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ABSTRACT
Exploring massive mobile data for location-based services
(LBS) becomes one of the key challenges in mobile data min-
ing. In this paper, we propose a framework that uses large-
scale cell tower data dumps and extracts points-of-interest
(POIs) from a social network web site called Weibo, and pro-
vides new LBS based on these two data sets, i.e., predicting
the existence of POIs and the number of POIs in a certain
area. We use Voronoi diagram to divide a city area into non-
overlapping regions, and a k-means clustering algorithm to
aggregate neighboring cell towers into region groups. A su-
pervised learning algorithm is adopted to build up a model
between the number of connections of cell towers and the
POIs in different region groups, where a classification or re-
gression model is used to predict the POI existence or the
number of POIs, respectively. We studied 12 state-of-the-art
classification and regression algorithms, and the experimen-
tal results demonstrate the feasibility and effectiveness of
the proposed framework.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Spatial databases and GIS; H.2.8 [Database Manage-

ment]: Database Applications-Data mining

General Terms
Algorithms, Experimentation

Keywords
Spatio-temporal data analysis, classification, regression, cell
tower data dumps, point-of-interest prediction
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Figure 1: Geographical distribution of cell towers and
restaurants in the Guangzhou city of China.

The ubiquity of mobile devices such as smartphones and
tablet computers enables us to collect useful spatial and tem-
poral data in a large scale and also opens up the possibility
of extracting useful information from the data.

In this paper, we focus on a specific type of mobile-user
data known as cell tower data dumps, which contain connec-
tion records collected by 9,563 cell towers operated by the
China Mobile Limited1 in Guangzhou, China, as illustrated
in Figure 1(a). This data set was collected within a time
period of six days (from 4 September 2013 to 9 Septem-
ber 2013). For the purpose of this investigation, we focus on
records produced by phone calls and SMSs. For each record,
we use the connection time, identifier and location of each
cell tower. We extracted 18,290 restaurants in Guangzhou
from Weibo2, a popular Chinese social network web site,
as our point-of-interest (POI) data set, as depicted in Fig-
ure 1(b).

The main objective of this research is to make use of the
cell phone and POI data sets to help predict the existence
or number of POIs in the vicinity of a cell tower. Our inves-
tigation is driven by a hypothesis that there is a correlation

between the collective behavior of mobile users and the exis-

tence of a certain type of POIs in a certain area. In general,
the contributions of our work can be summarized as follows.

• We formulate spatial and temporal representation meth-
ods of cell tower data dumps for mobile user behaviors.

1http://www.chinamobileltd.com
2http://weibo.com



• We design a framework with classification and regression
algorithms to build up a model between mobile users’ be-
haviors and LBS.

• We conduct extensive evaluation of our framework on real
cell tower data dumps and POI data set.

The remainder of this paper is organized as follows. Sec-
tion 2 highlights related work. In Section 3, we describe the
proposed framework for POI predictions. In Section 4, we
present implementation details and analyze extensive exper-
imental results. Finally, Section 5 concludes this paper.

2. RELATED WORK
Most existing work on mobile and spatio-temporal data

focuses on recommender systems [1, 10, 12], urban plan-
ning [2], discovering [11], social networking services [13], etc.
The most commonly used techniques include collaborative
filtering, density estimation, image and signal processing,
etc. However, none of them put their focus on machine
learning, especially supervised learning, which is also a po-
tential tool to mine useful information and make accurate
prediction on mobile phone call data or cellular network data
for valuable location-based applications.

Supervised learning [4] refers to the problem of inferring
a model from a set of labeled training samples, in order to
achieve accurate predictions on unseen data. Given a train-
ing set X with N labeled samples, i.e., X = {(xi, yi)}

N
i=1,

each sample is associated with a set of conditional attributes
xi = {xi1, xi2, . . . , xiL} and a decision attribute yi. The goal
is to learn a function f : x → y, such that given a new unla-
beled sample x̂ = {x̂1, x̂2, . . . , x̂L}, its desired output value
could be predicted by ŷ = f(x̂). Besides, the learning task is
classification or regression if the decision attribute is discrete
or continuous, respectively.

Supervised learning covers a wide range of application
domains such as image processing, text classification, face
recognition, video indexing, etc. Besides, several learning
techniques have been applied on mobile and spatio-temporal
data in recent literature. In [6], kernel-based SVM is used
as a classifier in the detection of harmful algal blooms in
the Gulf of Mexico based on mobile data. In [9], the ran-
dom forest approach is used to classify the land usage in
a city based on mobile phone activities. In [3], a density-
based clustering algorithm is proposed for a wide range of
spatio-temporal data. To the best of our knowledge, no one
has applied supervised learning models to predict the POI
existence or the number of POIs in a certain region of a city
using cell tower data dumps.

3. USING SUPERVISED LEARNING FOR
POI PREDICTIONS

In this section, we formulate spatial and temporal repre-
sentation methods of cell tower data dumps for mobile user
behaviors in Sections 3.1 and 3.2, and then present our pro-
posed framework for POI prediction in Section 3.3.

3.1 Pre-clustering of Cell Towers
As demonstrated in Figure 1, the geographical distribu-

tions of the cell towers and POIs in Guangzhou city are
roughly consistent with each other. That is to say, if a given
region has a larger number of cell towers, it also has a high
chance to cover a larger number of POIs, and vice versa.
Besides, the density of cell towers is also related to the user

visiting rate. For example, the downtown is usually the most
popular and busiest area in a city, so it records the highest
user visiting rate, and thus needs more cell towers. In com-
parison, relatively fewer people visit the suburb in a day,
thus the density of cell towers is lower in such area. Having
these basic observations, it is possible to predict the POI ex-
istence or the number of POIs in a region based on the user
visiting rate, which is reflected by the number of connections
established by cell towers in that region.

Given N cell towers T = {T1, . . . , TN} with geographical
location information, we denote Ti = (ti1, ti2), where ti1 and
ti2 represent the longitude and latitude of Ti, i = 1, . . . , N ,
respectively. The intuitive scheme is to divide the city into
N regions R = {R1, . . . , RN}, such that each region contains
one cell tower. These regions could be defined by the Voronoi
diagram [5], which treats each cell tower as a seed. Given a
point in a region, the point is closer to the seed of the region
than the seeds in other regions, i.e., ∀x ∈ Ri, d(x, Ti) ≤
d(x, Tj), where i ∈ {1, . . . , N}, and j = 1, . . . , i − 1, i +
1, . . . , N .

Suppose there is a set of M POIs P = {P1, . . . , PM} with
geographical location information, we denote Pi = (pi1, pi2),
where pi1 and pi2 represent the longitude and latitude of Pi,
i = 1, . . . ,M , respectively. For a given POI Pi, the region
that covers Pi could be discovered by a nearest neighbor
(NN) search process among T. Finally, the number of POIs
in each region is computed as the target that we aim to
predict. However, when it comes to a real application, we
have to consider the following two issues:

• The signal intensity of a cell tower is not stable, which
leads to an unreliable relation between the POI density
and the number of connections.

• Due to an unbalanced distribution of cell towers, the sep-
arated regions may be too small in downtown and too
large in suburb. As a result, the number of POIs cov-
ered by them may be balanced out and have no obvious
difference.

In order to overcome the above-mentioned problems, we con-
duct a pre-clustering process on the cell towers, such that
the cell towers with similar geographical information are
grouped into one cluster. Accordingly, their regions defined
by the Voronoi diagram are merged, and the numbers of
their covered POIs are summed up as the target that we aim
to predict. As the most widely used one, k-means clustering
technique [7] is adopted, which aims to partition N obser-
vations (i.e., T1, . . . , TN) into k sets (i.e., S = {S1, . . . , Sk}),
so as to minimize the within-cluster sum of square, i.e.,
argmin

S

∑k

i=1

∑
Tj∈Si

||Tj − µi||, where µi =
1

ki

∑
Tj∈Si

Tj ,

and ki is the number of cell towers in the i-th cluster.
In a real application, it is always difficult to get optimal

k. Thus, we test the values of {250, 500, 1000, 2500, 5000}.
Due to space limitation, we only plot the clustering result
when k = 250, as shown in Figure 2.

3.2 Refine Time Resolution
We aim to use spatio-temporal data to perform POI pre-

dictions. In Section 3.1, we have introduced how to make
use of the spatial data. In this section, we further discuss
how to make use of the temporal data.

Basically, the time in a day can be divided into 24 slots
in the unit of an hour. Each slot defines a feature for the
cell tower T . Each connection record indicates that a user
has visited the region covered by T , thus the connection
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Figure 2: Pre-clustering result of cell towers when k = 250.
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Figure 3: Connection frequency of the cell towers in a region
in two different days.

frequency distribution of a region could possibly reflect the
characteristics of its user visiting rate. Given a region, the
distributions in different days are supposed to be similar.
However, this statement does not hold in the reality. Fig-
ures 3(a) and 3(b) demonstrate the connection frequency
distributions of a region on Wednesday and Saturday, re-
spectively. We pay attention to two observations: 1) the
distribution in a weekday is more uniform than that of week-
end; and 2) there may be some missing values, which give
zero connection in a time slot.

The first observation is easy to explain, since people al-
ways have quite different living habits in weekdays and week-
ends. In weekdays, they have a regular time schedule for
working and rest. While in weekends, there is no regular
pattern, even the same person can take part in quite differ-
ent activities. As for the second observation, it is possibly
caused by some facility problems, such as a poor signal in-
tensity or periodic maintenance of the cell towers. Thus,
we refine the time resolution of a weekday into seven new
time slots as listed in Table 1, and compute the new fea-
tures as the average number of connections during the slots.
As for the weekend, the 24 time slots are retained. Fi-
nally, the feature vector of a given region Ri is denoted as
xi = (xi1, xi2, . . . , xiL), where L = 7 ∗ 4 + 24 ∗ 2 = 76 (i.e.,
four weekdays and two weekend days), with each dimension
reflecting its user visiting rate in a specific time slot.

3.3 The Proposed Framework
Given a certain area in a city, a company wants to know

whether there should exist any POI (i.e., restaurants) or how
many POIs should be there for business planning. Thus, it is
useful to resolve these problems from the viewpoints of both
classification and regression. Finally, the POI prediction
framework is sketched in the following three steps.

Table 1: Time slots in a weekday

Time slot Duration Activity

0:00 to 7:00 7 hours Sleeping hours
7:00 to 9:00 2 hours Morning rush hours
9:00 to 12:00 3 hours Morning working hours
12:00 to 14:00 2 hours Lunch hours
14:00 to 18:00 4 hours Afternoon working hours
18:00 to 21:00 3 hours Evening rush & dinner hours
21:00 to 24:00 3 hours Home hours

Step 1: The Voronoi diagram step. In this step, the
city is divided into a number of consecutive regions based on
the Voronoi diagram by taking the cell towers as the seeds.
Then, the number of POIs located in each region is found.
Step 2: The clustering step. This step performs the k-
means clustering algorithm on the cell towers, and the cell
towers with similar geographical locations are grouped into
the same cluster. Each cell tower cluster defines a region of
the city, with a feature vector (i.e., including the cell tower
identifier and time of each connection) extracted from the
cell tower data dumps.
Step 3: The supervised learning step. Finally, the POI
existence (treated as positive if there exists any POI and
negative if no POI exists) or the number of POIs is taken
as the output target of the region. Based on these labeled
regions, a learner f is built up based on these labeled regions
for a classification or regression model that will be used to
predict POI existence or the number of POIs in new regions.

Once the learner f is trained based on a set of given re-
gions, it can be used in two directions. (1) Prediction of
unknown regions: when there comes a new region without
any POI information, we can extract its feature vector from
the user connection records of the cell tower data dumps
and predict the POI existence or the number of POIs by
f for business decision making. (2) Evaluation of existing
regions: given a region, if the regression number of POIs is
larger than or equal to the real one, there may be adequate
number of POIs; however, if the regression number is smaller
than the actual one, it indicates a possibility to set up more
POIs in the future.

4. IMPLEMENTATION AND ANALYSIS
We here present the implementation details of the pro-

posed framework. Note that the model selection is not the
main concern in this work, thus we just adopt several widely
used parameter settings for the learning algorithms.

Classification mode. The purpose is to correctly iden-
tify whether there exists any POI in a given region of a
city. We study six state-of-the-art algorithms, which are
naive Bayes classifier (NBC), radial basis function (RBF)
network, SVM, decision tree, bagging, and adaboost.

Regression mode. The purpose is to predict the number
of POIs located in a given region of a city. We also study
six state-of-the-art algorithms, which are isotonic regression,
linear regression, pace regression, simple linear regression,
addictive regression, and regression via discretization.

We first conduct the experiments on the original data
without a pre-clustering process, then set the number of
clusters as {250, 500, 1000, 2500, 5000} and observe the trend
of the result. In order to avoid random effects, we conduct
10-fold cross validation 10 times, and observe the average
values. The experiments are conducted with the standard
machine learning toolbox WEKA [8], which are performed
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Figure 4: Comparative results of different learning models.

on a computer with an Intel Core 2 Duo CPU with 4GB
memory, it runs on 32-bit Windows 7.

We adopt three metrics to evaluate the classification per-
formance, i.e., testing accuracy, precision, and recall, which
respectively give the rate of correctly classified testing sam-
ples, the correct rate in the set that has been classified as
positive, and the correct rate in the real positive set.

As for the regression results, the most commonly used
evaluation metric is the root mean squared error (RMSE).
However, the ranges of the prediction targets differ a lot with
different numbers of clusters, which lead to some incompa-
rable results. In this case, we adopt another two metrics,
i.e., relative absolute error (RAE) and root relative squared
error (RRSE). Basically, the RAE takes the total absolute
error and normalizes it by dividing the total absolute er-
ror of the simple predictor, and the RRSE takes the total
squared error and normalizes it by dividing the total squared
error of the simple predictor. For both the RAE and RRSE,
smaller values are better, and 100% represents the baseline
of just predicting the mean. Thus, values less than 100% are
considered as effective for predicting the number of POIs.

The average values of the 10×10 results (10-fold cross vali-
dation 10 times) with different numbers of clusters are shown
in Figure 4. Basically, we have two observations: (1) for both

classification and regression modes, the prediction is more
accurate when the number of clusters is smaller; (2) differ-
ent learning algorithms have different advantages regarding
different evaluation metrics, thus it is important to select an
appropriate model based on the problem requirement.

5. CONCLUSION
In this paper, we proposed a supervised learning-based

framework for predicting the existence of POIs and the num-
ber of POIs in a given region using the spatio-temporal fea-
tures extracted from cell tower data dumps in Guangzhou,
China and the information of a set of restaurants collected
from the Chinese social network Weibo. We have studied
12 state-of-the-art classification and regression algorithms.
Experimental results show the feasibility and effectiveness
of the proposed framework.
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