiments obtained using a large-scale real taxi
trajectory dataset demonstrated that our TIS framework
achieves≤ 10% estimation error with≥ 90% computational
time reduction over exact search, and 50% reduction on
estimation error (with similar running time) over uniform
distribution based sampling approaches.
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