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Abstract—Mining the most influential location set finds k locations, traversed by the maximum number of unique trajectories, in a given
spatial region. These influential locations are valuable for resource allocation applications, such as selecting charging stations for
electric automobiles and suggesting locations for placing billboards. This problem is NP-hard and usually calls for an interactive mining
processes involving a user’s input, e.g., changing the spatial region and k, or removing some locations (from the results in the previous
round) that are not eligible for an application according to the domain knowledge. Efficiency is the major concern in conducting this
human-in-the-loop mining. To this end, we propose a complete mining framework, which includes an optimal method for the light
setting (i.e., small region and k) and an approximate method for the heavy setting (i.e., large region and k). The optimal method
leverages vertex grouping and best-first pruning techniques to expedite the mining process. The approximate method can provide the
performance guarantee by utilizing the greedy heuristic, and it is comprised of efficient updating strategy, index partition and
workload-based optimization techniques. We evaluate the efficiency and effectiveness of our methods based on two taxi datasets from
China, and one check-in dataset from New York.

Index Terms—Location Selection, Most Influential k-Location Set, Maximum Coverage Problem, Trajectory Data Mining.
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1 INTRODUCTION

Advances in location acquisition technology have resulted in
massive trajectories, representing the mobility of a diversity of
moving objects, such as human, vehicles, and animals. As a
consequence, many techniques have been proposed for processing
and mining trajectory data with a broad range of applications over
the last decade, ranging from trajectory pattern mining [1], [2],
trajectory classification and clustering [3], [4], trajectory outlier
detection [5], to location-based services [6], [7], [8] etc. Different
from previous works, we focus on identifying a set of appropriate
locations which are traversed by the maximum number of unique
trajectories in a given spatial region.
Applications. Mining the most influential k-location set is vital to
many resource allocation applications.

The first application is selecting charging stations for electric
vehicles according to their GPS trajectories. As shown in Fig. 1(a),
the candidate locations are the road intersections. Among them,
intersections n1 and n3 form the most influential 2-location set as
they cover 5 unique trajectories. Intersections n2 and n3 are not
the most influential set, as they only cover 4 unique trajectories.
Though they individually have the most number of trajectories
(i.e., 3 for each) traversing them.
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Fig. 1: Application Scenarios.

The second application is selecting locations for placing bill-
boards based on users’ check-in histories or trajecotires [9]. as
shown in Fig. 1(b), a location can be defined as a uniform grid
covering a few points of interests (POIs). Grids g1 and g2 form a
most influential 2-location set, traversed by 4 unique trajectories,
i.e., visited by 4 users. Grids g1 and g2 cannot construct the most
influential 2-location set, as they only cover 3 users.

The third application is to place observation stations for migra-
tory birds, where a location can be a cluster of birds’ stay points
detected from their moving trajectories. As shown in Fig. 1(c),
clusters c2 and c4 form the most influential 2-location set, they
totally cover all birds’ trajectories.
Challenges. There are three major challenges in mining the most
influential k-location set from massive trajectories: i) this problem
can be mapped to the MAX-k-COVER problem, which is NP-hard
and computational intensive; ii) different users may be interested
in mining k locations in different spatial regions. For instance, as
shown in Fig. 2(a), two local business owners may want to place
different number of advertisements in different areas. However,
it is not possible to pre-compute one location set serving all
requests with different mining parameters; and iii) users, i.e.,
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domain experts, may need to interact with our system several
times based on their domain knowledge. For example, as depicted
in Fig. 2(b), c4 is located in a lake where we cannot find land to
place an observation station. Thus, c4 should be removed from the
returned set and {c1, c5} becomes the most influential 2-location
set.

Although the MAX-k-COVER problem has been studied [10],
[11], [12], [13], [14], existing methods are off-line approaches that
find a one-time result. Different from these works, our problem
setting allows a user 1) to specify a spatial region and k, and
2) to refine returned results interactively and iteratively. In order
to attract users to pursue interactions in the mining process, it is
crucial to improve the system’s efficiency.
Contributions. To address the aforementioned challenges, a com-
plete mining framework is proposed to find the most influential k-
location set efficiently. Our system consists of two main modules:
i) pre-processing module, which creates the spatial networks from
different types of trajectory data and builds a set of indices to
speed up the mining process; and ii) location set mining module,
which finds a k-location set by taking spatial region, k value,
and choices made during the user’s interaction as the input. Our
location mining module not only provides the optimal solution
for small spatial region and k, but also provide an approximate
solution for large spatial region and k with performance guarantee.
The contributions of this paper can be summarized as follows:

• We introduce a novel trajectory data mining task, i.e.,
mining the most influential k-locations set from massive
trajectories, with many potential applications.

• We propose an efficient algorithm to provide the optimal
result, when k and spatial area are small. The algorithm
groups the nearby locations together and performs the
best-first pruning to avoid checking some unpromising
candidates, i.e., k-location set.

• We propose an efficient algorithm to find the location set
with the greedy heuristic, in case of large k and spatial
area. The efficiency is enabled by precomputing several
data indices which can speed up the updating phase in the
greedy heuristic.

• Experimental evaluations on a taxi dataset from Tianjin
show that our proposed system is an order of magnitude
faster than the baseline solution. We also provide two case
studies to demonstrate the applicability of our proposed
system. Moreover, we have already deployed a system
to select the appropriate k-location set for placing bill-
boards [9], [15].

Outline. The rest of the paper is organized as follows. Sect. 2
provides the preliminary and overview of our proposed system.
Sect. 3 presents the pre-processing module of our system. The
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Fig. 2: Summary of Challenges.

optimal solution for the light setting is presented in Sect. 4, and we
describe the approximate solution for the heavy setting in Sect. 5.
Experimental evaluation are conducted in Sect. 6, followed by the
related works in Sect. 7. Finally, we conclude the work.

2 OVERVIEW

In this section, we formally define the problem and present the
framework of our proposed system.

2.1 Preliminary
We first introduce some basic definitions that are widely used in
this paper.

Definition 1 (Trajectory). A trajectory tr is a sequence of spatial
points that a moving object follows through space as a function of
time. Each point consists of an object ID, latitude, longitude, and
a time stamp.

Definition 2 (Location). A location is a spatial point or region,
which can be defined in three forms: 1) an intersection in a road
network, e.g., n1 as shown in Fig. 1(a); 2) a grid cell, e.g., g1 as
depicted in Fig. 1(b); or 3) a stay point or a cluster of points from
trajectories, e.g. c2 as illustrated in Fig. 1(c).

Definition 3 (Spatial network). A spatial network can be denoted
as a directed graph G = (V,E), where the vertex set V represents
the locations 1 and the directed edge set E represents the set of
edges where each has two terminal vertexes (locations).

Definition 4 (Trajectory coverage). A location v
i

covers a trajec-
tory tr

j

, if and only if the trajectory tr
j

passes the location v
i

.
Given a location on a spatial network (e.g., an intersection v

i

on a
road network), its coverage set Tr(v

i

) represents the set of trajec-
tories passing through the location v

i

. Similarity, we use Tr(V )

to denote the set of trajectories passing through the location set
V , and it can be formally calculated as Tr(V ) = [

vi2V

Tr(v
i

).

2.2 Problem Definition.
The problem proposed in this work, i.e., mining the most influ-
ential k-location set in a given spatial region, is formally defined
as:

Definition 5 (The Most Influential k-Location Set). Given a user-
specified spatial region R, a k value and a trajectory set Tr, we
denote the spatial network in R as G

s

= (V
s

, E
s

). The most
influential k-location set in R finds k 2 locations in V

s

, such that
the total number of unique trajectories being covered by these k
locations is maximized.

To be precise, we use the following integer linear programming
(ILP) formulation to captures the problem exactly. We use v

i

.s and
tr

j

.s to indicate the solution of the problem. For each location
v
i

2 V
s

, v
i

.s = 1 if v
i

is selected in the result set, and v
i

.s = 0

otherwise; for each trajectory tr
j

2 Tr, tr
j

.s = 1 if tr
j

is
covered by these selected locations, and tr

j

.s = 0, otherwise.

max :

X

trj2Tr

tr
j

.s, s.t. :
X

vi2Vs

v
i

.s  k,
X

trj2Tr(vi)

v
i

.s � tr
j

.s

(1)

1. Vertex and location are interchangeable in this work.
2. Here k  |V

s

|.
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Fig. 3: System Overview.

The objective of Eq. 1 is to maximize the total number of
unique trajectories being covered by the selected k locations.
The first constraint guarantees that the total number of selected
locations is no more than k; the second constraint ensures that
if a trajectory tr

j

is covered, then at least one location v
i

that
tr

j

2 Tr(v
i

) should be selected in the result set. This problem
is equal to the MAX-k-COVER problem and is NP-hard as been
proven in [10], [16], [17].

Moreover, in some application scenarios, the system need
to support interactions with the help of domain experts to find
the qualified k-location set. Specifically, at the initial step, the
system returns k locations that maximize the number of covered
trajectories based on the current parameters, i.e., spatial region and
k. Then, the expert involves and marks 0  `  k disqualified
locations from these k (selected) locations, based on his domain
knowledge. In the following steps, the system needs to remove
these ` marked locations and re-selects k locations, covering the
maximum number of unique trajectories. This process iterates,
until the expert accepts all the returned k locations 3.

Therefore, each interaction needs to be done in a timely
fashion, so that the expert can proceed to further mark disqualified
locations. This motivates our system to achieve two objectives:
1) maximizing the trajectory coverage; and 2) minimizing the
response time.

2.3 System Overview
Fig. 3 gives the overview of our proposed system. It contains two
main modules:
Pre-processing Module. As shown in the left portion of Fig. 3, pre-
processing module takes the trajectory dataset as the input, and it
performs the following four procedures:
Step 1- Spatial Network Mapping, which maps the raw trajectory
onto the corresponding spatial network (e.g., the road network as
shown in Fig. 1(a)). The output of this step is the trajectory-vertex
index.
Step 2- Spatial Indexing, which indexes the vertices (locations)
based on their spatial coordinates, i.e., latitude and longitude. The
goal of this step is to boost the spatial range search.
Step 3- Inverted Trajectory Indexing, which aggregates the trajec-
tory IDs over each vertex in the spatial network and generates the
vertex-trajectory index.
Step 4- Vertex-vertex Indexing, which calculates the number of
shared trajectories between two vertices.
Location Set Mining Module. As presented at the right part of
Fig. 3, Location Set Mining Module takes user’s mining parame-
ters, i.e., a spatial region R, a value k and a set of marked vertices

3. As a remark, pre-estimating the quality of all locations for different
applications maybe infeasible.

as the input, and returns k locations as the result. The process
goes multiple iterations until the user satisfies the final returned
result. In this paper, we propose an efficient optimal solution to
process each iteration with relatively smaller R and k (detailed in
Sect. 4); and an efficient approximate solution, which utilizes the
greedy heuristic to choose the candidate locations for larger R and
k (detailed in Sect. 5).

3 PRE-PROCESSING

In this section, we present the four procedures (cf. Sect. 2.3)
of the pre-processing module in detail.
Spatial Network Mapping This step contains two tasks: 1) spatial
network construction, the system first identifies the locations based
on different scenarios, e.g., the intersections, spatial cells, or
the stay points, then constructs the spatial network; 2) trajectory
map-mapping, the system needs to map the raw trajectories onto
the corresponding spatial network, e.g., using a map matching
algorithm as proposed in [18]. The output of the procedure is a
trajectory-vertex index which is denoted as I

tv

. In this index, each
entry records a set of locations that a trajectory traversed, i.e., the
entry of tr

i

is {tr
i

|v
x

, v
y

, ..., v
z

}.
Spatial Index Building The spatial index is used to speed up the
spatial selection process. In this step, we take the constructed
spatial network G = (V,E) as the input and use R+-tree [19] to
index the spatial vertices (locations). The output of this procedure
is a hierarchical tree structure I

spatial

.
Inverted Trajectory Index Building In this step, the system builds
the vertex-trajectory index, which is denoted as I

vt

. In this index,
it stores the covered trajectory IDs for each location, i.e., the
entry of v

i

is {v
i

|tr
x

, tr
y

, ..., tr
z

}. The construction of the vertex-
trajectory index is quite simple, i.e., it scans each entry (trajectory)
in trajectory-vertex index and adds the current trajectory ID to
each scanning vertex.
Vertex-vertex Index Building The vertex-vertex index records the
number of shared trajectories between two vertices, i.e., the entry
of v

i

is {v
i

|(v
x

, c
ix

), (v
y

, c
iy

), ..., (v
z

, c
iz

)}, where c
ix

indicates
the number of shared trajectories between vertices v

i

and v
x

. To
construct the vertex-vertex index, we take the trajectory-vertex
index as the input. For each trajectory, it adds one to every pair of
vertices in the vertex-vertex index. The utilization and optimization
of the vertex-vertex index are presented in Sect. 5.

4 OPTIMAL LOCATION SET MINING

For small spatial region R and k, it is possible to derive an
optimal solution to find the most influential k-location set from
massive trajectories. In this section, we first introduce a naive
algorithm (cf. Section 4.1), that finds the optimal solution by
enumerating and examining all possible k-location sets in a given
spatial region. Then, we develop an efficient optimal solution by
applying vertices grouping and best-first pruning techniques (cf.
Section 4.2).

4.1 Naive Optimal Algorithm
The naive optimal algorithm is straightforward with three steps:

1) extracting all the vertices, denoted as V
s

, within the spatial
region R by using the spatial index I

spatial

; 2) generating all
the possible k-location sets from the extracted vertex set V

s

; and
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3) calculating the trajectory coverage for all combinations (i.e.,
k-location sets) and returning the combination with the maximum
coverage value as the result.

Obviously, the naive optimal algorithm is computing infeasible
for large |V

s

| (i.e., spatial region R) and k. Specifically, the
algorithm needs to check Ck

|Vs| =
|Vs|!

k!(|Vs|�k)! k-location sets, i.e.,
the number of possible combinations increases exponentially with
both |V

s

| and k. Moreover, calculating the trajectory coverage for
a k-location set is not an efficient process, especially when the
size of trajectory dataset is huge. A classical implementation for
counting the coverage of a k-location set is sorting the trajectories
in each vertex (location) according to their trajectory IDs4, then the
covered (unique) trajectories of a k-location set can be calculated
by a linear scan of their sorted trajectory lists.

4.2 Group Pruning Optimal Algorithm

The naive optimal algorithm needs to exhaustively scan all the
possible k-location sets to find the optimal result. To avoid this
drawback and improve the efficiency, the group pruning optimal
(GPO) algorithm is proposed.
Main idea. The intuition of GPO algorithm is to prune the
unpromising k-location sets by batch with two techniques:

• Vertices grouping. The vertices in the spatial region R can
be clustered into g groups. Instead of checking all the k-location
sets directly, we first estimate all the k-group sets. The number of
k-group sets should be much more less than the k-location sets.
If the coverage upper bound of a k-group set is already smaller
than the current best result, all the k-location sets belong to this
k-group set can be pruned safely.

• Best-first pruning. To improve the pruning ability, we can
apply the best-first strategy to prioritize the order of execution.
By processing the k-group set with the highest coverage upper
bound firstly, a better coverage bound can be expected to prune
the remaining unpromising k-group sets more effectively.

Algorithm 1 Group Pruning Optimal (GPO) Algorithm

Input: Vertex-trajectory index I
vt

, spatial index I
spatial

, spatial
range R, and k value.
Output: The optimal k-location set V

opt

.
1: V

s

:= RangeSearch(I
spatial

, R)

2: Divide V
s

into a set of groups G
3: Generate all the k-group sets GS
4: Estimate the coverage upper bound for each k-group set
5: for gs 2 GS in descending order of coverage upper bound do
6: if UB(gs) > |Tr(V

opt

)| then
7: for V

i

2 gs do
8: if |Tr(V

i

)| > |Tr(V
opt

)| then
9: V

opt

:= V
i

10: else
11: break;
12: Return V

opt

Algorithm. Algorithm 1 gives the pseudocode of the group
pruning optimal (GPO) algorithm, with the following steps:

Step 1. Spatial Selection. The algorithm selects the vertices in
the mining region R, using the spatial index I

spatial

(i.e., Line 1).
Step 2. Online Vertices Grouping. In this step, we divide all

the candidate vertices V
s

into a set of groups g 2 G (Line 2).

4. The sorting of trajectory IDs for all vertices can be done in the pre-
processing module.

To achieve a tight upper bound, our grouping is based on the
observation that vertices, which are close to each other, usually
share more common trajectories. In our implementation, we apply
a R+-tree to group the vertices, where the number of groups
is controlled by maximum size of the leaf node. As a remark,
other grouping techniques (e.g., clustering [20], KD-tree [21],
and Hilbert curve[22]) are also applicable. After this phase, the
trajectory coverage Tr(g) for each group g 2 G is calculated.

Step 3. k-group Sets Generation. In this step, the algorithm:
1) generates all possible k-group sets that may produce the k-
location set (Line 3); and 2) estimates the coverage upper bound
of each k-group set, by counting the number of unique trajectory
IDs (Line 4). Formally, the coverage upper bound of a k-group set
gs is defined as:

UB(gs) = | [
g2gs

Tr(g)| (2)

Step 4. Best-first Pruning. In this step, we first sort all the k-
group sets based on their coverage upper bound. Then we check
the k-group sets in descending order of their coverage upper bound
(Line 5). For each qualified k-group set, i.e., the k-group set whose
coverage upper bound is larger than the best-so-far (Line 6), we
check all the k-location sets within this k-group set. The temporal
result is updated if one of these k-location set is better than the
current best-so-far V

opt

(Line 8-9). This kind of process continues
until the coverage upper bound of a k-group set is less than the
current best-so-far (V

opt

). Finally, the algorithm terminates and
returns V

opt

as the result (Line 12).

Example. Figure 4 gives a example of choosing 2-location set
within a given region. As the first step, the algorithm identify the
vertices within the given spatial region R, and 9 candidate vertices
are selected from the spatial network (i.e., v1 to v9) as shown in
Figure 4(a).

After that, the algorithm divides the vertices into groups. In
our example, they are divided into 3 groups (i.e., g1 to g3), which
are bounded by different rectangles as shown in Figure 4(a).
Figure 4(b) shows the trajectory coverage for all vertices in the
group g1. Accordingly, we can estimate the number of covered
trajectories for this group. As shown in Figure 4(c), the number of
covered trajectories for g1, g2 and g3 are 8, 6 and 5 respectively.

Then, the k-group Sets Generation step is executed, as demon-
strated in Figure 4(d). In this step, we first generate all the possible
2-location sets. Note that it is possible that both two vertices comes
from the same group, thus we have the 2-group set like {g1, g1}.
We can estimate the coverage upper bound for all the 2-group sets
based on the Equation 2.

Finally, the algorithm runs the best-first pruning, as shown in
Figure 4(f). It first check the 2-group set with the highest coverage
upper bound (i.e., {g1, g2} in the example). For this 2-group set,
we need to exhaustively check all 2-location sets in it. In this
example, we find the 2-location set {v1, v4} possess the current
best with a total of 11 covered trajectories. As the maximum
coverage upper bound of the remaining 2-group sets is 10, the
algorithm then stops, and reports {v1, v4} as the final result.

Comparing to the naive optimal algorithm, which needs to
check C2

9 =

9⇥8
2 = 36 k-location sets, the group pruning optimal

(GPO) algorithm only needs to check 6 k-group sets and 9 k-
location sets. In this example, we can expect at least a 100%
efficiency improvement.
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Fig. 4: Illustration of Group Pruning Optimal (GPO) Algorithm.

Algorithm 2 Framework of Greedy Heuristic Algorithm

Input: Vertex-trajectory index I
vt

, spatial index I
spatial

, vertex
coverage table vct, spatial range R, and k value.
Output: k-location set V

gdy

1: V
s

:= RangeSearch(I
spatial

, R)

2: V
gdy

:= ;
3: for i = 1 to k do
4: v

cur

:= argmax

vi2Vs\Vgdy
vct[v

i

]

5: V
gdy

 V
gdy

S
v
cur

6: Update the coverage values of vct
7: Return V

gdy

5 APPROXIMATE LOCATION SET MINING

In the case of large k value and spatial region, the optimal
solution may take a long time even by utilizing the GPO algo-
rithm. An efficient approximate solution becomes more promising,
especially when we need multiple rounds of interactions from
the field experts5. In the literature, the greedy heuristic has
been proved [23] as the best polynomial time solution with the
guarantee of 1� 1

e

approximation ratio.
In this section, we first present the framework of greedy heuris-

tic algorithm which contains a selection phase and an updating
phase. The updating phase dominants the performance of the
greedy heuristic algorithm (cf. Sect. 5.1). To reduce its processing
time, we introduce the basic updating algorithm by using the
trajectory-vertex index. However, even by the trajectory-vertex
index, it still takes more than 10 seconds for a trajectory dataset
with million trajectories (cf. Sect. 6). Finally, the partitioned index
batch updating (PIBU) algorithm is proposed by utilizing the
vertex-vertex index to select locations from massive trajectories
efficiently.

5.1 Framework of the Greedy Heuristic

In the greedy heuristic algorithm, we maintain a vertex cover-
age table, i.e., vct. Each entry of vct is identified by the vertex id
v
i

, and is associated with a coverage value. The coverage value of
vertex v

i

is denoted as vct[v
i

], and it records the number of newly
covered trajectories if we put v

i

to the current result set.
The greedy heuristic algorithm is very simple, as shown in

Algorithm 2. Similar to Algorithm 1, it first selects a set of
candidate vertices V

s

in the spatial region R (i.e., Line 1). After

5. Whether the optimal or approximate solution should be used depends on
their response time and application scenarios.

Algorithm 3 Basic Updating (Basic) Algorithm
Input: vertex-trajectory index I

vt

, trajectory-vertex index I
tv

,
candidate vertices V

s

, selected vertex v
cur

, vertex coverage table
vct.
Output: Updated vertex coverage table

1: Tr
new

 newly covered trajectories by v
cur

2: for each tr 2 Tr
new

do
3: for each v 2 I

tv

[tr] do
4: if v 2 V

s

\ V
gdy

then
5: Update coverage value of v in vct.

that, a k-iterative process is executed with the following two
phases:

• Selection Phase. In this phase, the algorithm selects the
vertex with maximum coverage value in vct (i.e., Line 4) and
put it in the result set (i.e., Line 5).

• Updating Phase. In this phase, the algorithm updates the
coverage values in vct for all the unselected vertices by removing
the newly covered trajectories from their coverage (i.e., Line 6).

In Algorithm 2, the spatial range search and selection opera-
tions can be processed very efficiently. However, the updating step
is hideous and time consuming, especially in case of massive tra-
jectories, e.g., millions of entries, as the updating process needs to
remove all the newly covered trajectories from the vertex coverage
table. As a result, the key to expedite the mining processing lays
on improving the efficiency of the updating phase.

5.2 Basic Updating Algorithm
After each selection operation, a set of trajectories are newly
covered by the selected vertex. Thus, the coverage values of the
remaining vertices in vct need to be updated, i.e., removing the
newly covered trajectories by the selected vertex. Specifically,
the basic updating (Basic) algorithm scans the newly covered
trajectories and find the vertices that need to be updated by using
the trajectory-vertex index I

tv

.
Algorithm 3 shows the basic updating algorithm. After the

current vertex with maximum coverage v
cur

is selected, the
algorithm gets the newly covered trajectories Tr

new

, when adding
the v

cur

to V
gdy

(Line 1). Specifically, Tr
new

is calculated as
Tr

new

= I
vt

[v
cur

] \ Tr(V
gdy

), where I
vt

[v
cur

] and Tr
gdy

are
the covered trajectories of v

cur

and V
gdy

respectivially. Finally,
the algorithm goes through the trajectory-vertex index for each
newly added trajectory in Tr

new

to update the values (i.e., minus
one) in vertex coverage table vct (Line 2-5).
Example. Figure 5 gives a running example of applying the basic
updating algorithm to extract the most influential 2-location set
using greedy heuristic algorithm. In this example, there are 6
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V      = {v1}

3 4 3 1 2

2 4 3 1 1

1 4 3 0 1

1 3 3 0 0

v1 v2 v3 v4 v5 v6

5 4 4 3 2 2

1 2 3 0 0

v1, v2, v5 tr1

v1, v2, v6 tr2

v1, v2, v5 tr3

v1, v3, v6 tr4

v1, v3 tr5

(c) Trajectory-vertex 
Index

(a) Vertex-trajectory 
Index

tr1, tr2, tr3, tr8 v2

tr1, tr2, tr3, tr7 v3

tr6, tr7, tr8 v4

tr1, tr3 v5

tr2, tr4 v6

tr1, tr2, tr3, tr4, tr5 v1

tr1

tr2

tr3

tr4

tr5

Selected vertex

(b) Updating of the Vertex 
Coverage Table

Updated vertex

gdy

Fig. 5: Illustration of Basic Updating (Basic) Algorithm.

vertices within the spatial region, i.e., {v1, v2, v3, v4, v5, v6}. The
corresponding vertex-trajectory index is shown in Figure 5(a),
and the trajectory-vertex index is shown in Figure 5(c). The
updating details of the vertex coverage table are demonstrated
in Figure 5(b), where each row indicates the updated coverage
values after removing a trajectory in Tr

new

. Initially, the coverage
value of each vertex is their original covered trajectories, i.e.,
{5, 4, 4, 3, 2, 2} for {v1, v2, v3, v4, v5, v6} respectively.

At the first iteration, v1 is selected and added to the result
set V

gdy

, and all trajectories covered by v1, e.g., Tr
new

=

{tr1, tr2, tr3, tr4, tr5}, should be removed from the trajectory
sets of other locations. Then, the algorithm utilizes the trajectory-
vertex index of each trajectory in Tr

new

to update the coverage
values of the remaining vertices, i.e., v2 to v6. To be precise,
as shown in the first row of Figure 5(b), the algorithm notices
that the trajectory tr1 passes the vertices v1, v2 and v5 from
the trajectory-vertex index. Thus, the coverage values of v2 and
v5 should be updated, i.e., decreasing by 1, as tr1 has been
covered. The updating process continues until it checks all the
newly covered trajectories tr1 to tr5. After the updating phase, the
coverage values of the remaining vertices, i.e., {v2, v3, v4, v5, v6}
are {1, 2, 3, 0, 0}.

Based on the updated vertex coverage table, the greedy heuris-
tic algorithm continues to select the second vertex. In this case, it
will select v4, as v4 covers the most number of trajectories, i.e., 3.
Finally, the algorithm stops, as it has enough candidates.
Performance Analysis. The cost of the selection phase is rel-
atively small, i.e., a linear scan of the coverage values of the
remaining vertices, with the time complexity of O(|V

s

|). The
dominant cost of the algorithm lays in the updating phase as it
not only needs to scan the trajectory list, but also the trajectory-
vertex index one by one. The time complexity of updating phase
by using Algorithm 3 is O(Tr(V

gdy

)) ⇥ �), where Tr(V
gdy

) is
the total number of trajectories covered by the selected results, and
� is the average length of each trajectory. Obviously, in the case
of large-scale trajectory dataset, the basic updating algorithm can
be prohibitively inefficient.

5.3 Partition Index Batch Updating

The performance bottleneck of the basic updating algorithm
is on the traversal of trajectory-vertex index, which scans every
covered trajectory and updates coverage values of the vertices
in vertex coverage table one by one. Actually, the objective of
updating phase is to deduct the number of common trajectories in
Tr

new

from the remaining vertices. In the best scenario, if we can
know the exact value changes in the vertex coverage table, and we

Algorithm 4 Efficient Updating Strategy
Input: Vertex-trajectory index I

vt

, trajectory-vertex index I
tv

,
vertex-vertex index I

vv

, result vertices V
gdy

, selecting vertex
v
cur

, vertex coverage table vct
Output: Updated vertex coverage table

1: Tr
pre

 common trajectories between v
cur

and V
gdy

2: Tr
new

 v
cur

’s trajectories minus Tr
pre

3: if |Tr
new

|  |Tr
pre

| then . Case 1
4: Perform basic updating algorithm
5: else . Case 2
6: Update coverage values using vertex-vertex index
7: for each tr 2 Tr

pre

do
8: for each v 2 I

tv

[tr] do
9: if v 2 V

s

\ V
gdy

then
10: Add one to the coverage value of v.

can just subtract the number without scanning the trajectory-vertex
index.

Based on this observation, we propose a partitioned index
batch updating algorithm. The proposed algorithm takes advan-
tage of the information stored in vertex-vertex index and tries
to avoid as much scanning operations on the trajectory-vertex
index as possible. To achieve this, it contains three optimization
techniques: 1) efficient updating strategy; 2) index partition; and
3) workload-based optimization.

5.3.1 Efficient Updating Strategy

The main challenge in using the vertex-vertex index is that this
index records the number of all shared trajectories for each vertex
pair. However, if we subtract the number of all shared trajectories
from the vertices in current iteration, some trajectories which are
covered by the selected vertices in previsous iteration will be
removed twice. Therefore, the vertex-vertex index can not be used
for the updating directly.
Main idea. We have the observation that, after a selection phase
(e.g., v

cur

is added into V
gdy

), there can only be two possible
cases, when we want to update coverage values by the newly
covered trajectories Tr

new

introduced by v
cur

:

• Case 1. |Tr
new

|  1
2 · |I

vt

[v
cur

]|: In this case, when
v
cur

is selected, more than half of its trajectories have
been covered by the previous selections. In this case, the
vertex-vertex index is less useful. We directly apply the
basic updating algorithm which scans the newly covered
trajectories to update the coverage table.

• Case 2. |Tr
new

| > 1
2 · |I

vt

[v
cur

]|: In this case, when the
vertex v

cur

is selected, less than half of its trajectories
have been covered by the previous selections. In this case,
we first subtract the number of shared trajectories from
the vertex-vertex index for each remaining vertex. As
the previous operation subtracted the coverage values of
the previously covered trajectories, we need to scan the
previously covered trajectories (i.e., the smaller portion)
in v

cur

and add back the coverage values to the vertex
coverage table.

Algorithm. Algorithm 4 gives the pseudocode of the efficient
updating strategy. When picking a vertex v

cur

, the algorithm first
extracts two sets of trajectories: 1) Tr

pre

, which is the v
cur

’s
trajectories that has been covered by V

gdy

(i.e., Line 1); and
2) Tr

new

, which is the newly covered trajectory by v
cur

(i.e.,
Line 2).
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Then, the algorithm makes a smart decision, which always
chooses the smaller portion of trajectories to perform updation.
In the case that when Tr

pre

is relatively larger (i.e., case 1), the
algorithm simply calls the basic updating algorithm and utilizes
the trajectory-vertex index to update the coverage values (Line 3-
4); Otherwise, if the Tr

pre

is the smaller (i.e., case 2), the
algorithm first subtracts the values in the vertex-vertex index from
the corresponding entries in the vertex coverage table. After that,
the algorithm scans each trajectory in Tr

pre

and add back the
values to the vertex coverage table (Line 5-10).
Example. The updating process of case 1 is straightforward, while
case 2 is more complicated. We use Figure 6 to demonstrate the
updating process for case 2.

The initial status is presented in Figure 6(a), where the mining
process has been executed for a certain number of iterations and
chooses v1 as the next vertex to the result set. The newly covered
trajectories introduced by v1 are marked in grey. The algorithm
identifies that |Tr

new

| > 1
2 · |Ivt[v1]|(i.e., 4 > 2.5), thus it directly

subtracts the values in the vertex-vertex index from the vertex
coverage table, as demonstrated in Figure 6(b). Then, because the
original vertex-vertex index is calculated including tr1 (which is
already covered in the previous iterations), we essentially have
subtracted tr1 from the vertex coverage table twice. As a result,
the algorithm scans the trajectory-vertex index and adds back the
value in the vertex coverage table, as depicted in Figure 6(c).

By using the basic updating algorithm, it needs to scan four
trajectories, i.e., tr2, tr3, tr4, tr5, in the update phase. However,
as shown in this example, with the efficient update strategy, it only
needs to scan one trajectory, i.e., tr1, in the updating phase.

5.3.2 Index Partition
Applying the efficient updating strategy improves the updating
efficiency comparing to the basic updating algorithm. However,
even by using the efficient updating strategy, we may still need
to scan half of the trajectory list (to perform the updating) in the
worst case. Figure 7(a) gives an example, the vertex v

j

(e.g., a
busy intersection in the downtown area) is covered with millions
of trajectories and the number of its Tr

pre

and Tr
new

is equal. In
this case, millions of trajectoris is still expected in the updating
phase. To this end, we propose index partition technique to
improve the efficiency by further reducing the number of scanned
trajectories.
Data structure. Partitioned vertex-vertex index is used, where
each entry, i.e., v

cur

, in vertex-vertex index is divided into multiple
groups. Each group contains a disjoint trajectory subset of v

cur

,
and records the common trajectory numbers shared between v

cur

and other vertices within the group. Figure 7(b) gives an example

Covered Trajectories by V    : { tr1, tr8, tr9, tr10, tr11,  tr12, tr13 }

...

...

Vertex-trajectory
 index

tr2, tr3, tr8 v2

tr1, tr2, tr3, tr14 v3

tr6, tr7, tr8 v4

tr1, tr2, tr3, tr4, tr5 v1

Vertex 
coverage 

table

Vertex-
vertex
  index

v2

v3

v4

v1

3
3
2

4
v2

v3

v4

v1

2
3
0

v2

v3

v4

1
0
2

Vertex
 coverage 

table

v1 N/A

v1, v3 tr1

Trajectory-
vertex
 index

...

...

Vertex
 coverage 

table

v1 N/A

(a) Initial Status (b) Subtraction (c) Adding Back

v2

v3

v4

1
1
2

gdy

Fig. 6: Illustration of Efficient Updating Strategy.

Ivv[vcur]
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vn

1
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2

...
1
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v1

...
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0
2

3

...
1

v2
v3

v1

...
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1
2

5

...
2
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+

Partition Pa

......
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Fig. 7: Motivation of Index Partition.

Algorithm 5 Partition Index Batch Updating (PIBU) Algorithm

Input: Vertex-trajectory index I
vt

, trajectory-vertex index
I
tv

, partitioned vertex-vertex index I
vv

, result vertices V
gdy

,
selecting vertex v

cur

, vertex coverage table vct
Output: Updated vertex coverage table

1: for each P
i

2 I
vv

[v
cur

] do
2: Identify P

i

.T r
pre

and P
i

.T r
new

3: Perform efficient updating strategy using I
vv

[v
cur

].P
i

of partitioned vertex-vertex index, where the trajectories of an
entry (e.g., v

cur

) are divided into two groups. From the partitioned
vertex-vertex index, we can identify that the common trajectories
between v

cur

and v1 in trajectory partition P
b

is 3.
Main idea. The main intuition of the apply partition on the vertex-
vertex index originates from that, for the Figure 7(a)’s example,
if we have a partition of vertex-vertex index containing just the
newly covered trajectories available, we can directly subtract that
number in the table without scanning any trajectories. Moreover,
we have the observation that even if we cannot have such op-
timal partition scenario, we can still reduce the total number of
trajectories scans in the updating phase significantly, as long as
the vertex-vertex index are divided into multiple partitions.

The idea of using index partition technique is that, after divid-
ing the vertex-vertex index into multiple partitions, the efficient
updating strategy can be applied on each of the partition. In
this way, we can further reduce the number of scan operations
and improve the efficiency. The performance improvement is
guaranteed by Lemma 1.

Lemma 1. The number of trajectory scans with the index partition
is always smaller than only with the efficient updating strategy.

Proof. Suppose the trajectories of the vertex v
cur

are divided into
⇢ � 1 partitions. With only the efficient updating strategy, the
algorithm will always select the smaller size part between Tr

pre

and Tr
new

for the updating, thus the total number of trajectories
scanned is equal to min{

P
⇢

i=1 |Pi

.T r
new

|,
P

⇢

i=1 |Pi

.T r
pre

|},
where P

i

.T r
pre

and P
i

.T r
new

are the previously covered and
newly added trajectories of partition P

i

respectively. By combin-
ing the index partition method and efficient updating strategy, the
algorithm will always choose the smaller part in each partition
to perform the updating, the number of scanned trajectories isP

⇢

i=1 min{|P
i

.T r
new

|, |P
i

.T r
pre

|}. It can easily derive thatP
⇢

i=1 min{|P
i

.T r
new

|, |P
i

.T r
pre

|}  min {
P

⇢

i=1 |Pi

.T r
new

|,P
⇢

i=1 |Pi

.T r
pre

|}. As a result, Lemma 1 holds.

Algorithm. Algorithm 5 gives the pseudocode of Partition Index
Batch Updating (BIPU) algorithm. For each trajectory partition
P
i

of vertex v
cur

, it first identifies the P
i

.T r
pre

and P
i

.T r
new

of each trajectory partition (Line 2). After that, the algorithm
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performs the efficient updating strategy by using the correspond-
ing partition of partitioned vertex-vertex index (I

vv

[v
cur

].P
i

) to
update the corresponding coverage value, i.e., it always chooses
to scan the smaller part of trajectories to perform the updating
(Line 3).

Partition Pa

Trajectory list of vcur Previously covered 
trajectories

Newly added 
trajectoriesPartition Pb Partition Pc

Basic updating method Efficient Updating Stragegy Index Partition

(a) Trajectory Partitions of vcur

(b) Effect of Different Updating Algorithms

Fig. 8: Updating Example with Three Techniques.

Example. Figure 8 demonstrates an overall comparison between
three different update techniques. Figure 8(a) gives the initial
status, the vertex v

cur

is selected in current iteration, a part of
its trajectories are covered by the previous iterations (i.e., marked
in grey shade), and another part of trajectories are newly added
trajectories (i.e., marked in green shade). There are three imperfect
partitions, i.e., P

a

, P
b

and P
c

, depicted by the brackets. Fig-
ure 8(b) demonstrates the updating cost for three different updating
algorithms: 1) the basic updating algorithm, which needs to scan
all the newly added trajectories (i.e., the green part) in the update
phase; 2) efficient updating strategy makes a better choice, which
always scans the smaller part between the previously covered
trajectories and newly added trajectories; 3) index partition takes
advantage of the partitions in the vertex-vertex index and performs
the efficient updating strategy on each partition (i.e., scanning the
smaller part in each partition.) As a result, the index partition
technique can significantly reduce the number of trajectory scans.

5.3.3 Workload-based Optimization

Lemma 1 proves the superiority of index partition in the updating
phase. However, the index partition also introduces a significant
storage overhead. The storage overhead is O(⇢ · |V 2|), where ⇢
is the average number of partitions on each entry. It would be
memory infeasbile in the case of large road network, e.g., the road
network of Tianjin has about 100K vertices, which means 20G
entries in partitioned vertex-vertex index when ⇢ = 2. Another
issue in the index partition is that how to effectively making the
partition of trajectories. To this end, we further propose workload-
based optimization, which includes two techniques: 1) workload-
based partition, and 2) workload-based selective indexing.
Workload-based Partition. The main intuition to partition the
vertex-vertex index is that we want to partition the trajectories
associated with each entry (i.e., vertex v) into different groups,
where trajectories in each group share more common vertices. A
straightforward method is trajectories clustering. However, this
method is infeasible as it requires |Tr|2 trajectory similarity
computations. After we exam a set of mining results, we find an
observation that, in many cases, a set of vertices are often selected
in the same order. And a mining workload will naturally divide
the trajectories in a vertex into multiple partitions. If we can keep

Previously covered 
trajectories

Newly added 
trajectories

workload a

workload b

Partition result

Partition Pa Partition Pb

Partition Pa Partition Pb Partition Pc Partition Pd

vj

vj

Fig. 9: Example of Workload-based Index Partition

track of this partitions during the process, in the best case scenario,
we may not need to scan any trajectory in the updating phase.

Figure 9 illustrates the workload-based partition method.
Given a vertex v

j

which are selected by mining workload a in
some iteration, the trajectories covered by vertex v

j

are naturally
divided into two parts, e.g., P

a

and P
b

, as its Tr
new

and Tr
pre

.
For another mining workload, i.e., b, which also selected v

j

, the
original two partitions of v

j

will be further divided into four
partitions, i.e., P

a

, P
b

, P
c

and P
d

as shown in this figure. To
avoid very small trajectory partition, we use a parameter ⇠ to
control the partition process. The workload-based partition stops
for a trajectory parition when its size is less than ⇠.

By using the workload-based partition, we can divide the
trajectories into several partitions without calculating their pair-
wise similarity.
Workload-based Selective Indexing. As discussed before, it is
infeasible to store all the partitioned vertex-vertex index in the
memory. Thus, we need to select a subset of vertices to index.
There are two basic intuitions to select the vertices for indexing:
1) the number of trajectories passed the vertex is large, otherwise,
we can directly apply basic updating algorithm efficiently; and
2) it is wasteful to index the vertices which would never hit by
the mining tasks. The reason is that some vertices even with large
number of trajectory coverage are never selected in the mining
tasks, because these vertices shares many common trajectories
with other vertices that are selected earlier (e.g., several consec-
utive vertices on a major road). To this end, we also apply the
workload-based method to select the vertices to index. The main
idea is that after running a set of mining tasks, we get all the
vertices in the result sets and only index the vertices with highest
hit ratio. In this way, the indexed vertices are with large trajectory
coverage and can provide high hit ratio for the coming mining
tasks.

As a remark, for the newly selected vertex which is not in
the partitioned vertex-vertex index, we can easily use the basic
updating algorithm to update the coverage values. Our system can
easily adopt typical caching policies (e.g., least recently used, first-
in-first-out and random replacement [24]) to dynamically replace
the vertices in the index to adapt to the new mining workloads.

6 EXPERIMENTS

In this section, we first provide a set of efficiency experi-
ments based on large-scale taxi trajectories collected from Tianjin
(Section 6.1). After that, we provide two case studies: 1) charg-
ing station placement based on taxi trajectories in Beijing, and
2) advertisement placement based on check-in data collected



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2717978, IEEE
Transactions on Big Data

9

(a) Trajectory distribution (b) Vertex coverage distribution

Fig. 10: Trajectory Distributions in Tianjin.

from Foursquare in NYC, to demonstrate the effectiveness of our
proposed system (Section 6.2).

6.1 Efficiency Study

6.1.1 Dataset & Settings

Road networks. We extract the road network of Tianjin, which
contains 99,007 vertices and 133,726 road segments. The road
network covers an area of 123 ⇥ 187 km2 with a total length of
32,487 km [25].
Taxi trajectories. The GPS trajectory dataset is generated by
3,501 taxicabs from Tianjin in 61 days [25]. It contains 4,509,519
trajectories (segmented based on the passenger on/off events) and
the total number of GPS points reaches 753,059,212. The average
sampling rate is 24.05 seconds per point. After map-matching,
the total length of trajectories is 46,028,698 where each trajectory
passes 10.2 vertices on average.

Figure 10(a) shows the spatial distribution of trajectories using
a heat map. The lighter the denser, and most of the trajectories
are crowded within the downtown area. As shown in Figure 10(b),
most of the vertices, e.g., about 95, 904 vertices, are only traversed
by trajectories with the size of 0 to 20k, and the maximum number
of trajectories covered by a vertex is about 200k.

TABLE 1: Parameter Settings

Type Parameter Range

Optimal Result size, k 2, 3
Area of queries, |R| (km2) 4, 8, 12, 16

Greedy Result size, k 10, 20, 30, 40
Area of queries, |R| (km2) Rand, 20, 40, 60, 80

Trajectories datasets, d (# of days) 15, 31, 46, 61

Table 1 summarizes the ranges of investigated parameters in
our efficiency studies with their default values in bold. The per-
formance are evaluated on a machine running Ubuntu 12.04 with
Intel Core 6-Cores (12-Threads) i7-3930K 3.2GHz and 16GBytes
of main memory. In each experiment, we vary a single parameter,
while setting the others to their default values.

6.1.2 Optimal Location Set Mining
We have proposed the group pruning optimal (GPO) algorithm

for exact results with small size in section 4. We demonstrate the
experimental results of GPO in this subsection.
Different k Values. Figure 11(a) shows the processing time
(in grey bars) and pruning ability (in blue line) of GPO with
different k values. The processing time grows exponentially with

(a) Varying result size, k (b) Varying spatial range

Fig. 11: Evaluations of GPO.

the increase of k, and we have to terminate the execution of GPO
when k = 4, as the processing time exceeds 5000 seconds, despite
of the fact that our GPO have pruned at least 85% candidates in
all settings.
Different Sizes of Spatial Region. Figure 11(b) shows the
processing time of GPO versus the size of the spatial region.
The processing time increases with the size of spatial region, e.g.,
from 4 km2 to 12 km2; but decreases slightly at 16 km2 as the
GPO can prune 96.3% combinations in this setting. It takes 727.1
seconds to complete a round of mining task on average when
k = 3.

In summary, the GPO algorithm provides an impressive prun-
ing ability on finding the exact location set. However, the GPO
algorithm only works for small mining parameters (i.e., small spa-
tial region and k values), therefore, is difficult to apply it to support
the interactive mining process for large mining parameters.

6.1.3 Approximate Location Set Mining

In this subsection, we demonstrate the experimental results for
our efficient approximate solutions. Under the default settings, the
construction time of I

vv

is 3231.87 seconds, the average number
of partitions of each vertex in the index is 2.322. We set � to
1000, and the memory usages of I

spatial

, I
vt

, I
tv

and I
vv

are
2.99 MB, 829 MB, 846 MB and 1,959 MB. We compare two al-
gorithms:(1) Basic Updating Algorithm (i.e., Basic) (Section 5.2)
and our Partition Index Batch Updating (i.e., PIBU) Algorithm
(Section 5.3).
Performance Overview. Before evaluating the effect of various
mining parameters, we give the performance overview for our
proposed methods. We select a spatial region with 3, 406 can-
didate locations, and aim at mining 10-locations set. The selected
result set covers a total of 911, 244 trajectories. In terms of
the performance, the Basic approach takes 14.22 seconds, while
our proposed method PIBU is 5.02 times faster with only 2.83
seconds. Figure 12(b) shows the number of scanned trajectories
(in bars) and the processing time (in lines) for vertex selection
iteration. As a remark, the 10-th selected vertex does not need to
update. In the Basic algorithm, the number of scanned trajectories
for a vertex equals to its newly added trajectories Tr

new

. Totally,
the Basic algorithm scans 905, 623 trajectories. PIBU can signif-
icantly reduce the number of scanned trajectories. Totally, PIBU
scans only 87, 330 trajectories, which is ten times less than the
Basic approach.
Scalability. In this part, we evaluate three scalability parameters
of the proposed solutions, i.e., result size k, size of trajectories
datasets d, and area of mining spatial region |R|.
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Fig. 12: Performance overview
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Fig. 13: Scalability Evaluations of Greedy Solutions

Figure 13(a) shows the processing time (by lines) and the
number of scanned trajectories (by bars) in updating phase, with
different k values. The processing time and number of scanned
trajectories increase linearly with k for both algorithms. Our
efficient updating algorithm (i.e., PIBU) is 3.9 times faster than
Basic algorithm on average.

Figure 13(c) shows the processing time (by lines) and the num-
ber scanned trajectories (by bars) by varying the size of trajectories
datasets, d. Not surprisingly, the processing time and number of
scanned trajectories increase with d for both approaches. However,
our PIBU achieves more performance gain comparing to the Basic
updating method, with the larger trajectory data size, e.g., from 3.2
times (d = 15 days) to 4.5 times (d = 61 days). This chart confirms
that our PIBU method is able to handle the queries over large scale

Urban Urban-rural Rural

(a) Spatial regions (b) Varying spatial regions

Fig. 14: Effect of Different Spatial Regions

(a) Effect of indexed size, � (b) Effect of partition size, ⇠

Fig. 15: Tuning of System Parameters

trajectory datasets.
Figure 13(e) shows the processing time (by lines) and the

number scanned trajectories (by bars) versus the area of mining
region, |R|. The processing time increases for both approach,
as more vertices in the selected region trend to introduce more
covered trajectories. Our proposed method PIBU achieves at least
3.8 times performance gain comparing to the Basic method with
all settings.

Figure 13(b), 13(d) and 13(f) illustrate the index hit ratio of
PIBU by lines, the number of scanned trajectories for vertices
with index (PIBU-HT) or without index (PIBU-MS) by bars. The
number of scanned trajectories for vertex with index is larger than
the vertex without index in all settings as the vertices in the index
typically cover more trajectories than the non-indexed vertices.
In a summary, the index hit ratio reduces with the increasing
of k; increases slightly with the increasing of |R|; there is no
significantly difference with the size of trajectory datasets, d.
Further Exploration by Varying Regions. We further explore the
effect of different spatial regions. There are three different types
of spatial region as shown in Figure 14(a), i.e., urban, urban-
rural, rural. Given three different regions with equal area, it is
very time consuming to find the most influential k-location set in
the urban region by Basic method as the vertices in this region
typically cover massive trajectories. Nevertheless, our proposed
method PIBU works very efficiently as it can significantly reduce
the number of scanned trajectories in the updating phase, e.g., 16.1
times faster than Basic as shown in Figure 14(b). The performance
gap between PIBU and Basic reduces in the rural region as the
I
vv

in PIBU trends to index less vertices in the rural region. As
a result, our PIBU approach is much more efficient in the urban
area, where we expect to have more mining tasks in the real world.
Tuning of System Parameters. We also test the robustness of
PIBU by varying two system parameters, i.e., number of indexed
vertices � and trajectory partition size ⇠.
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We first study the effect of �, which can be determined by
the size of available memory in the system. Figure 15(a) shows
the effect of �. The memory consumption increase with �, e.g.,
it consumes 972 MB memory for indexing I

vv

when � = 500,
and 3891 MB when � = 2, 000. The processing time (by lines)
decreases from 3.6 seconds to 1.9 seconds as the index hit ratio
increases with � (by bars). According to our experiments, we pick
� = 1, 000 as the default setting as it gives a good trade-off
between the time efficiency and memory consumption.

Finally, we study the effect of trajectory partition size ⇠. As
shown in Figure 15(b), PIBU is not very sensitive to ⇠, and we set
⇠ = 8, 000 as our default setting.

6.2 Case Studies

In this subsection, we provide two case studies, i.e., billboards
placement and charging station placement, to demonstrate the
applicability of our proposed system.

6.2.1 Billboards Placement

Task. In this case study, a business owner would like to put three
billboards in New York City (NYC) to promote their products.
Assuming that each billboard can influence a spatial region with
size of 500⇥ 500 m2, and we want to maximize the influences of
the billboards (i.e., the number of covered unique users) as much
as possible.
Dataset. We use a location-based social network dataset as a
sample of human movements in the city. The dataset is collected
from Foursquare [26], which contains 221,128 tips generated
by 49,062 users in NYC. We divide NYC into equal size (i.e.,
500⇥ 500 m2) grids as demonstrated in Figure 16.
Results. The mining results are presented in Figure 16 as below:
• Figure 16(a) illustrates a heat map of the original users’ check-
in distributions in NYC, where the lighter area indicates more
users’ check-ins. The three selected girds are the areas with the
most number of users’ check-ins, which are: 1) Manhattan Mall,
2) Broadway Shopping Area A, and 3) Union Square Stations.
However, only counting the number of users’ check-ins may not
maximize the total number of covered unique users, as some users
may check-in multiple times in the same grid.
• Figure 16(b) illustrates a heat map of unique user’s check-
in distributions in NYC, where the lighter color indicates more
number of unique users visited the area. This approach eliminates
the scenario of one user’s multiple check-ins in a same grid. By
using this elimination, the three selected grids with maximum
unique user’s check-in are: 1) Broadway Shopping Area A, 2)
Broadway Shopping Area B and 3) East Village. However, it still
suffers from the drawback of overlapped users in the selected three
grids.
• Figure 16(c) shows the result of our solution, where we apply our
technique for approximate location set mining. The three selected
grids (i.e., the most influential 3-location set) are: 1) Broadway
Shopping Area A, 2) Union Square Station and 3) Chinatown. Our
selection captures more unique users (6,320) than the other two
approaches (i.e., 5,625 and 5,543). Our approach not only covers
a more diverse grids on the map, but also with a very diverse
semantics, which includes a shopping area, a transportation center
and a dining area.

As a result, our solution for selecting the most influential 3-
location set in NYC is more effective (influence more unique users
in the city) than all the other two approaches.

6.2.2 Charging Station Placement

Task. In this case study, the government wants to deploy three
electric vehicle (EV) charging stations in Wangjing Area (a district
in Beijing) to promote the green-energy. As the charing station
is a public service, we need to cover as many users’ travels
as possible. Moreover, the placement of EV charging stations
also need consider the following three domain constraints: 1) the
selected location needs to have space for parking; 2) the nearby
area needs a diverse array of POI categories; and 3) each two
selected locations should not be very close to each other.
Dataset. We use a GPS trajectories of 33,619 taxicabs in Beijing
as a sample of users’ vehicle movements. We perform a map-
matching algorithm to map the trajectories on the road network of
Beijing, which contains 186,266 vertices and 249,080 segments.
The target Wangjing area is demonstrated as the shaded polygons
in Figure 17.
Results. Figure 17 demonstrates the results using our most influ-
ential k-location set technique with multiple iterations from the
field experts.
• Figure 17(a) gives the selection results in the first iteration,
where three intersections are selected on the map (marked as red,
orange and green). The three selected locations covers a total of
11,558 trajectories in the area. However, when we exam closely
on each locations, we find that: 1) Node 2 and Node 3 do not have
enough places for parking, as demonstrated in the street map view;
and 2) the nearby POI distribution of Node 2 and Node 3 does
not satisfy the diversity requirement (i.e., without any medical
services), illustrated in the POI distribution view6. As a result,
we only keep Node 1 in the result, and perform a new selection
iteration.
• Figure 17(b) gives the selection results for the next two itera-
tions. In the second iteration, we find a new set of three locations,
where we keep Node 1 and Node 2 in the result and remove Node
3, as it does not have enough space for parking. On the third
iteration, we find a new Node 3. However, it still does not statisfy
our requirement, as it is very close to Node 1 in our result, as
they are intersections of a very popular bi-direction entry point of
Wangjing area. Thus, we need to remove Node 3 and perform our
algorithm continuously.
• Figure 17(c) gives the final result in the Wangjing area which is
demonstrated on the map (i.e., locations which are marked as red,
blue and yellow). All the selected locations fulfill our requirement,
where each of them has enough space for parking (demonstrated
in the street view) and statisfies the POI diversity (shown in the bar
chart). Most importantly to note here, the 3-location set covers a
total of 10,993 trajectories, which is very close to the total number
covered trajectories (i.e., 11,558) in the first iteration.

7 RELATED WORKS

Trajectory Query Processing. The increasing pervasiveness of
location-acquisition techniques has enabled collection of massive
trajectory data with a board range of applications [27][2][28][29].
[2] studies the problem of discovering the gathering patterns
from trajectories. [28] proposes to estimate the travel-time of
a path in real-time in a city based on the GPS trajectories of
vehicles. [29] studies a query which finds the most frequent path of

6. The POI distributions is calculated by aggregating the POIs within 1 km
range of the target location.
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Fig. 16: Placing Billboards in NYC

user-specified source and destination from historical trajectories.
However, their objectives are different from ours, we aim to find
the locations covers more trajectories within a spatial region.
Location Selection. The location selection problem has been
extensively studied by researchers in both operations research
and database communities [30][31][32][33][34][35][36][37][38].
The classical location selection problem takes two spatial datasets
C = {c1,c2,...,c

n

} (i.e., clients) and F = {f1,f2,...,f
m

} (i.e.,
candidate locations for facilities) as the input, and returns k (k >
0) locations in F that optimizes a predefined metric for the clients.
Based on the objective function, these works can be divided into
two categories, i.e., the MinSum model [35], [36], [37] and the
MinMax model [34]. The MinSum (MinMax) model aims at
locating k facilities such that the average (max) cost to reach
all clients can be minimized. More specifically, [32] studies an
efficient solution to locate one optimal location in road network.
[33] tackles the problem of optimal retail store placement in the
context of location-based social networks. However, none of them
focus on selecting the locations that covers the maximum number
of trajectories within a spatial region.
Maximum Coverage. Maximum coverage problem has great
utility for several real world applications [11][12][13][14]. The
widely used greedy implementation (cf. Section 5.1) does not
behave well when the data is disk resident [11][13]. [13] proposes
an efficient disk-based algorithm which can find a solution that is
provably close to that of greedy. [12] introduces the online set-
cover problem which focuses on minimizing the number of total
selected items to cover every requirement coming online. Besides,
[14] proposes to maintain k blogs7 to cover the list of interesting
topics for a given user. Given a Netflix user, [39] aims to find
k other users which can cover the like or un-like movies of a
given user. And it is the most similar work to ours. However,
their solution aims at approximating the greedy solution by using
coverage oracle. In a summary, all the works aforementioned
consider different problem as ours, thus their solutions can not
be applied directly.

8 CONCLUSION
This work presents a comprehensive study on mining the most

influential k-location set from massive trajectory dataset. It has

7. The topics of a blog can change after the updating.

many potential applications in resource allocation applications.
Our study covers both the exact and approximate solutions. The
exact solution works for small k and spatial region R, while the
efficient approximate algorithm is studied to address the large k
and spatial region R. Extensive experiments on real datasets show
that our proposed solutions is up to an order of magnitude faster
than the baseline solutions. We also demonstrate the applicability
of our proposed solution by performing two case studies: 1) Bill-
board placement in NYC and 2) EV charging station placement
in Beijing. Finaly, we have already deployed our system and it is
available via [15].
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