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ABSTRACT
A path query aims to find the trajectories that pass a given sequence

of connected road segments within a time period. It is very useful in

many urban applications, e.g., 1) traffic modeling, 2) frequent path

mining, and 3) traffic anomaly detection. Existing solutions for path

query are implemented based on single machines, which are not

efficient for the following tasks: 1) indexing large-scale historical

data; 2) handling real-time trajectory updates; and 3) processing

concurrent path queries. In this paper, we design and implement a

cloud-based path query processing framework based on Microsoft

Azure. We modify the suffix tree structure to index the trajectories

using Azure Table. The proposed system consists of two main parts:

1) backend processing, which performs the pre-processing and suffix

index building with distributed computing platform (i.e., Storm)

used to efficiently handle massive real-time trajectory updates; and

2) query processing, which answers path queries using Azure Storm

to improve efficiency and overcome the I/O bottleneck. We evaluate

the performance of our proposed system based on a real taxi dataset

from Guiyang, China.

CCS CONCEPTS
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1 INTRODUCTION
Path query aims to extract qualified trajectories that have passed

a user specified path (i.e., a sequence of connected edges) within a

temporal period. As shown in Figure 1a, a user retrieves the trajec-

tories that have passed edges (e1 → e2 → e3), i.e., the red dotted

lines during the time interval (10:00 to 11:00), and the qualified tra-

jectories are returned as the colorful lines. Many urban applications

rely heavily on path queries, e.g., 1) traffic speed modeling [1, 2],

where the extracted trajectories can be used to estimate the travel
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Figure 1: Motivating Examples.

time/speed of a given path; 2) path mining [3, 4], where the trajecto-

ries can be used for route recommendations; and 3) traffic anomaly

detection [5, 6], where we can find anomalous vehicles.

The existing solutions for path query [1, 7, 8] suffer from three

main drawbacks: 1) they need to maintain an index (e.g., inverted

list or suffix tree) in the memory, which is unrealistic when tra-

jectory data is huge; 2) they are implemented based on a single

machine, which incurs a performance bottleneck for answering

a large number of concurrent path queries from a data mining

task; 3) they do not efficiently handle large scale trajectory updates,

which prevents them from providing real-time path query/analysis.

In this paper, we build a cloud-based path query processing

system [9] on Microsoft Azure. Figure 1b gives an overview of our

system, where we build a layer based on Azure computing and

storage components to support both real-time trajectory updates

and path queries. The distributed streaming computing platform,

i.e., Storm, is extensively used to overcome the I/O bottleneck.

Our main idea is to modify the traditional suffix tree index: 1) we

set a max height to limit the size of the index; 2) we keep an hourly
count on each suffix record to record data distribution; and 3) we

store detailed suffix records on Azure Table to enable parallel I/O

access. To answer path queries with a limited height suffix tree

(i.e., max height) index, we propose a heuristic method to decom-

pose query paths, retrieve them from Azure Table, and efficiently

reconstruct the results. Our main contributions are as follows:

•We develop the table-based suffix tree index, with max height,
hourly count, and table storage to overcome challenges from index-

ing and querying the massive historical trajectory data.

• We propose an efficient indexing algorithm based on Azure

Storm to distribute the system IO overhead and to handle real-time

trajectory updates.

• We propose a Storm topology to answer the path queries both

individually and concurrently. To further improve performance, a

heuristic path decomposition method is proposed.

• Extensive experiments are conducted based on the real taxi

trajectories of Guiyang to demonstrate the efficiency of our system.

https://doi.org/10.1145/3139958.3139996
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2 PRELIMINARY
2.1 Basic Concepts

Definition 1. GPS Trajectory.AGPS trajectory is a time-ordered

sequence of GPS points: tr = {(p1, t1) → (p2, t2) → ...→ (pn , tn )}.

Definition 2. Road Network. A road network can be viewed as

a directed graph G = (V ,E), where E is the set of road segments,

and V represents the intersections.

Definition 3. Map-Matched Trajectory. A map-matched trajec-

tory is a list of road segments and timestamps mapped from GPS

points, i.e., Tr = {(e1, t1) → (e2, t2) → ...→ (en , tn )}.

Definition 4. Path. A path is a series of connected road seg-

ments P = {ei → ej → ... → ek }, where the order of the edges
indicates the travel sequence. The consecutive road segments in a

path should be connected on the road network G.

2.2 Azure Preliminary
2.2.1 Azure Storage. Azure storage is a massive scalable cloud

storage solution
1
with many different components:

Azure Blob. Blob (A Binary Large Object) is a collection of binary

data stored as a single entity in the Azure storage system. As it can

be loaded on to the memory very efficiently, Azure Blob is used to

store index files (i.e. hourly counts) in our system.

Azure Table. Azure Table is the NoSQL database in Azure. Table

storage is a key/attribute store with a schema-less design. Each ta-

ble entity is identified by: PartitionKey and RowKey. Table entities
with the same PartitionKey are stored in the same physical loca-

tion. Azure Table is very efficient in answering the range queries of

RowKey within the same PartitionKey. Thus, Azure Table is used
extensively to store trajectories (more details in [10]).

2.2.2 Azure Storm. Azure Storm is a distributed, real-time event

processing solution for large, fast streams of data. It is a good choice

for processing real-time data and providing online services, which

are essential to many urban applications. There are two types of

components in a Storm system: 1) Spout, which continuously reads

and distributes updates/requests; and 2) Bolt, which is the process-

ing unit. Spouts and Bolts with different functions are connected as

a direct acyclic graph (DAG), forming the Storm Topology.

2.3 Problem Definition
Path Query. The path query can be formalized as follows: given

a path P = {ei , ej , ..., ek }, a temporal range [Ts , Te ], and a map-

matched trajectory dataset T = {Tr1,Tr2, ...,Trn }, we want to find

all the sub-trajectories of Tri in T , where Tri passed P within the

1
https://docs.microsoft.com/en-us/azure/storage/

given temporal period, i.e., {(ei , ti ), (ej , tj ), ..., (ek , tk )} ∈ Tri and
ti ≥ Ts&tk ≤ Te . The objective here is to improve efficiency.

2.4 System Overview
Figure 2 gives an overview of the proposed system, which is

comprised of two components:

Backend Processing. This component receives GPS updates and

builds the index, illustrated as the upper part of Figure 2, with

two modules: 1) Pre-Processing, which gets the raw GPS updates,

and performs parsing, map-matching, and storing tasks (Detailed

in [10]); and 2) Index Building, which builds the suffix tree index to

speed up path query processing (Detailed in Section 3).

Service Providing. This component answers path queries, illus-

trated as the bottom part of Figure 2. The main module is the Query
Processor, which takes advantage of the suffix tree index and em-

ploys the Storm parallel computing platform to answer queries

(Detailed in Section 4).

3 INDEX BUILDING
The traditional suffix tree is originally used to index strings [11]

for string suffix searching. The trajectory data management sys-

tem [7] utilizes the suffix tree to efficiently answer path queries,

regarding each edge ID as a character. As the traditional suffix tree

takes a lot of space and does not support the temporal predicate, it

only holds the most frequent or recent trajectories.

To address the aforementioned problems, we propose a table-

based suffix tree, as shown in Figure 3, which consists of two com-

ponents: 1) suffix tree index, which includes the tree structure and

a set of statistics stored in Azure Blob and loaded in the memory

during the query processing; and 2) suffix records, which store the

trajectory data based on suffixes in Azure Table. There are three

changes to the traditional suffix tree:

•Max Height.We set a max height H to limit the total size of the

suffix tree. This way, we can guarantee that the index can fit in the

memory regardless of the size of the trajectory data, as it is bound

by the number of sub-paths with H edges.

• Hourly Count. In each node of the suffix tree, we maintain

a hash table, where we store the average number of trajectories

passing the corresponding sequence of the edges each hour.

• Table Storage. Each node also keeps a pointer to an Azure table,

where the actual trajectory data is stored. The name of the table is

the sub-path ID (table e3e4 in the example). The PartitionKey of
the Azure Table is the temporal range, e.g., by hour in the figure,

and the RowKey is the timestamp with the trajectory ID. In this way,
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trajectories passing the same path at the same time are stored in

the same Azure Table partition for more efficient access.

It is worth noting that we store an extra and re-organized copy

of the trajectory dataset, which is different from the traditional in-

dexing methods. Because it is a more economic and efficient choice

in Azure to store an extra copy, as the storage cost is much cheaper

than the computing cost, e.g., it is about 10 USD per 1TB/month
2
.

There are three main steps in constructing the table-based suffix

tree: 1) Suffix Generation, which truncates map-matched trajectories

into sub-trajectories whose lengths are not greater than H . E.g, if

H = 2, the map-matched trajectory Tr : e1 → e2 → e3 will be bro-
ken into 5 sub-trajectories: e1, e2, e3, e1 → e2 and e2 → e3. 2) Index
Updating, which groups the suffixes and updates the hourly count
at each node. 3) Record Insertion, which inserts the grouped sub-

trajectories into Azure Table, where the sub-trajectories with the

same suffix are inserted into the same table, and the sub-trajectories

within the same time period are inserted into the same partition.

There are a large number of sub-trajectories generated and nu-

merous records to be inserted into many tables, which may cause

CPU and I/O bottlenecks in a single machine. To this end, we build

the index based on Storm, as shown in Figure 4, which consists

of four types of components: 1) Spout, which distributes the map-

matched trajectories to different Suffix Generator Bolts, using the

ShuffleGrouping method to achieve load balance. 2) Suffix Gener-
ator Bolt, which breaks trajectories into suffixes with the maximum

length of H . The generated suffixes are then distributed to two

locations: Table Record Inserter Bolts, using the FieldGrouping
method, i.e., the same suffixes are emitted to the same bolt; and

Index Reporter Bolt, using the GlobalGrouping method, i.e., all

suffixes are emitted to a single bolt. 3) Table Record Inserter Bolt,
which inserts the sub-trajectories into Azure Table in batches. 4) In-
dex Reporter Bolt, which aggregates all suffixes and updates the

suffix tree: adding new branches, if a new suffix is generated; and

updating the statistics (i.e., hourly count) on each node. After the

index is updated, it is stored in Blob.

4 QUERY PROCESSOR
As the table-based suffix tree employs a maximum height H , the

qualified trajectories cannot be directly retrieved from the index

if the length of the query path is longer than H . Therefore, we

propose a new query process and implement it in Azure Storm

to improve its efficiency. The proposed query process contains

three main steps: 1) Querying Path Decomposition, 2) Suffix Record
Retrieval, and 3) Sub-Trajectory Reconstruction.
Step 1. Query Path Decomposition. This step breaks the query

path P into several sub-paths with a maximum length of H , where

each sub-path can be mapped as a table. To effectively take advan-

tage of the indexed suffix records in Azure Table, the following

three requirements should be satisfied:

1) ∀pi ∈ P , |pi | = H , i.e., the lengths of the decomposed sub-

paths should be equal to the maximum height H , as it returns the

fewest qualified candidates from the storage.

2) P =
⋃l
i=1 pi , which means all edges ei in P should be covered

in the union set of decomposed sub-paths, as fewer candidates are

returned.

2
https://azure.microsoft.com/en-us/pricing/details/storage/
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3) ∀pi ,pi+1 ∈ P ,pi
⋂
pi+1 , ∅, i.e., every pair of consecutive sub-

paths has at least one overlapped edge. Otherwise, the continuity

and order cannot be guaranteed.

There are multiple ways to decompose a query path. An intuitive

method uses a sliding window, with a window size of H and a step

size of H − 1, to decompose the query path. The main intuition

is to minimize the decomposed sub-path count, which essentially

minimizes the total number of sub-trajectory retrievals to the table-

based suffix tree.

However, the query performance depends on the slowest re-

trieval in a parallel environment. Therefore, we develop a dynamic

programming algorithm to minimize the max count of retrieved

sub-trajectories in all decomposed sub-paths. The state transfer

equation is:

f (i) =

c(e1 : ei ) if 0 < i ≤ H
max( min

j=1. . .H−1
f (i − H + j), c(ei−H+1 : ei )) if i > H

where f (i) denotes the minimum max count when a path ends

with the edge ei , and c(ej : ei ) denotes the hourly count for the
corresponding path ej → ej+1 → ... → ei . In each step, we keep

an array u to record the decomposition slot.

Figure 5 gives an example of decomposing a query path P =
{e1 → ... → e8} with H = 3, where the hourly count of each sub-

path is in Figure 5a and the decomposing steps are presented in

Figure 5b. As a result, the path P is decomposed to four sub-paths:

p1 = {e1 : e3},p2 = {e2 : e4},p3 = {e4 : e6}, and p4 = {e6 : e8}.

Step 2. Suffix Record Retrieval. In this step, the system retrieves

the sub-trajectories based on the decomposed plan from Azure Ta-

ble. We regard the decomposed path as the table name and temporal

range as the key range. As a result, each query to the table-based
suffix index returns a set of suffix records, which consists of its ID,

and a pair of start/end times of the corresponding sub-path.

Step 3. Sub-Trajectory Reconstruction. In this step, we recon-

struct the qualified trajectories by joining the sub-trajectories. The

suffix record of the sub-trajectories from the first sub-path is our

candidate set. For each sub-trajectory in the candidate set, if it does

not appear in the next sub-path, the trajectory is discarded. Other-

wise, we check if these sub-trajectories have the correct overlapped

time between their start and end timestamps.

To overcome the I/O bottleneck and efficiently support large-

scale concurrent path queries, we implement the query processing

component using Storm, as shown in Figure 5c, with three main

modules: 1) Spout, which reads the query parameters from users,

assigns IDs to different queries, decomposes the query paths and

emits the decomposed sub-paths with their query IDs to Suffix
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Figure 6: Experiment Results.
Record Retrieval Bolts, using the ShuffleGrouping mechanism to

balance the workloads; 2) Suffix Record Retrieval Bolt, which gets

the decomposed sub-paths and retrieves the sub-trajectories from

Azure Table. The retrieved sub-trajectories are then emitted to the

Trajectory Reconstruction Bolt, using the FieldsGrouping mecha-

nism based on their IDs (i.e., the sub-trajectories from the same

query are passed to the same bolt); 3) Trajectory Reconstruction Bolt,
which receives the sub-trajectories with the same query ID, and

reconstructs the overlapped sub-trajectories for each query. Finally,

the qualified trajectories are written as results to the Redis server.

5 EXPERIMENTS
Dataset & Settings. We use one month of GPS trajectories from

around 5,000 daily active taxis in Guiyang (the capital of Guizhou

Province, China), whose average sampling interval is about 1

minute. The raw trajectories and map-matched trajectories are

about 7GB and 61GB in disk space, respectively. For Azure settings,

we use locally redundant storage (LRS) for the Table and Blob Stor-

age. We also use the Storm component, whose default number of

data nodes used in experiments is 5.

Index Performance. Figure 6a shows the index sizes of different
max heightsH growingwith the increasing number of days, where a

largerH results in more duplicated data during the suffix generation

process. Figure 6b shows that the insert time by processing 20-min

trajectories varies with different H . It is clear that with a larger H ,

the insert time grows exponentially, because the number of suffix

combinations increase exponentially with the growth of H , and

each suffix combination incurs one insertion to the Azure Table. As

the Storm distributes the suffix combinations to multiple machines,

it achieves significant efficiency improvement, especially with a

larger H . For example, we can index the 20-min trajectories within

four minutes using Storm, while the standalone needs over 50

minutes (which is useless in real-time scenarios).

Query Efficiency. Figure 6c gives the average response time with

different edge sizes using two path decomposition methods, i.e.,

Sliding Window method (SW), and Dynamic Programming method

(DP). It is clear that DP performs better, especially with more edges.

As in the distributed environment, DP avoids retrieving the suffixes

with many entries, while SW does not consider the significant size

differences in each suffix node. As a result, DP is used as our default

decomposition method.

Query processing with different numbers of query paths is also

evaluated with different H . As shown in Figure 6d, it is obvious

that with more edges, more time is used as it retrieves more entries

from Azure Table. Moreover, with a larger max height, the query

efficiency is better, because with a largerH , the index pre-computes

more information and generates fewer candidates.

Scalability of Concurrent Queries. The scalability of handling

concurrent path queries is vital to many complex data mining tasks.

Figure 6e presents the average response timewith different numbers

of concurrent queries, using different numbers of data nodes in

Storm. It is clear that with more concurrent queries, the average

response time increases. Moreover, the Storm with more data nodes

performs better, as with more data nodes we can distribute the I/O

access more effectively and achieve a better system throughput.

Result. Choosing the suitable max height H is a trade-off: if H
is small, it favors index building, as fewer suffixes are generated.

However, it hurts the efficiency in query processing, as more join

operations and data accesses are introduced. If the path query

processing system needs to serve concurrent path queries for data

analysis/mining applications, more data nodes should be employed

in the Storm to ensure system efficiency.

6 CONCLUSION
We present a holistic path query processing system on Microsoft

Azure. We modify the suffix tree, with max height, hourly count
and table storage for indexing large scale trajectories. A heuristic

path decomposition method is developed to further improve per-

formance. Experiments on a real dataset verify the efficiency of our

system. For example, whenH = 3, we can index 20-min trajectories

in less than 4 minutes, which enables real-time path querying and

analysis. The individual query processing time is less than 400 ms.
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