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ABSTRACT

Bike-sharing systems become more and more popular in the ur-
ban transportation system, because of their convenience in recent
years. However, due to the high daily usage and lack of effective
maintenance, the number of bikes in good condition decreases sig-
nificantly, and vast piles of broken bikes appear in many big cities.
As aresult, it is more difficult for regular users to get a working bike,
which causes problems both economically and environmentally.
Therefore, building an effective broken bike prediction and recy-
cling model becomes a crucial task to promote cycling behavior. In
this paper, we propose a predictive model to detect the broken bikes
and recommend an optimal recycling program based on the large
scale real-world sharing bike data. We incorporate the realistic con-
straints to formulate our problem and introduce a flexible objective
function to tune the trade-off between the broken probability and
recycled numbers of the bikes. Finally, we provide extensive exper-
imental results and case studies to demonstrate the effectiveness of
our approach.
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1 INTRODUCTION

Bike-sharing system is a popular transportation system in modern
cities, as it not only provides an environment friendly choice for
short-distance travelling, but also eases the traffic congestion. Cur-
rently, there are over 1,000 deployed bike-sharing systems world
wide, and more than 300 systems are in the progress of deploy-
ment [29]. In recent years, station-less bike-sharing services, like
Mobike!, which allow users to pick up and drop off bikes at any
locations they want, become more popular.

Due to the sharing nature of the bike-sharing systems, the shar-
ing bikes have much higher broken possibilities compared with
private bikes due to the high ridden frequency and open-air park-
ing problem. For example, the bike sharing system in New York
saw 3.6 daily rides per bike 2. As a result, as shown in Figure 1(a),
thousands of broken station-less sharing bikes are being kept in a
bike graveyard.
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Figure 1: Issues with broken Sharing Bike.

Since the number of bikes put in the market is limited, without
the proper maintenance, the number of bikes in good condition is
continuously decreasing. The broken bikes not only cause economic
losses to the companies but also lead to environmental pollution.
Therefore, an effective bike recycling plan should be conducted.
Currently, Mobike develops a broken bike report function in the
app, so that the broken bikes can be discovered in a crowdsourcing
way. As shown in Figure 1(b), users can report different types of
bike problems in the mobile app, so that the company can arrange
workers to collect and recycle them.

!https://en.wikipedia.org/wiki/Mobike
https://bit.ly/2T6q5SE
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However, there are three challenges to conduct such a broken
bike recycling task:

Inaccurate and Inadequate Labels. Though the broken bike
report function can help the company to quickly locate the broken
bike, the report cannot be fully trusted. As shown in Figure 1(c),
we manually exam the status of the reported broken bikes. Only
85.1% bikes are truly broken. Furthermore, not all of the users are
willing to report the broken status of the bikes, as the broken report
function is not a required step.

Arbitrary Spatial Distribution. Different from the station-
based systems, the parking location of each individual station-less
bike is totally arbitrary, which makes the recycling routes vary
from day to day.

Limited Recycle Capacity. Given a set of bikes to be recycled,
the worker can only collect the limited number of broken bikes
within the working hour. Besides, the capacity of the collecting
vehicle is limited, and the worker has to drive back to the recycling
site as soon as the vehicle is full of broken bikes.

In this paper, we design a broken bike recycling route planning
system for the worker. This system consists of two main modules:
1) broken bike inference, which infers the broken probability of
each sharing bike using its inherent characteristics and the user
trajectories associated with it; and 2) recycling route planning,
which plans multiple closed recycling routes for the worker to
conduct in each day.

The contributions of the paper are summarized as follows:

(1) We propose a novel broken sharing bike recycling problem,
which takes the broken probability, working time constraint, and
vehicle capacity into consideration.

(2) We build a broken bike inference model using inherent fea-
tures and trajectory features extracted from the sharing bike so
that the status of every single bike can be accurately inferred.

(3) We propose a scatter search-based heuristic algorithm for the
broken sharing bike recycling problem.

(4) Experiments show the recycling efficiency of the broken bikes
recommended by scatter search algorithm is 2.5 times that of the
regional random search method and 1.5 times that of the Nearest
neighbor routing search method. At the same time, the result of
the algorithm is twice the efficiency of Mobike employees’ broken
bikes recycling.

The rest of the paper is organized as follows: Section 2 describes
the problem and the system overview. Broken sharing bike infer-
ence model is discussed in Section 3. Section 4 gives the solution of
broken sharing bike recycling routing problem. Experiments and
case studies are given in Section 5. Related works are summarized
in Section 6. Section 7 concludes the paper.

2 OVERVIEW
In this section, we define the broken prediction and recycling rout-
ing problem for Sharing Bike, and outline our solution framework.

2.1 Preliminaries

We define p; as the inferred broken probability of sharing bike b;.
In the recycling task, we only consider bikes which are inferred
as broken, ie., p; > 0.5. The bike with high broken probability
is preferred to collect in the priority given limited working time.
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However, the bikes with high broken probability can distribute
unevenly in the given region, which introduces large traveling
time, and finally leads to less number of broken bike collected. As
a result, we define a beneficial score score; below to characterize
the worthiness of collecting a particular bike b;. In the broken bike
recycling mission, the dockless sharing bike can be at any location
in the city, e.g., hiding in the residential area or close to the road
network, where the parking location of collecting vehicles is usually
along with the road network. As a result, the distance between them
varies significantly, which we define v,, (walking speed) and rt
(registration time) below to better characterize the individual bike
collecting events.

DEFINITION 1. (Beneficial score) score; captures the overall ben-
efit to recycle bike b;, which characterizes the trade-off between the
broken likelihood and the recycling cost of b;.

i
score; = q™mnp a>1 (1)

where the parameter o represents the trade-off preference on the bro-
ken probability p; vs recycling cost. min p is the minimum broken
probability over all the bike in the region, which serves as a normal-
ization term.

Each bike b; has a broken probability p;, i.e., the likelihood of
being a broken bike. In practice, the trade off when choosing a bike
is: If we seek for only bikes of high broken probability p;, we may
end up with a small number of bikes collected (less efficient); on
the other hand, if we seek for a large number of collected bikes,
many bikes collected may not be broken (false positive). The bene-
ficial score defined in definition 1 captures such a trade-off by the
parameter a. The reason for designing a score function using the
exponential function is that the bike with higher broken probability
will have a higher score (¢ > 1). When « is close to 1, the efficiency
is highly considered, leading to a large number of collected bikes;
on the other hand, when o > 1 is large, the broken probability p;
is highly considered, thus only bikes with high p; will be collected.
Especially, @ = 1 means that we do not care about the broken prob-
ability of the bike, and every broken bike has the same beneficial
score. The « is a tunable parameter (chosen by the service oper-
ators), which provides them the flexibility between the efficiency
(i.e., the number of collected bikes) and the likelihood of the col-
lected bike being broken. From the operator’s perspective, there are
different objectives under various circumstances, for example, in re-
gions hard to access, the efficiency should be highly considered (i.e.,
choosing a close to 1), while in areas with bikes densely populated,
e.g., downtown, accurately collecting each broken bike is preferred,
thus the likelihood of broken bikes needs to be considered more
(i.e., choosing a large «). As a result, the beneficial score measures
the practical "benefit" of collecting each bike.

DEFINITION 2. (Sub-route) Each closed route, which starts and
ends at the collection site s, is considered as a sub-route.

DEFINITION 3. (Time Cost) The time cost of sub-route R; is com-
posed of the vehicle travelling time between consecutive locations and
the visiting time at each broken bike. Given a sub-route R; = s —
by, — .-+ — by, — s, the time cost T; is calculated as follows:

n
Tf = Ttra‘uel(Rj) + Z TviSit(bri)' @)
i=1
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Let us denote the shortest road network distance between broken
bike b; and b; as dist(b;, bj), and the vehicle driving speed as v,
then the travelling time cost is calculated as follows:

dist(s,by,) + X171 dist(by,, br,.,) + dist(by,,, )
Ud ’

Ttravel(Rj) =
®3)

The broken bike visiting time includes the walking time between
the vehicle on the main road and the location of the broken bike,
and the broken bike registration time rt. We denote the walking
speed as vy, and the perpendicular distance of the broken bike b;
to the nearest road segment as shift;, then the visiting time cost
can be represented as

2shifty,
shiftr,

Ow

Tvisit(bri) = rt. (4)

Problem Definition. Given the road network RN, driving speed
vg, walking speed vy, collection site s, broken bike registration time
rt, working hour T, vehicle capacity M, and a broken sharing bike
distribution graph G = (V, E). The vertex set V = {b1, b2, - , b}
represents all the broken bikes in the given service region of s, each
of which is associated with a spatial location and a collection score
score;, and the edge set E denote the road network connectivity of
broken bike pairs.

The objective of the broken bike recycling route planning problem
aims to plan multiple traveling routes for the worker, so that the
total score collected is maximized. The recycling route planning
problem fulfills three constraints: (1) each broken bike is collected
at most once; (2) the working time of the personnel is no more than
T; and (3) the broken bikes collected in each sub-route are no more
than the vehicle capacity M. If we use J;; to denote whether the
broken bike b; is collected during sub-route R}, the problem can be
formulated as follows:

mqu Z Z dijscore; (5)

biEVRjER
str. Z 6ij<1, VbieV 6)
RjeR
IR @)
RjE'R
Z 5ij<M, VRjeR )

b;eV
Such a problem of finding k budget constrained connected com-
ponents with a maximum beneficial score is NP-hard as proven in
Lemma 1 below.

LEmMMA 1 (NP-DIFFICULTY). When time and capacity constrained,
collecting broken-sharing-bikes with a maximal beneficial score is
NP-hard.

Proor. The broken sharing bikes collection problem is a combi-
nation of broken sharing bike vertex selection and determining the
shortest path between the selected vertices. As a consequence, We
can reduce our problem of collecting broken-sharing-bikes with
maximal beneficial score from the Knapsack Problem (KP) and the
Travelling Salesperson Problem (TSP), when time and capacity con-
strained. We can view each broken sharing bike b; € V as an item,
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with an item size (i.e., Collecting time cost), and an item profit
(e.g., a beneficial score contribution). The set V of selected broken
sharing bikes is viewed as a knapsack, with a fixed size T (i.e., total
working time constraint). Furthermore, not all broken sharing bike
bi € V have to be visited in the problem. Determining the shortest
path between the selected vertices b; € V' will be helpful to visit
as many vertices as possible in the available time. our goal is to
maximize the total score collected. If a recycling worker with not
enough time and capacity to collect all possible broken sharing
bikes. He knows the number of beneficial scores to expect in each
broken bike and wants to maximize the total beneficial score, while
keeping the total travel time limited to T. Our problem boils down
to an Orienteering Problem problem (OP), which is known to be
NP-complete [41]. m]

Given it is an NP-hard problem, we develop a heuristic-algorithm
to tackle the issue.

2.2 System Overview

Broken Bike Inference | Recycling Route Planning

’ I Broken Bikes |
Broken Probability Inference H 90%  92% 1Ly
f | 10k %rﬁ’.\l
. 0 £l 5o
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N

Figure 2: System Overview.

Figure 2 gives an overview of our system, which consists of two
main components: (1) Broken Bicycle Inference, which calculates
broken probability for each sharing bike, which takes the sharing
bike’s parameters, e.g., the bike inherent feature, and trajectory
features, and outputs the bike broken probability and current status
(detailed in Section 3) and (2) Recycling Route Planning component
takes the results of the prediction model, the road network data
and the recycling of historical data as input. It establishes the dis-
tribution graph of the broken bikes (detailed in Problem Definition)
and recommends the optimal route for recycling the broken bike
(detailed in Section 4).

3 BROKEN BIKE INFERENCE

Due to the fact that there is only a small proportion of sharing
bikes reported as broken by the users, and not all of the reported
bikes are truly broken, a broken bicycle inference model is required
to detect the real broken bikes for the worker to collect. An inference
model under the supervised-learning paradigm is used to assign a
broken probability to each bicycle. In the later routing algorithm,
the bike with high broken possibility is preferred to collect.

The training bike samples are selected as follows: 1) If a bike
is reported as broken by Mobike user and the broken status is
confirmed by the worker, we regard it as a broken bike sample; 2) If
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Figure 3: Mobike Trip Characteristics.

a bike is rode repeatedly in a time period (i.e., one month), and the
user does not report the status of the bike as a broken, we regard it
as a good bike sample.

Feature Extraction. Whether a bike is broken can be inferred
mainly from two aspects: 1) inherent features, such as the life time of
the bicycle, the number of ridden times, the total duration of cycling,
and the number of maintenance; and 2) trajectory features, which
include the average travel speed and trip duration distributions.
The selected trajectory features are derived from the analytics of
Mobike trajectories. As shown in Figure 3(a), the probability of the
average riding speed less than 1m/s for the broken bike is much
higher than the good bike. This may be because some broken bikes
are more cumbersome, the cycling speed will be slower. And from
Figure 3(b), the trip duration of the broken bike is much shorter
compared with the good one. This may be because the user finds
that there is some problem with the bike after scanning the bicycle
to ride, thereby terminating the cycling behavior. This phenomenon
of user riding helps to determine the state of the sharing bike.

Broken Probability Inference. Since the sharing-bike status takes
two values: good or broken (not good), we use a 0-1 valued binary
variable y to denote the status outcome, where 1 stands for broken
and 0 stands for good. We use p; to denote the broken probabil-
ity of the bike b;. The probability depends on many factors, such
as the trip duration and speed of a bike, etc. Such information
can be encoded into a feature vector X;, which is associated with
the inherent features and the trajectory features of sharing bikes.
Given extracted feature vector X;, we can estimate the acceptance
probability as: p; = p(y = broken|X;). Since then, the broken in-
ference task can be formulated as a typical binary classification
problem, and the traditional classification model, such as Logistic
Regression [11], can be employed.

4 RECYCLING ROUTE PLANNING

After the broken probability of each bike in the service region of
a collection site is obtained, the distribution graph is constructed
using bike locations with broken probabilities and the road network
data. In this section, we describe the scatter search-based routing al-
gorithm for the broken bike recycling problem using the constructed
distribution graph.

In broken bike recycling problem, the instance size is surely be-
yond the solvability of standard solver, for example, as shown in Fig-
ure 4, there are typically hundreds of broken bikes in some regions,
and 39 broken sharing bike collection site in Beijing. The collection

e RSN o
() Distribution of Broken Sharing Bikes () Distribution of Collection Site

Figure 4: Boken Mobike sharing Bike and collection site Dis-
tribution in Beijing

site of broken sharing bike need to occupy certain resources, so
each collection site has its own service range. The departure and
return locations of the workers are the same collection site in the
area. If there is no limit to the capacity of the recycling vehicle
and there are no restrictions on the working hours of the recycling
workers. Our problem of recycling broken bikes with maximal ben-
eficial score can be converted into a problem of recycling all broken
sharing bikes and minimizing the overall recycling path, which can
be converted into a tsp problem. However, in the case of working
hours and the limited capacity of the recovered vehicle. The prob-
lem can be described as workers with not enough time and vehicle
capacity to collect all possible broken bikes. He knows the benefi-
cial score which is uniquely defined by the practical broken-bike
collection problem (detailed in 2) of each broken bikes, and wants
to maximize beneficial scores, while with the working hours and
vehicle capacity limited.

Main Idea. Due to the capacity limitation M of the recycling vehi-
cle, the worker can only collect the limited number of bikes during
one sub-route. The main idea is that during each sub-route, we first
try to collect at most M bikes with high broken probabilities (i.e.,
high beneficial scores), which are spatially close to each other, and
then carefully plan the visiting order, so that the traveling time in
each sub-route is minimized. We continuously find such sub-route
until the working time is used up. The discovery of each sub-route
is explained in following three stages: 1) broken bike clustering; 2)
sub-route selection; 3) status update.

Stage 1: Broken Bike Clustering. In this stage, the bikes in-
ferred to be broken are clustered using spatial clustering algorithm,
e.g., kMeans [18], so that the broken bikes in each cluster are spa-
tially close to each other. The number of clusters k is computed
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according to both recycling vehicle capacity M and The total num-
ber of broken bikes in the area n. We initialize k as k = round(n/M).

Stage 2: Sub-route Selection. In this stage, the algorithm finds
the best sub-route in each cluster, and the best sub-route over all
the clusters is selected. The goodness of a sub-route is defined as
the beneficial score per time cost. The sub-route selection in each
cluster is conducted in an iteratively way following the scatter
search idea. We first select bikes with top M high scores as the
initial bike set to recycle, and then design recycling route for it
using TSP algorithm. Then we randomly replace a bike in the sub-
route with a bike outside the sub-route but inside the cluster, to
check whether there is any improvement. This process is repeated
N times to obtain a stable sub-route in each cluster.

Stage 3: Status Update. In each iteration, the algorithm puts
the best sub-route R; into the final recycling route set R, and up-
dates the working time by subtracting the time spent recycling
broken bikes in R; and broken bike vertex set V' by subtracting the
recycled broken bikes in sub-route R;j. The algorithm terminates
when working time T is used up, and then returns the recycling
route set R as the recommended broken bikes recycling plan.
Algorithm Design. Algorithm 1 gives the pseudo-code of our scat-
ter search-based heuristic algorithm. In each iteration of the Scatter
Search stage(Line 2), the algorithm first partition the vertex set of
broken bike nodes V into k clusters. The value of K is determined
by the number of broken sharing bikes and the capacity of the
recycling vehicle. Then, optimal broken sharing bikes collection
scheme in the cluster is then selected separately in each indepen-
dent cluster. When initializing the sub-route set in each cluster,
two initialization strategies are employed depending on the value
of a a. If the number of broken bikes in the candidate set S; is
greater than recycling vehicle capacity M, the initial recovery of
the bicycle is selected using two methods. If tuning parameter a
is equal to 1, the algorithm random select M broken bikes point
in set S;. otherwise, the algorithm select M broken bike in set S;
by the probability value of each broken bike as the candidate set
C; (Line 4-10). After selecting the initial result set C; in cluster i,
we use Function RecyRoute to solve the optimal recycling order of
the broken bike in the result set and calculate the gain of recycling
benefit score g;. In the set S; in which the number of each broken
bicycle is larger than the recycling vehicle capacity, Take the broken
bicycle not included in the set C; which are randomly selected from
the set S; to replace random replace a broken bike in the set C;.
During the process, we keep track of the set C; and C;, which has
the maximum score gain in the iteration. If the number of broken
bikes in the candidate set S; is less than recycling vehicle capacity
M, we just calculate the corresponding beneficial score gain. Select
the best set C; which has the maximum score gain from all clusters,
and puts the best set R; in recycling route set R base on Function
RecyRoute. Then, R; is removed from broken sharing bikes set V,
the remaining working time is updated by subtracting the time cost
R;.time.At the same time, due to the reduction of the number of
broken bikes, the number of clusters is also reduced (Line 11- 19).

Finally, when all the working time budget is used up, the algo-
rithm terminates, and broken sharing-bikes recycling route set R
is returned as the recommended broken bike recycling plan.
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Algorithm 1 Scatter Search-based Routing Algorithm

Input: Broken sharing-bikes distribution graph G = (V, E), working
time T, parameter «, capacity M, initial number of clusters k and the
maximum number of iterations N.
Output: Recycling route set R.

1: while T > 0 do
//Stage 1: Broken Bike Clustering

2: (81, S8y, - -+, Sk) « Kmeans(V, k)
//Stage 2: Sub-route Selection

3: for i < 1to k do

4: if S; > M then

5: if « =1 then

6: Random select M points in S; as C;

7: else

8: Select the top M of broken probability in S; as C;
9: else

10: Select all point in S; as C;

11: Ri, gi < RECYROUTE(C;)

12: for/ — 1to N do

13: Randomly swap by, € C; by b’ € S; — C; as C;
14: R}, g; < RecYRoUTE(C})

15: if g; > g; then

16: Ci < C}; R; <« R}; gi — ¢

17 i gi
//Stage 3: Status Update
18: R~ RU{R;j;; T «T~—Rj.time; V < V —R;
19: k—k-1
20: return R

Function RECYROUTE(C;)
Ri < TSP(Cy); gi — %
return R;, g;

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the
effectiveness of our system. We first describe the real dataset used in
the paper. Then, we present comparison results with other baseline
methods over different values of « and working time constraints.
Finally, we present real-world case studies to evaluate our broken
bike detection and recycling route planning algorithm.

5.1 Datasets

Road Networks. The road network data in Beijing and Guangzhou,
China is collected from Open Street Map 3.

Mobike Order Data. Each Mobike order contains a bike ID, a user
ID. The dataset used in the paper includes the entire Mobike orders
in the City of Beijing and Guangzhou from 01/08/2018 to 12/31/2018.
Mobike Recycling Data. Each Mobike recycling record contains
a bike ID, a worker ID, the start time and the end time to recycle
the bike. The dataset is collected in the City of Beijing, with the
time span of 01/06/2017 - 12/31/2018.

Mobike Trajectories. Each Mobike trajectory contains a bike ID,
a user ID, the time interval of the trajectory, the start/end locations,
and a sequence of intermediate GPS points. The dataset includes the

Shttps://www.openstreetmap.org/
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entire Mobike trajectory data in the City of Beijing and Guangzhou
from 01/08/2018 to 12/31/2018.

5.2 Data Pre-Processing

Data Pre-processing takes the road network, the Mobike order data,
Mobike recycling data, and the Mobike trajectories as input, and
performs the following three tasks to prepare the data for further
processing:

Data Cleaning. Data Cleaning cleans the raw order data, trajec-
tories, and recycling data from Mobike. Essentially as a type of
crowdsensing data, Mobike trajectories are generated by the GPS
modules from mobile phones. As a result, a noticeable portion of
trajectories has different data errors, which significantly affect the
accuracy of the broken bike inference model. This step cleans the
raw trajectories from Mobike users by filtering the noisy GPS points
with a heuristic-based outlier detection method [43].

Map-Matching. In this module, we map the GPS points onto the
corresponding segments in road networks, which is crucial for the
broken sharing bike collection. The Mobike sharing bike can be at
any location in the city, e.g., hiding in the residential area or close to
the road network, where the parking location of collecting vehicles
is usually along with the road network. As a result, we should
employ v, (walking speed) to better characterize the individual
bike collecting events. This step evaluates the distance of each
broken sharing bikes to the nearest corresponding segments in
road networks with a global map matching method [28].

Map Griding. For the ease of assessing the regional rt (registration
time), we adopt the griding based method, which simply partitions
the map into equal side-length grids [23, 24]. our approach divides
the urban area into equal-size grids with a pre-defined side-lengths
in 100 meters.

5.3 Effectiveness Evaluation

In this subsection, we study the effectiveness of both broken bike
prediction and recycling. Unless mentioned otherwise, the default
parameters used in the experiments are: recycling vehicle capacity
M = 20, the average speed of the worker’s walking is v,, = 1m/s,
and the average speed of the worker’s driving is vy = 25km/h.

5.3.1 Broken Bike Prediction.

In the broken bike prediction model, we tried two popular models:
logistic regression (LR) [11] and random forest (RF) [2] algorithms.
We train the models for different cities and evaluate both methods
in terms of Accuracy (ACC) and Area under the Curve of ROC
(AUC). Experimental results for Beijing and Guangzhou are shown
in Table 1, where we observe that 1) LR outperforms RF slightly and
2) both models get good results, which validates the effectiveness
of our feature extraction scheme.

5.3.2  Performance of Different TSP Methods in Recycling Route
Planning.

We study the effect of different TSP methods in our recycling
route planning. The test data select from Haidian District, Beijing,
which the inference model give 537 broken bikes in this area as
shown in Figure 7. In this work, we tried five popular models:
Simulated Annealing Algorithms (SA) [13], Genetic Algorithms
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Table 1: Results of LR and RF

Beijing
Model | ACC | AUC | Recall | F-score
LR 0.9768 | 0.9965 | 0.9763 | 0.97796
RF 0.9750 | 0.9934 | 0.9746 | 0.97608
Guangzhou
Model | ACC | AUC | Recall | F-score
LR 0.9757 | 0.9948 | 0.9759 | 0.9756
RF 0.9746 | 0.9933 | 0.9745 | 0.9750

Beneficial Score

Work Time(hour)

Figure 5: The Evaluation of Different TSP Methods.

(GA) [31], Ant Colony Optimizations Algorithms (ACO)[9], Lin-
Kernighan(LK)[14] and Self-organizing Feature Maps (SOFM)[3].

We evaluate five methods in terms of the total beneficial scores in
our recycling broken sharing bike problem. Experimental results for
Beijing are shown in Figure 5. Our experiments show that for our
test data, these TSP algorithms do not make a significant difference
as well. SA is slightly more accurate. Therefore, we choose SA as
the TSP method in our recycling route planning model.

5.3.3  Recycling Route Planning.

We study the effect of different parameter settings of a and
working time, and we compare our method, i.e. Scatter Search-
based Routing (SSR), with two other baselines.

e Baseline 1: Random selection (RS). If there is no inference
model in the collection problem, we assume that workers collect
broken bikes according to user reports which occur randomly. We
directly take the next car after each collection of a broken bike
for collection. When the number of broken bikes collected reaches
the vehicle capacity, return to the broken bike station in the area
and repeat the random collection process for the next round. The
collection process terminates when the total collection time exceeds
the working time.

¢ Baseline 2: Nearest neighbor routing (NNR). The location
where the broken bike is relatively densely distributed is selected
as the starting area for collecting the first broken bike. In NNR, the
recycling vehicle starts at the recycling parking spot, repeatedly
visits the nearest broken bikes node until the capacity of the vehicle
and the working hours of the workers exceed the constraint and
returns back to the parking spot.
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Figure 6: Effectiveness Evaluation.
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Figure 7: Broken sharing bike distribution cluster in Haid-
ian District.

Effects on Total Working Time Budget. Figure 6 illustrates the
total beneficial scores with different total working time budgets for
a worker with Mobike, from 1 Hour to 8 Hour. The experimental
results of finding a broken bike based on a random walk of RS is
the average value of the income score after the algorithm solves
the problem 1000 times independently. From the figure, we make
the following observations: 1) the scatter search-based heuristic
SSR method performs better than other baseline models. 2) When
working hours are between 5 hours and 6 hours, the NNR method
will have a useful period of slow growth. This is because, during
this time, the NNR method took a long time in a broken bicycle. It is
interesting that, because of the slight damage to the bike, the user

is not quite sensitive to it and the bike moves within a certain range.
This has resulted in a higher recovery cost for workers. The SSR
method can adjust the recovery of the beneficial score by controlling
the parameter «, which can solve the phenomenon and make the
overall recovery more effective as shown in Figure 6(b). Figure 6(c)
provides the results with different « settings, It is interesting that,
when « is large, the number of recycling broken sharing bikes will
be reduced to some extent. Moreover, with a higher «, the number
of recycling broken bikes is smaller, but the degree of reduction will
gradually decrease. The reason behind these phenomena is that a
bicycle with a higher probability of failure prediction has a higher
score. Where the value of « is larger, and it is more preferable to
collect a bicycle which has higher broken probability when collect-
ing broken sharing bikes. However, the distance between bikes also
affects the time cost of recycling, so when the value of a is larger,
the number of broken bikes collected will become smaller.

@ .. RegionB

Region A ey

A2

Collection Site \

Figure 8: A Real Case Study in Haidian District, Beijing.

5.4 Case Studies

To better understand the effectiveness of our bike prediction and
recycling model, we conduct a field case study. We choose to visit
the area near Zhichun Road, Dazhongsi, and Beitucheng subway
station in Haidian District, Beijing.

Figure 8 gives the path that Mobike operators use to recycle
broken bikes in this area. The workers recovered a total of 32 bro-
ken bikes in the vicinity in 8 hours, and mainly concentrated near
the temporary parking spots. The traditional recycling methods of
worker are similar to the NNS method. The worker first finds the
area where the broken bikes are densely distributed near the tem-
porary parking point through the location reported by bikes. Then,



SIGSPATIAL ’19, November 5-8, 2019, Chicago, Illinois, USA

a broken bike in the dense area is selected and recycled according
to the scheme of the shortest travel distance of the map navigation.
When the target bicycle is found, another broken bike which is clos-
est to the current location is selected for recycling. However, this
will make recyclers tend to pay more attention to broken bikes that
are closer to temporary parking spots. The distribution of broken
bikes in the area is not fully considered, resulting in low efficiency
and high cost of recycling. Figure 9 shows the results of the broken
recovery path recommended by the SSR method. Mobike’s worker
recycles the broken bikes in a given area three times and collect
59 broken bikes in an 8 hour working time limit. It is interesting
that, the recommended recovery path of the algorithm is not only
the broken bikes concentrated near the temporary parking point,
but also the broken bikes far from the temporary parking point are
also included in the recommended collection of recycling. This is
because the algorithm parameters take into account of the overall
distribution of the bikes and the optimal recovery sequence in the
actual recycling process, and the parameters are tuned according to
the efficiency gain of each bike recovery. This makes the recycling
of bikes more efficient. At the same time, the two broken bikes at
the bottom left of Figure 9 are the broken bikes that are seriously
broken in the recovery. One is the chain is broken, and the other
is the seat is lost. The confidence of the two cars in the model is
0.99988294 and 0.99961954 respectively. These two bikes belong to
the broken bike that is preferentially collected when the value of «
is greater than one. This shows that the model is sensitive to bike
with a relatlvely high degree of failure.

Figure 9: A Real Case Study Base on Scatter Search Model
Result in Haidian District, Beijing.

6 RELATED WORK

The research of fault sharing bikes recycling can be summarized in
two main areas: 1) Urban Crowd Sourcing, and 2) Route Planning.
Urban Crowd Sourcing. Essentially, we take advantage of the
massive Mobike users in a city to perform the fault bike detec-
tion task. Similar problems are addressed with the crowdsourc-
ing techniques[19, 26]. For example, The literature [42] quantifies
the fragility of cities through detecting the delay in commuting
activities using GPS data collected from smartphones. The litera-
tures [34, 36] infer noise levels for locations by smartphone users.
The literature [27] proposes a bike sharing network optimization
approach by extracting fine-grained discriminative features from

Cong Zhang and Yanhua Li, et al.

human mobility data, point of interests (POI), as well as station
network structures. The literatures [7, 15] identify potholes or clas-
sify road quality from vehicle’s accelerometer data. Differing from
the above works, we focus on the problem of broken sharing bikes
detection and collecting path planning.

Route Planning. The fault sharing bike recycling problem is re-
lated to the multiple Traveling Salesman Problem (mTSP) [1, 38]
and orienteering Problem (OP) [4, 39, 41]. mTSP and OP can be
considered as a relaxation of our problem, with the capacity or
working time restrictions removed. The solutions for these two
problems are primarily in two fold: 1) optimal algorithms and 2)
heuristic algorithms. In literatures [21, 35], the authors use branch-
and-bound to solve instances with less than 20 and 150 vertices,
respectively. The authors in [22] use a cutting plane method to ob-
tain better upper bounds. In literatures [10, 12], the authors propose
branch-and-cut algorithms. However, the branch-and-cut proce-
dure with instances up to 500 vertices cannot be performed. GAs
are relatively stochastic search algorithms based on evolutionary
biology and computer science principles [16]. Using GAs to the
mTSP problem have several representations, like one chromosome
technique [33], the two chromosome technique [32] and the lat-
est two-part chromosome technique. The authors in [25] propose
an ant colony optimization approach and a tabu search algorithm.
In literature [37], the authors develop a Pareto ant colony opti-
mization algorithm and a multi-objective variable neighborhood
search algorithm. In [40], the authors propose a Variable Neighbour-
hood Search (VNS) algorithm and embed an exact algorithm to deal
with a path feasibility subproblem. In [20], the authors present two
polynomial size formulations for OP. The authors in [30] discuss
several vehicle routing algorithms, and present a heuristic method
which searches over a solution space formed by the large number
of feasible solutions to an mTSP. The authors in [17] study the
adaptive stochastic knapsack problem with deterministic size and
stochastic rewards. Their problem objective is to find a sequential
inserting policy to maximize the probability of the reward exceed-
ing a threshold value without violating the capacity constraint.
In [5], the authors study the adaptive stochastic knapsack problem
with items of deterministic reward and stochastic size. Their goal is
to maximize expected value while fitting all the items in the knap-
sack. The authors demonstrate the benefit of an adaptive policy
and provide an approximation approach. In [6], the authors study
an orienteering problem with stochastic travel times and present
adaptive path planning methods to take advantage of dynamically
updating data; combine the orienteering problem and optimal path
finding into a single model. The authors in [8] discuss the vehicle
routing problem with hard time windows and stochastic service
times (VRPTW-ST). They adopt the dynamic programming algo-
rithm to account for the probabilistic resource consumption by
extending the label dimension and by providing new dominance
rules. In this paper two recourse strategies are proposed and the
resulting problems are solved by branch-price-and-cut algorithms.
However, all of these works cannot be directly used for broken
sharing bikes recycling, because these works simply test on bench-
mark instances and fail to consider the realistic constraints and
road network distance.
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7 CONCLUSION

In this paper, we introduce a novel approach to detect broken
sharing bikes and recommend the appropriate bicycle recycling
path to the worker based on the real sharing bikes data collected
from Mobike (a major station-less bike sharing system). Our system
can address the problem of recycling efficiency of broken sharing
bikes in a more realistic fashion, considering the constraints and
requirements from sharing bike worker’s perspective: 1) working
time limitations, 2) vehicle capacity constraints, and 3) broken
sharing bike recovery benefit. We also propose a flexible beneficial
score function to adjust preferences between the number of bikes
recovered and the predicted probability of damage to bikes. The
formulated problem is proven to be NP-hard, thus we propose
a scatter search-based heuristic algorithm. We perform extensive
experiments on a large scale Mobike data and demonstrate the
effectiveness of our proposed broken sharing bike predict model
and bike recycling routing model, where our model can predict the
broken sharing bikes with above 97% accuracy and recommends
that the number of real broken bikes recovered by the recycling
path of the broken bikes is two to three times that of the Mobike
traditionally recycling broken bikes.
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