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ABSTRACT
Learning to make optimal decisions is a common yet complicated

task. While computer agents can learn to make decisions by run-

ning reinforcement learning (RL), it remains unclear how human

beings learn. In this paper, we perform the first data-driven case

study on taxi drivers to validate whether humans mimic RL to learn.

We categorize drivers into three groups based on their performance

trends and analyze the correlations between human drivers and

agents trained using RL. We discover that drivers that become more

efficient at earning over time exhibit similar learning patterns to

those of agents, whereas drivers that become less efficient tend

to do the opposite. Our study (1) provides evidence that some hu-

man drivers do adapt RL when learning, (2) enhances the deep

understanding of taxi drivers’ learning strategies, (3) offers a guide-

line for taxi drivers to improve their earnings, and (4) develops a

generic analytical framework to study and validate human learning

strategies.
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1 INTRODUCTION
Learning to make decisions is ubiquitous for human beings. For

example, a Go player learns to imitate other players to devise better

game strategies. A physician learns to determine doses of drugs

through extensive case studies and sometimes ad-hoc experimenta-

tion. A professional driver learns to cruise through repeated practice

to effectively find the next passenger. While a learning process is
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Figure 1: Diverse patterns of drivers’ per-hour income dy-
namics in Shenzhen, China.

often complex, recent advances in machine learning have enabled

computer agents to automate some learning tasks. For example,

reinforcement learning (RL) is used to train AlphaGo [44] to beat

the human champion and build systems to recommend medical

treatments [50]. Optimizing taxi operation strategies has also been

extensively studied in the literature [31, 37, 41, 59, 62]. Many recent

solutions also rely on RL techniques.

While progress was made to design RL algorithms for computer

agents to learn, it remains unclear how the human counterpart

learns. Do human learning processes exhibit similar patterns to

the one driven by RL algorithms, or they deviate from any known

learning strategies? Answering this problem is important for three

reasons: (i) many decision-making problems remain challenging

for machines and still require “human learning”, so it becomes

important to distill decision strategies from humans; (ii) effective
humans learning strategies can be used to train beginners such

as new Go players and new taxi drivers; and (iii) it also advances

cognitive and social science research by taking an algorithmic lens

at human learners’ behaviors.

This paper examines how traditional taxi drivers learn to cruise

for seeking their next passengers. Here, traditional drivers refer

to those that do not rely on mobile-based platforms such as Uber,

Lyft, or DiDi. These drivers represent a significant portion of per-

sonnel in taxi service, despite recent growth of online platforms.

Prior studies [37] on this problem assumed drivers are rational and

use inverse reinforcement learning to characterize drivers’ behav-

iors. Although these works offer useful insights, not all drivers

are rational. Some drivers learn faster than others. Some drivers’

https://doi.org/10.1145/3397536.3422246
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(a) Shenzhen road map (b) Map gridding

Figure 2: Shenzhen map data

performance even deteriorates over time. For example, Fig. 1 shows

the dynamics of per-hour incomes from four typical taxi drivers

in 2016 in Shenzhen, China. Driver 1 (dark green line) started at a

relatively low-income level, but then rapidly doubled the income

level by the end of the year. Driver 2 (light green line) started at

a similar (low) income level as Driver 1, but had a much slower

increasing trend. Driver 3 (blue line) had a stable income level over

time. Moreover, the income level of Driver 4 (red line) went down

roughly by 30% in six months.

This example suggests that different drivers use different strate-

gies to learn. Thus, our work focuses on investigating i) what learn-
ing strategies they are following, especially for those “quick learners”?;
ii) how do these strategies compare to what a computer agent would
follow in reinforcement learning?

Specifically, we investigate and validate human learning strate-

gies through a data-driven case study on taxi drivers. To the best

of our knowledge, this is the first attempt of its kind in the con-

text of taxi operations. Specifically, we extract trips of taxi drivers

from a large-scale dataset spanning 6 months with over 17,000

taxis. We categorize drivers into different groups based on their

hourly earning dynamics. For each group of drivers, we build esti-

mation procedures to construct the time series of a driver’s policy

and advantage functions and examine whether their patterns are

consistent with those of an agent in a RL algorithm. In addition,

we validate under what scenarios the drivers are following the

paradigm of RL, if not always.

Our major finding is that a taxi driver’s improvement in earn-

ing efficiency is positively correlated with how well he/she follows

the process of RL algorithm. In addition, human drivers usually

do not completely follow RL when learning. They tend to follow

RL first for those scenarios (e.g., certain urban areas) that lead to

higher earning improvement. Our contributions are summarized as

follows:

(1) We propose a three-stage analytical framework to rigor-

ously validate whether human agents (e.g., taxi drivers) follow

RL paradigms to improve their earning efficiencies.

(2) It is evident from the analytical results on a large-scale taxi

trajectory dataset that successful drivers are likely those who follow

the RL paradigm better. Moreover, they tend to follow RL first for

those scenarios (e.g., certain urban areas) that lead to higher earn-

ing improvement. We made our code and unique dataset publicly
available to contribute to the research community [2].

2 OVERVIEW
In this section we present our problem statement, followed by an

introduction to the dataset and our solution framework.

Problem Definition: Given real trajectory data of taxi drivers
˜T

in a sequence of time intervals 𝑇0,𝑇1, ...,𝑇𝑛 , we aim to validate or

reject the following hypotheses: (1) Drivers that are successful

in learning passenger-seeking experiences (i.e., with increasing

earning efficiency), employ learning strategies that are closer to

reinforcement learning (RL) paradigms; (2) The RL paradigm is

followed by human drivers only at certain scenarios (e.g., locations,

times) rather than all circumstances. We also aim to identify what

these scenarios are.

Dataset:We use two data sources: (i) taxi trajectory data and (ii)
road map data, both collected in Shenzhen, China in 2016.

The taxi trajectory data contains GPS records collected from

taxis in Shenzhen, China between July 1
st
and December 31

st
in

2016. There are in total 17, 877 taxis equipped with GPS sets. Each

GPS set generates a GPS point every 40 seconds on average. A

total of 51, 485, 760 GPS records are collected on a daily basis. Each

record contains five fields, including taxi ID, time stamp, passenger

indicator, latitude, and longitude. The passenger indicator field is a

binary value, indicating if a passenger is aboard or not.

The Road map data was collected from [1]. It covers the rect-

angular area between 22.44◦ to 22.87◦ in latitude and 113.75◦ to
114.63◦ in longitude. This area includes 21, 000 road segments with

six levels, including motorway, trunk way, primary road, secondary

road, tertiary, and unclassified, as shown in Fig. 2a.

Data Preprocessing:We preprocess the datasets by map gridding

and time discretization.

(1) Map gridding. The urban road network forms a continuous

space. We use the gridding-based method to simply partition the

road map into equally sized grids [28, 29]. This method is easy to

implement and make adjustment. It allows us to adjust the size of

the grids, and examine the impact of the grid size. We let 𝑠 be the

side-length of each cell. Cells adjacent to each other are considered

reachable if there is at least one road across their boundary. Fig. 2b

visualizes of our gridding results with side-length of 𝑠 = 0.01◦ in
latitude and longitude. By removing grid cells in those unreachable

regions in the city (e.g., in the center of a part), we have a total of

𝑛 = 1, 018 valid cells (highlighted in light colors in Fig. 2b) covered

by the road network.

(2) Time Discretization. We divide each day (24 hours) into

three time intervals, i.e., 00:00 – 06:00, 06:00 – 16:00, and 16:00 –

24:00, based on the common schedules of taxi drivers. In Shenzhen,

Figure 3: Solution framework
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(a) Mean earning efficiency of
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Figure 4: Different trends of earning efficiencies in the three driver groups

each taxi is usually operated by two drivers. One driver operates in

day time and the other operates at nights. Thus, taxi trajectories in

different time intervals are considered from different drivers. Two

drivers usually switch at around 6AM and 4PM everyday. Finally,

because there are exceedingly small numbers of taxi trips between

mid-night and early morning, we focus on only two time intervals,

i.e., 06:00 - 16:00 and 16:00 - 24:00.

Solution Framework: Our proposed solution framework is out-

lined in Fig. 3, which takes two sources of urban data as inputs

and contains three analytical stages: (1) categorizing taxi drivers

in section 3, (2) modeling decision-making and learning process in

section 4, (3) learning strategy validation in section 5.

3 STAGE I: CATEGORIZING TAXI DRIVERS
This section introduces the definition of taxi drivers’ earning effi-

ciencies (Section 3.1), the earning efficiency dynamics of taxi drivers

(Section 3.2), and classification of taxi drivers based on the trends

of their earning efficiencies (Section 3.3).

3.1 Quantifying Taxi Drivers’ Earning
Efficiencies

To quantify the earning efficiencies of taxi drivers, we need to

address two issues: 1. Effective working hours. 2. Changes in earning
efficiencies. Drivers’ earning efficiencies evolve over time. Thus, we

re-estimate drivers’ earning efficiencies every week.

Let 𝑟 𝑖𝑒 be the earning efficiency of driver 𝑒 in week 𝑖 (1 ≤ 𝑖 ≤ 27).

We let

𝑟 𝑖𝑒 =
𝐸𝑖𝑒

𝑡𝑖𝑒
, (1)

where 𝐸𝑖𝑒 is his/her total income in week 𝑖 and 𝑡𝑖𝑒 is the total working

hours. Here, the total working hours are the time when the driver

is seeking for passengers or serving passengers. We eliminate the

time when the driver takes a break (the taxi stays still for 30 minutes

or more).

3.2 Earning Efficiency Trend Analysis
We aim to detect the following patterns in drivers’ earning efficien-

cies changes:

• Monotonic increase/decrease. The increase or decrease occurs
constantly over the entire time series.

• Abrupt increase/decrease. At a certain time point, an abrupt

increase or decrease occurs, differing the statistics of time

series before and after that significantly.

When the efficiency of a driver does not exhibit any of the above

changes, we define the driver as a stabilized driver. Fig. 4(b)-(d)

show examples of different learner groups. Next, we devise two

statistical tools to detect the aforementioned patterns.

Mann-Kendall (MK)TrendTest [15] is a hypothesis testmethod

for monotonic trend in time series data, which indicates whether

a trend exists and whether the trend is positive or negative. The

null hypothesis 𝐻0 is no monotonic trend, while the alternative
hypothesis 𝐻1 ismonotonic trend is present.

The statistic of Mann-Kendall test can be calculated as follows,

𝑍𝑀𝐾 =


𝑆−1√
𝑉𝐴𝑅 (𝑆)

𝑖 𝑓 𝑆 > 0,

0 𝑖 𝑓 𝑆 = 0,
𝑆+1√
𝑉𝐴𝑅 (𝑆)

𝑖 𝑓 𝑆 < 0,

(2)

𝑆 =

𝑛−1∑
𝑘=1

𝑛∑
𝑗=𝑘+1

sgn(𝑟 𝑗𝑒 − 𝑟𝑘𝑒 ), (3)

sgn(𝑟 𝑗𝑒 − 𝑟𝑘𝑒 ) =


1 𝑖 𝑓 𝑟

𝑗
𝑒 − 𝑟𝑘𝑒 > 0,

0 𝑖 𝑓 𝑟
𝑗
𝑒 − 𝑟𝑘𝑒 = 0,

−1 𝑖 𝑓 𝑟
𝑗
𝑒 − 𝑟𝑘𝑒 < 0,

(4)

𝑉𝐴𝑅(𝑆) = 1

18

[𝑛(𝑛 − 1) (2𝑛 + 5)] . (5)

Given a confidence 𝛼 , the null hypothesis is rejected if |𝑍𝑀𝐾 | >
𝑍1−𝛼 , where 𝑍1−𝛼 is the (100(1 − 𝛼))𝑡ℎ percentile of the standard

normal distribution.

Pettitt’s Test [22] is to detect change points in time series data.

A change point in a time series 𝑟1𝑒 , 𝑟
2

𝑒 , 𝑟
3

𝑒 , ..., 𝑟
𝑡
𝑒 , ..., 𝑟

𝑛
𝑒 refers to a

time index 𝑡 such that {𝑟𝑡1𝑒 }𝑡1≤𝑡 and {𝑟
𝑡2
𝑒 }𝑡2>𝑡 follow two distribu-

tions [16]. The null hypothesis 𝐻0 is no abrupt change points
exist, while the alternative hypothesis 𝐻1 is an abrupt change
point exists.

Pettitt’s test uses a non-parametric test statistics𝑈𝑡 defined as

𝑈𝑡 =

𝑡∑
𝑖=1

𝑛∑
𝑗=𝑡+1

sgn(𝑟 𝑖𝑒 − 𝑟
𝑗
𝑒 ). (6)
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Figure 5: Driver groups

Then we can calculate:

𝐾 = max

1≤𝑡 ≤𝑛
𝑈𝑡 . (7)

The change-point of the series is located at time 𝐾 , provided

that the statistic is significant. The significance probability of 𝐾 is

approximated for 𝑝 ≤ 0.5 with:

𝑝 ≈ 2 exp

−6𝐾2

𝑛3 + 𝑛2
. (8)

3.3 Results on Trend Analysis
We next describe our result. Our dataset contains 2,403 taxis in the

6am to 4pm interval and 2,790 taxis in the 4pm to 12am interval.

We categorize taxi drivers into three groups: (1) Trending-up: if
at least one of the tests (MK and Pettitt) show significant increasing

trend, (2) Trending-down: if at least one of the tests show signif-

icant decreasing trend, and (3) Stabilized if none of the tests is

significant. The two tests do not produce any inconsistent conclu-

sions among drivers we examine (i.e., one test shows it trends up

whereas the other shows it trends down).

Fig. 5 presents the results. Note Week #14 and #15 are excluded

from the dataset because they have much smaller trip numbers due

to the national holiday. This is to avoid biased results.

We can see that around half of the drivers are stabilized drivers,

and the number of trending-up drivers is larger than the number of

trending-down drivers in both intervals. Fig. 4a shows the average

earning efficiencies for each group of drivers over 25 weeks. The

trends exhibit here are consistent with the test results.

4 STAGE II: MODELLING DECISION-MAKING
AND LEARNING PROCESSES

We next model the drivers’ behaviors. We need to model: (i) how
drivers make decisions (i.e., how they look for and serve passen-

gers). This is modeled by a Markov Decision Process (Sec 4.1). (ii)
how drivers learn to make decisions (i.e., how they use their past

experience to update their decision policies over time). Based on

our hypothesis, we use reinforcement learning (RL) to model this

process (Sec 4.2).

4.1 Decision-Making Process as an MDP
A taxi driver needs to determine the travel direction when the

taxi is idle and this decision impacts his/her chance to find a new

(a) MDP of taxi driver’s decision-making
process (b)𝑄 (𝑆0, 𝐴0) ,𝑉 (𝑆0)

Figure 6: Illustrations of MDP and RL concepts

passenger. We model this decision-making process as a Markov

Decision Process (MDP) [4].

ReviewofMDP.AnMDP is represented as a 5-tuple ⟨𝑆,𝐴,𝑇 ,𝛾, 𝜇0, 𝑅⟩.
• 𝑆 is a finite set of states;

• 𝐴 is a finite set of actions;

• 𝑇 is the probabilistic transition function with 𝑇 (𝑠 ′ |𝑠, 𝑎) as
the probability of arriving at state 𝑠 ′ by executing action 𝑎

at state 𝑠;

• 𝛾 ∈ (0, 1] is the discount factor1;
• 𝜇0 : 𝑆 → [0, 1] is the initial state distribution;
• 𝑅 : 𝑆 ×𝐴→ R is the reward function.

A randomized, memoryless policy is a function that specifies a

probability distribution on the action to be executed in each state, de-

fined as𝜋 : 𝑆×𝐴→ [0, 1].We use𝜏 = [(𝑠0, 𝑎0), (𝑠1, 𝑎1), . . . , (𝑠𝐿, 𝑎𝐿)]
to denote a trajectory generated by MDP. Here 𝐿 is the length of

trajectory.

ApplyingMDP tomodel drivers.Wemodel the decision-making

process of taxi drivers with MDP as follow:

• State: a spatial region, specified by a geographical grid cell,

created with map gridding in data preprocessing phase;

• Action: traveling from the current cell to one of the eight

neighboring cells.

Fig. 6a shows an example of taxi trajectory as an MDP: a driver

starts in state 𝑠0 with the taxi idle, and takes the action 𝑎0 to travel

to the neighboring cell 𝑆1 on the right. After two decisions, the

driver traverses 𝑆1 and reaches state 𝑆2, where a passenger is found

at 𝑆2. Then, a passenger trip corresponds to a transition in the MDP

from starting state 𝑆2 to ending state 𝑆3. Each decision made at

a certain state would lead to a reward as the expected monetary

income of finding and serving a passenger. The policy 𝜋 employed

by a driver is a probability distribution of choosing each action at

each state.

4.2 Learning Process as Reinforcement
Learning

Hypothesis.When one starts working as a taxi driver, he/she may

not have knowledge about where to find the next passenger, and

may choose a simple initial policy 𝜋0. Over time, the driver learns

from his/her experience and update the policy to 𝜋1 with a goal to

1
Without loss of generality, we assume 𝛾 = 1 in this study, and it is straightforward to

generalize our results to 𝛾 ≠ 1.
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Table 1: Typical methods of RL

Typical Method Update function

Value-based Q-learning 𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼 [𝑟 (𝑠, 𝑎) + 𝛾 max𝑎′ 𝑄 (𝑠 ′, 𝑎′) −𝑄 (𝑠, 𝑎)] [47]
Methods SARSA 𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼 [𝑟 (𝑠, 𝑎) + 𝛾𝑄 (𝑠 ′, 𝜋𝑄 (𝑠 ′)) −𝑄 (𝑠, 𝑎)] [47]

Actor-Critic Actor-Critic ∇𝑅𝜃 ≈ 1

𝑁

∑𝑁
𝑛=1

∑𝑇𝑛
𝑡=1
(𝑄𝜋𝜃 (𝑠𝑛𝑡 , 𝑎𝑛𝑡 ) −𝑉 𝜋𝜃 (𝑠𝑛𝑡 ))∇ log 𝑝𝜃 (𝑎𝑛𝑡 |𝑠𝑛𝑡 ) [25]

Methods Advantage Actor-Critic(A2C) ∇𝑅𝜃 ≈ 1

𝑁

∑𝑁
𝑛=1

∑𝑇𝑛
𝑡=1
(𝑟𝑛𝑡 +𝑉 𝜋𝜃 (𝑠𝑛𝑡+1) −𝑉

𝜋𝜃 (𝑠𝑛𝑡 ))∇ log 𝑝𝜃 (𝑎𝑛𝑡 |𝑠𝑛𝑡 ) [25]
Policy-based Methods Policy gradient 𝜃 ← 𝜃 + 𝛼∇𝑅𝜃 , ∇𝑅𝜃 ≈ 1

𝑁

∑𝑁
𝑛=1

∑𝑇𝑛
𝑡=1
(∑𝑇𝑛

𝑡 ′=𝑡 𝛾
𝑡 ′−𝑡𝑟𝑛

𝑡 ′ − 𝑏)∇ log𝑝𝜃 (𝑎
𝑛
𝑡 |𝑠𝑛𝑡 ) [48]

increase his/her income. The driver repeats this process so his/her

policy evolves continuously (see also [41, 59, 62]).

Types of reinforcement learning. Reinforcement learning (RL)

algorithms can be classified into three major categories including

value-based RL [47], policy-based RL [48], Actor-Critic based ap-

proach [25]. We briefly outline the key ideas of the three types of

RL algorithms below. A key similarity of all these algorithms is that

they optimize the policy functions by “taking the gradient” with

respect to the advantage function, which is defined as the additional

reward gained from the current policy comparing to the one in the

previous iteration.

• Value-based RL [47] does not learn the optimal policy directly. It

learns the so-called 𝑄 value (or 𝑉 value) instead, which is defined

on each state-action pair (𝑠, 𝑎), namely, 𝑄 (𝑠, 𝑎) (or on each state

𝑠 , namely, 𝑉 (𝑠)). Specifically, 𝑄 (𝑠, 𝑎) refers to the expected future

reward, after taking an action 𝑎 at a state 𝑠 , while 𝑉 (𝑠) refers to
the expected reward after leaving a state 𝑠 . Once Q-functions are

well learned, the optimal policy 𝜋∗ can be recovered from the op-

timal value function of each state-action pair (e.g., 𝑄 (𝑠, 𝑎)). The
Q-learning [47] and State-Action-Reward-State-Action (SARSA)

methods [47] are the state-of-the-art value-based RL algorithms.

• Policy-based RL [48] learns an optimal policy directly. Usually,

policy 𝜋 is represented by a (deep) neural network with parameter

set 𝜃 . A well known policy-based method is policy gradient [48].

The objective of policy gradient is to maximize the expected future

reward over trajectories:

max

𝜃
𝑅𝜃 = max

𝜃
{E(𝑅𝜃 )} = max

𝜃
{
∑
𝜏

𝑅(𝜏)𝑝𝜃 (𝜏)}. (9)

Where 𝑅(𝜏) is the accumulated reward in trajectory 𝜏 and 𝑝𝜃 (𝜏)
denotes the probability of generating trajectory 𝜏 under the policy

with parameter 𝜃 . Then, we can apply gradient ascent to find the

optimal 𝜃 . The gradient of the objective function with respect to 𝜃

is:

∇𝑅𝜃 ≈
1

𝑁

𝑁∑
𝑛=1

𝑇𝑛∑
𝑡=1

(
𝑇𝑛∑
𝑡 ′=𝑡

𝛾𝑡
′−𝑡𝑟𝑛𝑡 ′ − 𝑏)∇ log𝑝𝜃 (𝑎

𝑛
𝑡 |𝑠𝑛𝑡 ), (10)

where 𝑁 is the number of trajectories,𝑇𝑛 is the length of trajectory

𝑛, 𝑡 and 𝑡 ′ are the time steps. 𝑏 is the baseline, i.e., average reward

received.

• Actor-Critic based RL [25] combines both value-based and policy

based methods,

∑𝑇𝑛
𝑡 ′=𝑡 𝛾

𝑡 ′−𝑡𝑟𝑛
𝑡 ′ is evaluated using 𝑄𝜋𝜃 (𝑠𝑛𝑡 , 𝑎𝑛𝑡 ), and

we can use𝑉 𝜋𝜃 to be the baseline 𝑏. Moreover,𝑄𝜋𝜃 (𝑠𝑛𝑡 , 𝑎𝑛𝑡 ) −𝑉 𝜋𝜃 is

denoted by 𝐴𝜃 (𝑠𝑡 , 𝑎𝑡 ) which is called the advantage function. If the
expected reward after taking a state-action pair is higher than the

average expected reward after exiting the state, i.e., the advantage is

positive, the agent will increase the probability of taking this action

in this state. The advantage function is used to update the gradient,

which in turn updates the parameter of the policy network.

Similarities of three RL paradigms. The gradient update func-
tions of the three typical methods of RL are listed in Table 1. They

all try to maximize the expected accumulated reward in each state

or state-action pair, which is related to 𝑄 (𝑠, 𝑎) and 𝑉 (𝑠). In other

words, all these RL algorithms are equivalent, in a sense that a larger

advantage of an state-action pair results in a increased probability

of choosing such pair in the future policy.

Empirical estimates. Our main goal is to validate whether the

real-world learning process of the drivers is consistent with the pol-

icy gradientmethod. Here, we describe how the key variables/functions

are estimated through data.

• Estimation of advantage functions. Recall that the advantage func-
tion captures the additional reward gained from the change of one’s

policy. We estimate the advantage function value of each state-

action pair for each driver. In time span 𝑇0, the advantage of a

driver in each state-action pair can be estimated by the empirical𝑄

value and empirical 𝑉 value. The empirical 𝑄 value is the average

earning efficiency of the driver within a certain range of time after

exiting each state via each action, whereas the empirical 𝑉 value is

the average earning efficiency of the driver with a certain range of

time after exiting each state. The difference between𝑄 value and𝑉

value is that𝑉 value characterizes the expected reward after leaving

each state 𝑠 , while 𝑄 value characterizes the expected reward after

taking each state-action pair (𝑠, 𝑎) As shown in Fig. 6b, 𝑉 (𝑆0) is
calculated using all red trajectories and blue trajectories, which are

the service trips exiting 𝑆0, whereas 𝑄 (𝑆0, 𝐴0) is calculated using

only the blue trajectories, which are the service trips exiting 𝑆0
through action 𝐴0.

𝐴(𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) −𝑉 (𝑠) . (11)

• Estimation of policy functions and their differences.We also need

to estimate the difference of policies between two consecutive time

spans, 𝑇0 and 𝑇1. The empirical policy 𝜋 (𝑠, 𝑎) of each state-action

pair in each time span can be estimated via the visitation frequen-

cies,

𝜋 (𝑠, 𝑎) = 𝐷 (𝑠, 𝑎)
𝐷 (𝑠) , (12)

where 𝐷 (𝑠, 𝑎) and 𝐷 (𝑠) denote the visitation frequency of the state-

action pair (𝑠, 𝑎) and state (𝑠) respectively. Validating if taxi drivers
follow RL is equivalent to examine if there exists significant corre-

lation between the difference of policy Δ𝜋 (𝑠, 𝑎) and the advantage
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Figure 7: Heatmap of a driver’s 𝐷 (𝑠) Figure 8: Heatmap of a driver’s 𝑉 (𝑠) Figure 9: Weight matrix

𝐴(𝑠, 𝑎). Next section continues the discussion of the validation

process.

5 STAGE III: LEARNING STRATEGY
VALIDATION

This section describes our validation process. This consists of (i)
identifying the correlation between the policy difference and the

advantage, and (ii) correcting spatial bias of the empirical policy dif-

ference and the advantage by analyzing the spatial auto-correlation.

5.1 Advantage Correlation
To validate if there exists a correlation between the policy difference

Δ𝜋 (𝑠, 𝑎) and the advantage 𝐴(𝑠, 𝑎), a correlation coefficient should

be used. A common one is Pearson’s correlation coefficient[5], but

it has the assumption of independent and identical distribution of

data. The Spearman’s rank correlation coefficient [6] works for non-

parametric data measuring a statistical relationship between two

variables, which is more applicable in our ordinal data. Therefore,

we employ Spearman’s rank correlation coefficient in addition

to the Pearson’s correlation coefficient to evaluate the correlation

coefficient and test its significance. The statistic of Spearman’s rank

correlation coefficient can be calculated by the formula below:

𝜌 =

∑𝑛
𝑖=1 (𝑟𝑎𝑛𝑘 (𝐴𝑖 ) − 𝑟𝑎𝑛𝑘 (𝐴)) (𝑟𝑎𝑛𝑘 (Δ𝜋𝑖 ) − 𝑟𝑎𝑛𝑘 (Δ𝜋))√∑𝑛

𝑖=1 (𝑟𝑎𝑛𝑘 (𝐴𝑖 ) − 𝑟𝑎𝑛𝑘 (𝐴))2
∑𝑛
𝑖=1 (𝑟𝑎𝑛𝑘 (Δ𝜋𝑖 ) − 𝑟𝑎𝑛𝑘 (Δ𝜋))2

,

(13)

where𝐴𝑖 is the advantage of the 𝑖 − 𝑡ℎ sample, and Δ𝜋𝑖 is the policy
difference of the 𝑖 − 𝑡ℎ sample. 𝑟𝑎𝑛𝑘 denotes the ordinary rank of

the corresponding value, and 𝑛 is the sample size.

𝜌 ranges from −1 to 1, and the sign of 𝜌 indicates the direction

of the association between the advantage and the policy difference,

e.g., if the sign is positive, the policy difference tends to decrease

with the increase of the advantage.

We can also determine the significance of the 𝜌 . We calculate

the 𝑡 value according to the formula below:

𝑡 = 𝜌

√
𝑛 − 2
1 − 𝜌2

. (14)

Then we check the 𝑝 value by calculating the 𝑡 value according to

the Student’s 𝑡 distribution.

5.2 Incorporating Spatial Auto-Correlation
Intuitively, nearby grids may cover the same urban functional zone

in a city and share similar demand patterns. This can be observed

from the real world data. Fig. 7 & 8 show the heatmaps of the 𝐷 (𝑠)
and𝑉 (𝑠) of a driver in July 2016, where we can observe that similar

values are clustered. Therefore, it’s reasonable to incorporate spatial

auto-correlation when estimating 𝐷 (𝑠) and 𝑉 (𝑠).
(1) Quantifying spatial auto-correlation in 𝐷 (𝑠) and 𝑉 (𝑠).

Given a grid cell, we consider the eight neighboring grid cells

as its spatial neighbors (i.e., the Queen neighborhood). A weight

matrix is used to define the strength of correlation between pairs of

locations, based on the inverse Manhattan distance between each

pair of grid cells, i.e., the original weight 𝑤𝑖 𝑗 between grid 𝑖 and

grid 𝑗 (𝑖 ≠ 𝑗 ) is:

𝑤𝑖 𝑗 =

{
1

𝑀𝑎𝑛ℎ_𝑑𝑖𝑠𝑡 (𝑖, 𝑗)+1 𝑖 𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑖, 𝑗) = 𝑇𝑟𝑢𝑒,
0 𝑖 𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑖, 𝑗) = 𝐹𝑎𝑙𝑠𝑒,

(15)

where 𝑀𝑎𝑛ℎ_𝑑𝑖𝑠𝑡 (𝑖, 𝑗) returns the Manhattan distance between

grid 𝑖 and grid 𝑗 , and 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑖, 𝑗) returns 𝑇𝑟𝑢𝑒 if grid 𝑖 and 𝑗 are
neighboring and vise versa. Then the weights for each grid are

normalized among its neighbors. Fig. 9 shows an example of the

weights between the neighboring grids and the red grid.

Moran’s I [13] is a measure of spatial auto-correlation. The statis-

tic of Moran’s I test can be calculated in Eq. 16

𝐼 =
𝑁

𝑊

∑
𝑖

∑
𝑗 𝑤𝑖 𝑗 (𝑥𝑖 − 𝑥) (𝑥 𝑗 − 𝑥)∑

𝑖 (𝑥𝑖 − 𝑥)2
, (16)

where 𝑥 is the value of interest in each location, 𝑁 is the number of

spatial units, 𝑖 , 𝑗 are the indexes of two spatial locations,𝑤𝑖 𝑗 is the

weight between location 𝑖 and location 𝑗 ,𝑊 is the sum of all𝑤𝑖 𝑗 .

Value of 𝐼 ranges from −1 to 1, and values significantly below
−1
𝑁−1

indicate negative spatial autocorrelation and values significantly

above
−1
𝑁−1 indicate positive spatial autocorrelation [13].

To verify if there is a significant spatial auto-correlation in the

data, a hypothesis test is conducted, the null hypothesis 𝐻0 is the

values are spatially independent and assigned at random among

the regions, while the alternative hypothesis 𝐻1 is the values are

spatially correlated. The null hypothesis is rejected if the statistical

significance (𝑝-value) of aMoran’s I score is below a given threshold.

It can be calculated through estimating the distribution of 𝑧-score

of 𝐼 .

The average 𝐼 score of𝑉 (𝑠) and 𝐷 (𝑠) among the drivers is 0.5241

and 0.5551. Given the confidence level 0.95 (𝑝 < 0.05), for𝑉 (𝑠), the
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(a) Trending-up drivers (b) Trending-down drivers (c) Stabilized drivers

Figure 10: Policy difference VS. Advantage

values from 99.25% drivers reject the null hypothesis, which means

𝑉 (𝑠) has spatial correlation; and for 𝐷 (𝑠), the values from 99.07%

drivers reject the null hypothesis, which indicates 𝐷 (𝑠) also has

strong spatial correlation.

(2) Integrating spatial auto-correlation in advantage corre-
lation analysis. From the results above, it is safe to conclude

that both 𝐷 (𝑠) and 𝑉 (𝑠) exhibit spatial auto-correlations under
the weight matrix designed. Thus we should take the spatial auto-

correlation into account to reduce the bias. The spatial normalized

value 𝑆𝑁 (𝑥) can be calculated by Eq. 17

𝑆𝑁 (𝑥𝑖 ) = 𝛼𝑥𝑖 + (1 − 𝛼)
∑
𝑗≠𝑖

𝑤𝑖 𝑗𝑥 𝑗 , (17)

where 𝑥 is either 𝐷 (𝑠) or 𝑉 (𝑠). 𝑆𝑁 (𝑥𝑖 ) is a convex combination

of 𝑥𝑖 and weighted sum of that from its neighboring cells, with

combination parameter 𝛼 ∈ [0, 1]. In this study, we employ 𝛼 = 0.5.

6 EVALUATION
In this section, we apply the proposed analysis on the aforemen-

tioned real world taxi trajectory data from Shenzhen, China, to

validate the established hypotheses of this paper. We quantitatively

evaluate the correlations between the advantage and the policy

difference among the different groups of drivers and present a case

study to show that how typical drivers learn experiences in a par-

adigm which is similar to reinforcement learning (RL). We have

released the code and data for reproducibility [2].

6.1 Experiment Settings
Following the steps discussed in Section 2 and extracting trips of

taxi drivers, we use 6 months trajectory data in 2016, i.e., 07/2016-

12/2016, with an average of around 600𝑘 trips per day. We conduct

the experiments in two different time intervals respectively: 6am-

4pm (day-time driver working hours) and 4pm-12am (night-time

driver working hours). After eliminating those taxis whose records

are not complete during these 6 months, there are 2, 760 valid taxis

found in 6am-4pm time interval, while 2, 403 found in 4pm-12am

time interval.

We apply Pearson’s correlation coefficient and Spearman’s rank

correlation coefficient for the correlation analysis between policy

difference and the advantage, and evaluate the statistical signifi-

cance of the correlations to test our hypotheses.

Table 2: Results of correlation analysis

Trending-up drivers Trending-down drivers Stabilized Drivers

Pearson’s Corr 0.26 -0.21 0.023

Pearson’s p-value 6.59𝑒−12 2.30𝑒−25 0.11

Spearman’s Rank Corr 0.39 -0.32 0.029

Spearman’s p-value 1.17𝑒−26 6.85𝑒−65 0.05

6.2 Correlation analysis
In this section, we present the correlation results between the pol-

icy difference and the advantage for each of the three groups of

taxi drivers. To reduce bias in the analysis, we only consider grids

(i.e., states) with sufficient visits in the data. Here we set 20 as the

minimum visit count threshold, and exclude grids with fewer visits.

As discussed in Section 5 for each driver we calculate the advantage

over each state-action pair in a time slot 𝑇0 and the policy differ-

ence of the same state-action pair in the next time slot 𝑇1 over 𝑇0
to understand how they adjust their strategies based on historical

experiences. Here we use 3 weeks as the length of each time slot

since it may take certain time for the adjustments to be observed.

Analysis Results. Fig. 10 shows the results of the three groups
drivers, respectively. Each point in the plot represents the policy

difference and advantage of a state-action pair of one driver. The

x-axis is the advantage in the first time span 𝑇0, and the y-axis is

the preference difference between 𝑇0 and 𝑇1. The blue line is the

linear regression line of the points.

Fig. 10a shows the results for the trending-up drivers. There
is a positive correlation between the policy difference and the ad-

vantage, which imply the state-action pairs with larger advantages

tend to have larger policy difference. In other words, the drivers are

leaning towards increasing the relative visitation frequency of an

state-action pair if she found that the advantage of the state-action

pair was large in the previous time slot, and vise versa.

Fig. 10b shows the results of the trending-down drivers. The

linear regression line of the points (blue) has a negative slope. It

shows that the trending-down drivers have a negative correlation

between the policy difference and the advantage, which states these



SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA Menghai and Weixiao, et al.

(a) State-action pairs with greatest
advantages in July

(b) Greatest policy differences be-
tween July and August

Figure 11: The learning process of Mike

(a) State-action pairs with greatest
advantages in July

(b) Greatest policy differences be-
tween July and August

Figure 12: The learning process of Jacob

drivers increase the relative visitation frequency of those state-

action with smaller advantages, and vise versa, which is a counter-

act with the learning process of policy-gradient RL.

Fig. 10c shows the results of the stabilized drivers. The slope of
the linear regression line is close to 0. The stabilized drivers reflect

little correlation between the policy difference and the advantage.

We consider that these drivers have finished the learning process

and reached a stable status.

Table 2 provides the quantitative results of three groups of taxi

drivers. For trending-up drivers, the Spearman’s rank correlation

coefficient is 0.39 with a 𝑝-value of 1.17𝑒−26, which means that

the correlation between the policy difference and the advantage is

significantly positive. A similar conclusion is drawn based on the re-

sult of the Pearson’s correlation coefficient. Although the Pearson’s

correlation coefficient is smaller, it still suggests a significant posi-

tive correlation. For the trending-down drivers, the Spearman’s

rank correlation coefficient is −0.32 with a 𝑝-value of 6.85𝑒−65. It
implies that the correlation between the policy difference and the

advantage is significantly negative. The Pearson’s correlation anal-

ysis results suggest the same conclusion. Stabilized drivers have
little correlation between the policy difference and the advantage

with the Spearman’s rank correlation coefficient of 0.029 and a

𝑝-value of 0.05.

CorrelationAnalysis Summary:The trending-up driverswho
improved earning efficiencies over time show a similar learning

process as that of the agent in an policy gradient RL algorithm,

while the trending-down drivers who worsened earning efficien-

cies show an opposite learning process to the learning process of

the agent in a policy gradient RL algorithm. This in turn proves

that (1) the trending-up taxi drivers are following the paradigm of

RL effectively when learning strategies, and (2) drivers tend to be

more successful in terms of their increasing earning efficiency if

they better follow the learning process of RL.

The result of stabilized drivers implies that these taxi drivers may

have found strategies that they believe to be “optimal”. They are

loyal to the strategies and not temporally affected by the advantages.

They are similar as agents in RL that have already reached the

optimal status.

6.3 Case Study
In this section, we provide two concrete examples from two real

drivers to help illustrate our findings in details.

(1) A trending-up driver.We select a driver, Mike, from the group

of trending-up. Mike’s earning efficiency shows a monotonic in-

creasing trend from the first week in 07/16 to the last week in 12/16.

We extracted the top 5 grids with the highest visitation frequency

of Mike during July and August, as shown in Fig. 11a. We can see

that Mike likes working near the Airport. We calculated the ad-

vantage of the state-action pairs of these 5 grids. The state-action

pair with the highest advantage value among the state-action pairs

of each state is marked with a blue arrow in Fig. 11a. These blue

arrows show that the driver tends to get closer to the airport to

get better earnings. Then, we extract the policy difference of these

state-action pairs from July to August, and the state-action pair

with the largest policy difference among the state-action pairs in

each state are marked with black arrows in Fig. 11b. Comparing

Fig. 11b with Fig. 11a, we can find that from July to August Mike

increased the probability of taking those exact actions which he

learned to have the highest advantage based on experiences from

July. Mike maintained a similar strategy as the agent in RL, which

helped him improve his earning efficiency from July to August.

(2)A trending-down driver. We select another driver from the

group of trending-down, namely, "Jacob". Jacob’s earning efficiency

shows a monotonic decreasing trend from the first week in 07/16

to the last week in 12/16. We extracted the top 5 grids with the

highest visitation frequency of Jacob during July and August, as

shown in Fig. 12a. Jacob likes working near the downtown area.

Similarly, we calculate the advantages and the policy difference

for each state-action pair in these grids. The results are marked

in Fig. 12a & 12b. Comparing the results in these two figures, we

can find that from July to August Jacob increased the probability of

taking those actions that didn’t give him high advantages in July. It

is the opposite to what an agent in RL would do. Thus, the earning

efficiency of Jacob was lowered from July to August.

6.4 Takeaways and Discussions
Based on our study upon a large real-world taxi trajectory dataset,

we acquired promising findings about whether a taxi driver follows
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the learning process of RL and why different groups of taxi drivers

have different earning efficiency trends over time. The takeaways

are summarized:

(1) Taxi drivers, especially the ones with improving earning

efficiencies, indeed follow the learning process of RL. Drivers with

the different trends of earning efficiency result from the different

extents to follow the paradigm of RL.

(2) Even the best drivers cannot completely follow the RL par-

adigm in all the scenarios. The possible reasons are that human

drivers have limited memories and they do not precisely calculate

the advantage over all the state-action pairs. Trending-up drivers

tend to better follow the RL paradigm for those state-action pairs

with low-to-medium expected rewards. The reason could be that

their strategies are already (near) optimal for those high-reward

state-action pairs. The improvement primarily comes from the low-

to-medium reward scenarios.

Our findings establish the foundation for future research related

to behavior analysis of taxi drivers. It can be used for strategy

recommendations. For example, for slow-growing drivers, one can

focus on helping them keep better track of their advantages so that

they better follow RL and their earning efficiencies grow faster.

Also, one can expect drivers to learn the best strategies in the most

profitable areas quickly. Learning is efficient if drivers focus more

on improving their decisions in low-to-medium reward areas.

7 RELATEDWORK

Taxi operating strategies (e.g., dispatching, passenger seeking), and

driver behavior analysis have been extensively studied in recent

years due to the emergence of the ride-sharing business model and

urban intelligence. The related works are summarized below.

Urban Computing integrates urban sensing, data management,

and data analytic as a unified process to explore, analyze, and solve

problems related to people’s everyday life [7, 10–12, 28, 30, 33, 34,

38, 53, 56, 58, 60]. In particular, a group of works have studied the

topic of taxi operation [8, 9, 21, 32, 35, 42, 46, 51], such as vehicle

dispatchingwith reinforcement learning [17, 18, 23, 24, 27, 39, 43, 46,

49, 61], and passenger-seeking strategies [14, 19, 36, 54, 55, 57]. They

aim to find optimal solutions to improve the revenue of individual

taxi drivers as well as the entire fleet. For instance, [41] solved the

passenger-seeking problem by giving direction recommendations

to drivers. However, few studies investigate the relation between

the machine learned strategies and human drivers’ strategies. Some

studies directly assume that human drivers follow reinforcement

learning [37, 52, 62] without validation through real cases. To the

best of our knowledge, our study makes the first attempt to validate
if taxi drivers follow the paradigm of reinforcement learning when
earning their driving experiences.
Human Learning is a process of interacting between a person and
the external environment, which leads human to change capacity

permanently not due to biological maturation [20]. To character-

ize how the process works, research in Cognitive Neuroscience,

Psychological Sciences, and Behavioural Sciences has studied over

five decades [26]. [3] investigated the role of brain’s modular struc-

tures and found that flexibility measured by the allegiance of nodes

to modules in a past session could predict the relative amount of

learning in a future session. [45] contended the essential factors

that can lead to progress in learning mathematics from the perspec-

tive of psychology. [40] introduced a structured learning tool and

teaching process to translate the learning principles into practice

for learning clinical skills regarding behavioral sciences. Compared

with previous works, we deliver an innovative insight of leveraging
the understanding of human learning to engineer the learning process
through machine learning.

8 CONCLUSION

Previous works make an assumption that human learners follow the

paradigm of reinforcement learning (RL) to change their strategies.

We propose a novel framework, including trending analysis, learn-

ing modeling, and strategy validation, to validate this assumption.

Our experiments on a large-scale real-world taxi trajectory data

prove that the taxi drivers’ strategy change follows the learning

process of RL and the drivers with different trends of earning effi-

ciency have the different extents to follow RL. Our framework and

findings provide an important sight in the fields of human behavior

learning and taxi operation management.
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