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ABSTRACT
We show that telco big data can make churn prediction much
more easier from the 3V’s perspectives: Volume, Variety,
Velocity. Experimental results confirm that the prediction
performance has been significantly improved by using a large
volume of training data, a large variety of features from both
business support systems (BSS) and operations support sys-
tems (OSS), and a high velocity of processing new coming
data. We have deployed this churn prediction system in one
of the biggest mobile operators in China. From millions of
active customers, this system can provide a list of prepaid
customers who are most likely to churn in the next month,
having 0.96 precision for the top 50000 predicted churners in
the list. Automatic matching retention campaigns with the
targeted potential churners significantly boost their recharge
rates, leading to a big business value.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.2.8 [Database Management]: Database Applications—
Data Mining

Keywords
Telco churn prediction; big data; customer retention

1. INTRODUCTION
Customer churn is perhaps the biggest challenge in telco

(telecommunication) industry. A churner quits the service
provided by operators and yields no profit any longer. Fig-
ure 1 shows the churn rate (defined as the percentage of
churners among all customers) in one of the biggest opera-
tors during 12 months in China. The prepaid customers has
a significantly higher churn rate (on average 9.4%) than the
postpaid customers (on average 5.2%), because the prepaid
customers are not bound to contract and can quit easily
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Figure 1: The churn rates in 12 months.

without recharging. Since the cost of acquiring new cus-
tomers is much higher than that of retaining the existing
ones (e.g., around 3 times higher), it is urgent to build churn
prediction systems to predict the most likely churners for
proper retention campaigns. As far as millions of customers
are concerned, reducing 1% churn rate will lead to a signif-
icant profit increase. Without loss of generality, this paper
aims to develop and deploy an automatic churn prediction
and retention system for prepaid customers, which has long
been viewed as a more challenging task than churn predic-
tion for postpaid customers [25, 29].

In this paper, we empirically demonstrate that telco big
data make churn prediction much easier through 3V’s per-
spectives. Practically, the recharge rate of potential churn-
ers has been greatly improved around 50%, achieving a big
business value. For years of system building, telco data have
very low inconsistencies and noises, so that Veracity is a nat-
ural property of telco data. In this sense, this study thereby
covers 5V characteristics of telco big data: Volume, Variety,
Velocity, Veracity and Value, in the context of churn predic-
tion and retention systems. From extensive experiments, we
continue to see at least marginal increases in predictive per-
formance by using a larger Volume of training data, a more
Variety of features from both telco business supporting sys-
tems (BSS) and operation supporting systems (OSS), and a
higher Velocity of processing new coming data. For example,
we achieve 0.96 precision on the top predicted 50000 churn-
ers (ranking by the churn likelihood) in the next month,
which is significantly higher than the previous churn pre-
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diction system deployed in this operator (0.68 precision) as
well as the current state-of-the-art research work [16, 14, 13,
32, 1].1 The results are based on the 9-month dataset from
around two million prepaid customers in one of the biggest
operators in China. This study provides a clear illustra-
tion that bigger data indeed can be more valuable assets
for improving generalization ability of predictive modeling
like churn prediction. Moreover, the results suggest that it
is worthwhile for telco operators to gather both more data
instances and more possible data features, plus the scal-
able computing platform to take advantage of them. In this
sense, the big data platform plays a major role in the next-
generation telco operation. As an additional contribution,
we introduce how to integrate churn prediction model with
retention campaign systems, automatically matching proper
retention campaigns with potential churners. In particular,
the churn prediction model and the feedback of retention
campaign form a closed loop in feature engineering.

To summarize, this paper makes two main contributions.
The primary contribution is an empirical demonstration that
indeed churn prediction performance can be significantly im-
proved with telco big data by integrating both BSS and OSS
data. Although BSS data have been utilized in churn pre-
diction very well in the past decade, we have shown that
it is worthwhile collecting, storing and mining OSS data,
which takes around 97% size of the entire telco data assets.
This churn prediction system is one of the important com-
ponents for the deployed telco big data platform in one of
the biggest operators, China. The second contribution is
the integration of churn prediction with retention campaign
systems as a closed loop. After each campaign, we know
which potential churners accept the retention offers, which
can be used as class labels to build a multi-class classifier
automatically matching proper offers with churners. This
means that we can use a reasonable campaign cost to make
the most profit. This paper thereby makes a small but im-
portant addition to the cumulative answer to a current open
industrial question: How to monetize telco big data?

2. PREVIOUS WORK
In industry, data-driven churn predictive modeling gen-

erally includes constructing useful features (aka predictor
variables) and building good classifiers (aka predictors) or
classifier ensembles with these features [13, 36]. A binary
classifier is induced from instances of training data, for which
the class labels (churners or non-churners) are known. Using
this classifier, we want to predict the class labels of instances
of test data in the near future, where training and test data
have no overlap in time intervals. Each instance typically is
described by a vector of features which will be used for pre-
diction. Following this research line, many classifiers have
been adopted for churn prediction, including logistic regres-
sion [24, 14, 22, 25, 23], decision trees [34, 22, 3], boost-
ing algorithms (e.g., variants of adaboost [18, 23]), boosted
trees (gradient boosted decision trees) or random forest [21,
27], neural networks [9, 16], evolutionary computation (e.g.,
genetic algorithm and ant colony optimization) [9, 2, 33],
ensemble of support vector machines [7, 33, 20], and en-

1Although we cannot fairly compare our results with previ-
ous results due to different datasets, features and classifiers,
we enhance the predictive performance over baselines that
are adopted by most of previous research work.
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Figure 2: The overview of telco big data platform.

semble of hybrid methods [34, 13]. Most customer behav-
ior features are extracted from BSS, including call detailed
records (call number, start time, data usage, etc.), billing
records (account balance, payment records, average revenue
per user called ARPU, etc.), demographic information (gen-
der, birthday, career, home address, etc.), life cycle (new en-
try or in-net duration), package/handset (type and upgrade
records, close to contract expiration, etc.), social networks
(call graphs) [8, 19, 28], purchase history (subscribed ser-
vices), complaint records [27], and customer levels (VIP or
non-VIP). The churn management system becomes one of
the key components in business intelligence (BI) systems.

However, previous work has two limiting factors. First, so-
phisticated techniques have been applied in churn prediction
for years, and it is getting harder to make a breakthrough
to further lift the accuracy through the advances of predic-
tion techniques. This motivates us to seek opportunities of
telco big data from the 3V’s perspectives: Volume, Variety,
Velocity. An important, open question is: to what extent
do larger volume, richer variety and higher speed of data
actually lead to better predictive models? For example, al-
though OSS data occupy around 97% size of the entire telco
data assets, a variety of features from OSS have been rarely
studied before, which reflect the quality of service (call drop
rate and mobile internet speed), mobile search queries, and
trajectory information [17]. Second, matching proper re-
tention campaigns with potential churners has not been in-
vestigated to maximize the overall profit, causing a limited
business value of existing churn prediction models [35, 32].

3. TELCO BIG DATA PLATFORM
The teleco operators create enormous amounts of data

every day. BSS is the major IT components that a teleco
operator uses to run its business operations towards cus-
tomers. It supports four processes: product management,
order management, revenue management and customer man-
agement. OSS is computer systems used by teleco service
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providers to manage their networks (e.g., mobile networks).
It supports management functions such as network inven-
tory, service provisioning, network configuration and fault
management. Note that both BSS and OSS often work sep-
arately, and have their own data and service responsibilities,
With the rapid expansion, the telco data storage has moved
to PB age, which requires a scalable big data computing
platform for monetization.

Figure 2 overviews the functional architecture of the telco
big data platform, where data sources are from both BSS
and OSS. Generally, the data from BSS are composed of
User Base/Behavior, Compliant, Billing and Voice/Message
call detailed records (CDR) tables, which cover users’ de-
mographic information, package, call times, call duration,
messages, recharge history, account balance, calling num-
ber, cell tower ID, and complaint records. The data volume
in BSS is around 24GB per day. The data from OSS can
be broadly categorized into three parts: circuit switch (CS),
packet switch (PS) and measurement report (MR). CS data
describe the call connection quality, e.g., call drop rate and
call connection success rate. PS data are often called mobile
broadband (MBB) data, including data gathered by probes
using Deep Packet Inspection (DPI). PS data describe users’
mobile web behaviors, which is related to web speed, connec-
tion success rate, and mobile search queries. MR data are
from radio network controller (RNC), which can be used to
estimate users’ approximate trajectories [17]. The data vol-
ume in OSS is around 2.2TB per day, occupying over 97%
data volume of the entire dataset. Also, we can use web
crawler to obtain some Internet data (e.g., map information
and social networks).

More specifically, BSS data are from the traditional BI
systems widely used in telco operators, which consist of
around 140 tables. OSS data are imported by the Huawei in-
tegrated solution called SmartCare, which collects the data
from probes and interpret them to x-Detail Record (xDR)
tables, such as User Flow Detail Record (UFDR), Trans-
action Detail Record (TDR), and Statistics Detail Record
(SDR). All these tables have the key value called Interna-
tional Mobile Subscriber Identification Number (IMSI) or
International Mobile Equipment Identity (IMEI), which can
be used for joint operation and feature engineering. We use
the multi-vendor data adaption module to change tables to
the standard format, which are imported to big data plat-
form through extract-transform-load (ETL) tools for data
integration. We store these raw tables in Hadoop distributed
file systems (HDFS), which communicates with Hive/Spark
SQL for feature engineering purposes. These compose the
data layer connected with the capability layer through the
data bus in the big telco data platform. The main workload
of data layer is to collect and update all tables from BSS
and OSS periodically. In the capability layer, we build two
types of models, business and network components, based on
both unlabeled and labeled instances of features using data
mining and machine learning algorithms. Using capability
bus, these models can support application layer including in-
ternal (e.g., precise marketing, experience & retention and
network plan optimization) and external applications (e.g.,
data exposure for trading). The main workloads of applica-
tion layer include customer insight (e.g., churn, complaint,
recommendation products or services) and network insight
(e.g., network planning and optimization). The churn pre-
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Figure 3: Churn prediction and retention systems.

diction system is supported by the telco big data platform,
and is located at the red dashed lines in Figure 2.

Efficient management of telco big data for predictive mod-
eling poses a great challenge to the computing platform [11].
For example, there are around 2.3TB new coming data per
day from both BSS and OSS sources, where more than
97% volume of data is from OSS. The empirical results are
based on a scalable churn prediction and retention system
using Apache Hadoop [31] and Spark [37] distributed ar-
chitectures including three key components: 1) data gath-
ering/integration, 2) feature engineering/classifiers, and 3)
retention campaign systems. In the data gathering and in-
tegration, we move data tables from different sources and
integrate some tables by ETL tools. Most data are stored
in regular tables (e.g., billing and demographic information)
or sparse matrix (e.g., unstructured information like textual
complaints, mobile search queries and trajectories) in HDFS.
The feature engineering and classification components are
hand coded in Spark, which is based on Hive/Spark SQL
and some widely-used unsupervised/supervised learning al-
gorithms, including PageRank [26], label propagation [40],
topic models (latent Dirichlet allocation or LDA) [4, 39], LI-
BLINEAR (L-2 regularized logistic regression) [12], LIBFM
(factorization machines) [30], gradient boosted decision tree
(GBDT) and random forest (RF) [5]. This churn manage-
ment platform has been deployed in the real-world operator’s
systems, which can scale up efficiently to massive data from
both BSS and OSS.

4. PREDICTION AND RETENTION
The structure of the churn prediction system is illustrated

in Figure 3. The HDFS and Apache Spark support the dis-
tributed storage and management of raw data. Feature en-
gineering techniques are applied to select and extract rele-
vant features for churn model training and prediction. In
the business period (monthly), the churn classifier provides
a list of likely churners for proper retention campaigns. In
particular, the churn prediction model and the feedback of
retention campaign form a closed-loop.

4.1 Feature Engineering
We make use of Hive and Spark SQL to quickly sanitize

the data and extract the huge amount of useful features. The
raw data are stored on HDFS as Hive tables. Because Hive
runs much slower than Spark SQL, we use Spark SQL to
manipulate the tables. Spark SQL is a new SQL engine de-
signed from ground-up for Spark.2 It brings native support
for SQL to Spark and streamlines the process of querying
data stored both in RDD (Resilient Distributed Dataset)
and Hive [37]. The Hive tables are directly imported into

2https://spark.apache.org/sql/
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Features Description Features Description

localbase outer call dur duration of local-base outer call ld call dur duration of long-distance call
roam call dur duration of roaming call localbase called dur duration of local-base called
ld called dur duration of long-distance called roam called dur duration of roaming called
cm dur duration of calling China Mobile ct dur duration of calling China Telecom
busy call dur duration of calling in busy time fest call dur duration of calling in festival
sms p2p inner mo cnt count of inner-net MO SMS sms p2p other mo cnt count of other MO SMS
sms p2p cm mo cnt count of MO SMS with China Mobile sms p2p ct mo cnt count of MO SMS with China Telecom
sms info mo cnt count of information-on-demand MO SMS sms p2p roam int mo cnt count of roaming international MO SMS
mms p2p inner mo cnt count of inner-net Mo MMS mms p2p other mo cnt count of other MO MMS
mms p2p cm mo cnt count of MO MMS with China Mobile mms p2p ct mo cnt count of MO MMS with China Telecom
mms p2p roam int mo cnt count of roaming international MO MMS all call cnt count of all call
voice cnt count of voice call local base call cnt count of local-base call
ld call cnt count of long-distance call roam call cnt count of roaming call
caller cnt count of caller call voice dur duration of voice call
caller dur duration of caller call localbase inner call dur duration of local-base inner-net call
free call dur duration of free call call 10010 cnt count of call to 10010 (service number)
call 10010 manual cnt count of call to manual 10010 sms bill cnt count of billing SMS
sms p2p mt cnt count of MT SMS mms cnt count of all MMS
mms p2p mt cnt count of MT MMS gprs all flux all GPRS flux
gender gender of user age age of user
credit value user credit value innet dura duration of innet
total charge the total cost in a month gprs flux the total GPRS flux
gprs charge the total cost of GPRS local call minutes minutes of local call
toll call minutes minutes of long-distance call roam call minutes minutes of roaming call
voice call minutes minutes of voice call p2p sms mo cnt count of MO SMS
p2p sms mo charge cost of MO SMS pspt type credentials type
is shanghai if user is shanghai resident or not town id user town id
sale id selling area id pagerank user effect calculated with pagerank
product id product id product price product price
product knd kind of product gift voice call dur duration of gift voice call
gift sms mo cnt count of gift MO SMS gift flux value gift flux
distinct serve count count of service SMS serve sms count count of service provider through SMS
innet dura duration in net balance account balance
balance rate recharge over account balance total charge recharge value
PAGESIZE page size PAGE SUCCEED FLAG page display success flag
L4 UL THROUGHPUT data upload speed L4 DW THROUGHPUT data download speed
TCP CONN STATES TCP connection status TCP RTT TCP return time
STREAMING FILESIZE streaming file size STREAMING DW PACKETS streaming download packets
ALERTTIME alert time ENDTIME alert end time
LAC local area code CI cell ID

Figure 4: Some basic features in churn prediction.

Spark SQL for basic queries, including join queries and ag-
gregation queries. For example, we need to join the local
call table and the roam call table to combine the local call
and roam call features. Also, we need to aggregate local
call tables of different days to summarize a customer’s call
information in a time period (e.g., a month). All the in-
termediate results are stored as Hive tables, which can be
reused by other tasks since the feature engineering may be
repeated many times. Finally, a unified wide table is gener-
ated, where each tuple in the table represents a customer’s
feature vector. The wide table is exported into Hive to build
classifiers. An example of some basic features in the wide
table and explanations can be found in Figure 4.

These basic features can be broadly categorized into three
parts: 1) baseline features, 2) CS features, and 3) PS fea-
tures. The baseline features are extracted from BSS and
are used in most previous research work, e.g., account bal-
ance, call frequency, call duration, complaint frequency, data
usage, recharge amount, and so on. We use these base-
line features to illustrate the differences between our solu-
tion and previous work. These features compose a vector,
xm = [x1, . . . , xi, . . . , xj , . . . , xN ], for each customer m.

Besides these basic features, we also use some unsuper-
vised, semi-supervised and supervised learning algorithms to
extract the following complicated features: 1) Graph-based
Features, 2) Topic Features, and 3) Second-order Features.

4.1.1 CS and PS Features
Both CS and PS features are from OSS. We use several

key performance indicators (KPI) and key quality indica-

tors (KQI) in OSS as well as some statistical features, such
as the average data upload/download speed and the most
frequent connection locations from MR data. Due to the
page limitation and the focus of this paper, we only give a
brief introduction of the KPI/KQI features extracted from
CS/PS data. Interested users can check Huawei’s industrial
OSS handbook for details.3

CS features represent the service quality of voice. The
KPI/KQI features used in CS data includes average Per-
ceived Call Success Rate, average E2E Call Connection De-
lay, average Perceived Call Drop Rate and average Voice
Quality. Perceived Call Success Rate indicates the call suc-
cess rate perceived by a calling customer. It is calculated
from the formula, [Mobile Originated Call Alerting]/([Mobile
Originated Call Attempt] + [Immediate Assignment Fail-
ures]/2). Each item in the formula is computed from a group
of PIs (performance indicators). E2E Call Connection De-
lay indicates the amount of time a calling customer waits
before hearing the ringback tone. It is defined as [E2E Call
Connection Total Delay]/[Mobile Originated Call Alerting]
= [Sum(Mobile Originated Connection Time - Mobile Orig-
inated Call Time)]/[Mobile Originated Call Alerting]. Per-
ceived Call Drop Rate indicates the call drop rate perceived
by a customer. It is obtained from [Radio Call Drop After
Answer]/[Call Answer]. Voice quality include Uplink MOS
(Mean Opinion Score), Downlink MOS, IP MOS, One-way
Audio Count, Noise Count, and Echo Count. They can be
used to assess the voice quality in the operator’s network

3HUAWEI SEQ Analyst KQI&KPI Definition
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and the customers’ experience of voice services. Totally,
each customer has a total of 9 CS KPI/KQI features.

PS KPI/KQI features reflect the quality of data service,
which includes web, streaming and email. For example, we
use the web features such as average Page Response Success
Rate, average Page Response Delay, average Page Browsing
Success Rate, average Page Browsing Delay, and average
Page Download Throughput. Page Response Success Rate
indicates the rate at which website access requests are suc-
cessfully responded to after the customer types a Uniform
Resource Locator (URL) in the address bar of a web browser.
It is calculated from [Page Response Successes]/[Page Re-
quests], where [Page Response Successes] = [First GET Suc-
cesses] and [Page Requests] = [First GET Requests]. Page
Response Delay indicates the amount of time a customer
waits before the desired web page information starts to dis-
play in the title bar of a browser after the customer types
a URL in the address bar. It is obtained from [Total Page
Response Success Delay]/[Page Response Successes], where
[Page Response Success Delay] = [First GET Response Suc-
cess Delay] + [First TCP Connect Success Delay]. Similar
KPI/KQI features are used for both streaming and email ser-
vices. For each customer, we also select top 5 most frequent
locations or stay areas during a period (e.g., a month) repre-
sented by latitude and longitude from MR data. Therefore,
each customer has 15 PS KPI/KQI features plus 10 most
frequent location features from PS data.

4.1.2 Graph-based Features
Graph-based features are extracted from the call graph,

message graph and co-occurrence graph, based on CDR and
MR data. All are undirected graphs with nodes for cus-
tomers. The edge weight of call and message graphs are
the accumulated mutual calling time and the total num-
ber of messages between two customers in a fixed period
(e.g., a month) from CDR data. The edge weight of co-
occurrence graph is the number of co-occurrences of two cus-
tomers within a certain spatiotemporal cube (e.g., within 20
minute and 100×100 meter cube) from MR data. Churners
will propagate their information through these graphs.

We use Hive/Spark SQL to generate the above undirected
graphs represented by the edge-based sparse matrix, E =
{wm,n �= 0}, where wm,n �= 0 is the edge weight for mth
and nth vertices (customers), and there are a total of 1 ≤
m, n ≤ N customers. Based on the undirected graphs, we
use PageRank [26] and label propagation [40] algorithms to
produce two features for each graph. The weighted PageR-
ank feature xm on undirected graphs is calculated as follows,

xm =
(1− d)

N
+ d

∑

n∈N (m)

xnwm,n∑
n∈N (m) wm,n

, (1)

whereN (m) is the set of neighboring customers having edges
with m. The damping factor d is set to 0.85 practically. The
initial value of xm = 1. After several iterations of Eq. (1),
xm will converge to a fixed point due to random walk na-
ture of the PageRank algorithm. The higher value of xm

corresponds to the higher importance in the graph. For ex-
ample, in the call graph, the higher xm of a customer means
that more customers call (or called) this customer. Intu-
itively, customers with higher xm have a low likelihood to
churn. Each customer has a total of 3 PageRank features on
3 undirected graphs.

In label propagation, the basic idea is that we start with

a group of customers that we have known that they are
churners. Following the edge weights in the graph, we propa-
gate the churner probabilities from the customer seed vertex
(the ones we have churner label information about) into the
customers without churner labels. After several iterations,
the label propagation algorithm converges and the output
is churner labels for the non-churner customers. Given the
edge weight matrix WM×M , and a churner label probability
matrix YM×2, the label propagation algorithm follows the 3
iterative steps:

1. Y ←WY ;

2. Row-normalize Y to sum to 1;

3. Fix the churner labels in Y , Repeat from Step 1 until
Y converges.

After label propagation, each customer (non-churner) is as-
sociated with a churn label probability ym in matrix Y prop-
agated from the churners in the previous month. The higher
value means that this non-churner has a higher likelihood to
be the churner in the graph. Since we have 3 undirected
graphs, we obtain 3 churner label propagation features ym

for each customer m. As a result, we have 6 graph-based fea-
tures for each customer plus 3 PageRank features, which are
different and independent from label propagation features
because PageRank features do not involve churner labels.

4.1.3 Topic Features
There are lots of text logs of customer complaints or search

queries. In a certain period (e.g., a month), each customer
can be represented as a document containing a bag of words
of their complaint or search text. After removing less fre-
quent words, we form 2408 and 15974 vocabulary words from
complaint and search text. Because the word vector space
is too sparse and high-dimensional to build a RF classi-
fier, we choose the probabilistic topic modeling algorithm
called LDA [4] to obtain compact and lower-dimensional
topic features. We use a sparse matrix xW×M to repre-
sent the bag-of-word representation of all customers, where
there are 1 ≤ m ≤ M customers and 1 ≤ w ≤ W vocabu-
lary words. LDA allocates a set of thematic topic labels, z =
{zk

w,m}, to explain non-zero elements in the customer-word
co-occurrence matrix xW×M = {xw,m}, where 1 ≤ w ≤ W
denotes the word index in the vocabulary, 1 ≤ m ≤ M
denotes the document index, and 1 ≤ k ≤ K denotes the
topic index. Usually, the number of topics K is provided by
users. The nonzero element xw,m �= 0 denotes the number
of word counts at the index {w, m}. The objective of LDA
inference algorithms is to infer posterior probability from
the full joint probability p(x, z, θ, φ|α, β), where z is the
topic labeling configuration, θK×M and φK×W are two non-
negative matrices of multinomial parameters for document-
topic and topic-word distributions, satisfying

∑
k θm(k) = 1

and
∑

w φw(k) = 1. Both multinomial matrices are gener-
ated by two Dirichlet distributions with hyperparameters α
and β. For simplicity, we consider the smoothed LDA with
fixed symmetric hyperparameters.

We use a coordinate descent (CD) method called belief
propagation (BP) [38, 39] to maximize the posterior proba-
bility of LDA,

p(θ, φ|x, α, β) =
p(x,θ, φ|α, β)

p(x|α, β)
∝ p(x,θ, φ|α, β). (2)
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The output of LDA contains two matrices {θ, φ}. In prac-
tice, the number of topics K in LDA is set to 10. The
matrix θK×M is the low-dimensional topic features for all
customers, when compared with the original sparse high-
dimensional matrix xW×M because K � D. For both com-
plaint and search texts, we generate K = 10 dimensional
topic features of each customer, respectively. So, there are
a total of 20 topic features for each customer.

4.1.4 Second-order Features
In the feature vector, xm = [x1, . . . , xi, . . . , xj , . . . , xN ],

second-order features are defined as the product of any two
feature values xixj , which may help us find the hidden re-
lationship between a specific pair of features. Suppose that
there are N features, the total number of second-order fea-
tures could be (N +1)N/2, which is often a burden to build
a classifier. So, we use LIBFM [30] regression model to se-
lect the most useful second-order features. The regression
model can be used for classification problems by setting the
response of regression as class labels. The LIBFM optimizes
the following objective function by the stochastic gradient
descent algorithm,

y = w0 +
n∑

i=1

wixi +
n∑

i=1

n∑

j=i+1

〈vi,vj〉xixj , (3)

where w0 and wi are weight parameters, and vi is a K-length
vector for ith feature value. The inner product 〈vi,vj〉 de-
notes the weight for the second-order feature xixj . The
larger weight means that the second-order feature is more
important [30]. So, we rank the learned weight 〈vi, vj〉 after
optimizing (3), and select 20 second-order features with the
top largest weights for churn prediction.

4.2 Classifiers
For experiments we report, we choose the Random Forest

(RF) classifier [5] to make predictions. The major reason of
this choice is that RF yields the best predictive performance
among several widely-used classifiers (See comparisons in
Subsection 5.8). RF is a supervised learning method that
uses the bootstrap aggregating (bagging) technique for an
ensemble of decision trees. Given a set of training instances,
xm = [x1, . . . , xi, . . . , xj , . . . , xN ], with class labels ym =
{non-churner = 0, churner = 1}, RF fits a set of decision
trees ft, 1 ≤ t ≤ T to the random subspace of features.
The label prediction for test instance x is the average of the
predictions from all individual trees,

y =
1

T

T∑

t=1

ft(x), (4)

where y is the likelihood of being a churner. We rank this
likelihood in descending order for predictive performance
evaluation as well as for retention campaigns. Generally,
customers with higher likelihood have lower recharge rates
in our experiments.

For each decision tree, it randomly selects a subset of
√

N
from N features, and builds a splitting node by iterating
these features. The Gini improvement I(·) is used to deter-
mine the best splitting point given ith column of features

from xM×N ,

I(x1:M,i) = G(x1:M,i)− q ×G(x1:P,i)

−(1− q)×G(xP+1:M,i), (5)

G(·) = 1−
2∑

c=1

p2
c, (6)

where P is the splitting point that partition 1 : M instances
into two parts 1 : P and P + 1 : M , and q is the fraction of
instances going left to the splitting point P . The function
G(·) is the Gini index for a group of customer instances, and
p1 is the probability of churners and p2 is the probability of
non-churners in this group. For each column of features,
we visit all splitting points P and find the maximum Gini
improvement I . Then, we find the maximum I among all
features, and use the feature with the maximum I as the
splitting point in the node of a decision tree. Other parame-
ters of RF are given as follows: 1) the number of trees is 500
and 2) the minimum samples in leaf nodes is 100. We fix the
minimum samples in leaf nodes to 100 to avoid over-fitting.
The split process of each decision tree will stop when the
number of samples in an individual node is less than 100.

After training RF, we obtain each feature’s importance
value by summing the Gini improvements of all nodes,

Importancei =
T∑

t=1

∑

Pi∈treet

I(x1:M,i). (7)

The feature importance ranking could help us evaluate which
features are major factors in churn prediction.

4.3 Retention Systems
The retention systems for potential churners make a closed

loop with churn prediction systems as shown in Figure 3.
Telco operators are not only concerned with the potential
churners, but also want to carry out effective retention cam-
paigns to retain those potential churners for further profits.
Generally, if a customer accept a retention offer, he/she will
keep on using the operator’s service for the next 5 months
to get the 1/5 offer per month. Nevertheless, there are mul-
tiple retention offers and operators do not know which offers
match a specific group of potential churners. For example,
some potential churners will not accept any offer, some want
more cashback, some want more flux, and some want more
free voice minutes. Before the automatic retention system is
deployed, operators often match offers with potential churn-
ers by domain knowledge, and the campaign results are not
satisfactory. So, it is necessary to build an automatic reten-
tion systems for matching offers with churners.

We define this task as a multi-category classification prob-
lem. A potential churner xm is classified into multiple cat-
egories ym = {0, 1, 2, . . . , C − 1}, where ym = 0 denotes
that the potential churner will not accept any offer, and
other values means different types of retention offers. The
class labels (retention results) are accumulated after each
retention campaign. We train a RF retention classifier in
Subsection 4.2 to do multi-category classification as shown
in Figure 3. The retention classifier is updated if retention
campaign results are available, similar to the churn classi-
fier. Moreover, we use the label propagation algorithm to
propagate the campaign result label ym on three undirected
graphs in Subsection 4.1.2. These 3 × C new features are
added to the original churn prediction features for training
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Figure 5: Distribution of the number of recharged
customers in the recharge period.
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Figure 6: Experimental setting based on a sliding
window of four months.

and classification purposes. The major advantage of the
label propagation features in retention are that customers
with close relationship tend to have similar retention offers.
The campaign results feedback to the feature engineering
layer as a closed loop, and the features are updated after
each retention campaign as shown in Figure 3.

5. RESULTS
To build the churn prediction system, we need labeled

data for training and evaluation purposes. Domain experts
of telco operators guide us to label churners. If a prepaid
customer in the recharge period does not recharge within 15
days, this customer is considered to be a churner. Because
the customer can only receive calls in the recharge period
(but cannot make any call out), it is convenient to carry out
retention campaigns through calls and messages. This label-
ing rule helps predict potential churners at an early stage.
In this sense, churn prediction is equivalent to predicting
customers who will not recharge for more than 15 days in
the recharge period in the next month. Figure 5 shows the
distribution of the number of recharged customers in the
recharge period in the past 9 months, where the x-axis de-
notes the number of days in recharge period and y-axis de-
notes the number of recharged customers. From customers
in the recharge period, we see that less than 5% customers
recharge beyond 15 days (in the next month), which confirms
that customers have low likelihoods to recharge beyond 15
days (labeled churners).

Table 1 shows the statistics of the dataset collected from
the past 9 consecutive months from 2013 to 2014. It shows
the total number of customers, churners and non-churners
using the above labeling rule. On average, the number of
churners takes around 9.2% of the total number of cus-
tomers in the dataset. It is interesting to see that though

there are lots of churners, the total number of prepaid cus-
tomers remains in almost the same level. This indicates that
each month the number of acquired new prepaid customers
is almost equal to the number of churners, forming a dy-
namic balance. Because acquiring new customers usually
consumes three times higher cost than that of retaining po-
tential churners, there is a big business value of automatic
churn prediction and retention systems.

Figure 6 shows our experimental settings in a four month
sliding window. First, we use Month N to label features in
Month N − 1, and use labeled features in Month N − 1 to
build a churn classifier. Second, we input the features with
unknown labels in Month N into the classifier, and predict
a list of potential churners (labels) in Month N + 1 rank-
ing by likelihood in descending order. Third, we will carry
out retention campaigns on the list of potential churners in
Month N + 1 using A/B test, where the list is partitioned
randomly into two parts, one for retention campaigns and
the other for nothing. Fourth, we evaluate the churn predic-
tion performance as well as retention performance in Month
N + 2, because we already know the labels in Month N + 1
and retention campaign results in Month N +2. Finally, we
use campaign results as labels to train the retention clas-
sifier to classify potential churners into multiple retentions
strategies. This retention classifier will be used for matching
churners with retention strategies in the next sliding window
(not shown). The entire process repeats after the sliding
window moves to the next month.

5.1 Performance Metrics
The churn prediction system will output a list of top U

customers (non-churners in the current month) that have
the higher likelihood to be churner in the next month. We
use recall and precision metrics on top U users to evaluate
the prediction results. Generally, increasing U will increase
recall but decrease precision. Fixing a certain U , the higher
recall and precision correspond to the better prediction per-
formance. The definition of recall@U is

R@U =
The number of true churners in top U

The total number of true churners
. (8)

Similarly, the definition of precision@U is

P@U =
The number of true churners in top U

U
. (9)

We also use the area under the ROC curve (AUC) [13] eval-
uated on the test data, which is the standard scientific ac-
curacy indicator,

AUC =

∑
n∈true churners Rankn − P×(P+1)

2

P ×N
, (10)

where P is the number true churners and N the number
of true non-churners. Sorting the churner likelihood in de-
scending order, we assign the highest likelihood customer
with the rank n, the second highest likelihood customer with
the rank n − 1, and so on. The higher AUC indicates the
better prediction performance. Because the number of posi-
tive (churner) and negative (non-churner) instances are quite
imbalanced, the area under the precision-recall curve (PR-
AUC) is a better metric than AUC for the overall predictive
performance [10]. We use AUC, PR-AUC, R@U and P@U
to evaluate the overall predictive performance in terms of a
large volume of training data, a large variety of customer
features, and a high velocity of processing new coming data.
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Table 1: Statistics of Dataset (9 Months).
Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 Month 7 Month 8 Month 9

Churner 185779 173576 196984 184728 216010 201374 200492 199456 202873
No-Churner 1927748 1935496 1907548 1909698 1893469 1909472 1918349 1983917 1949832

Total 2113527 2109072 2104532 2094426 2109479 2110846 2118841 2183373 2152705

Table 2: Variety performance (U = 2× 105).
Features AUC PR-AUC R@U P@U ΔPR-AUC

F1 0.87468 0.54123 0.41251 0.48133 0.000%
F2 0.91498 0.60879 0.50718 0.57511 12.483%
F3 0.91842 0.62172 0.51071 0.58718 14.871%
F4 0.89451 0.57691 0.46198 0.54991 6.592%
F5 0.87864 0.54681 0.42100 0.48543 1.031%
F6 0.90472 0.58874 0.48791 0.55782 8.778%
F7 0.88659 0.55181 0.42819 0.49765 1.955%
F8 0.89619 0.57093 0.46019 0.54177 5.488%
F9 0.89027 0.56799 0.45786 0.53181 4.944%

5.2 Volume
Figure 7 examines the question: when using baseline fea-

tures in Section 4.1, do we indeed see increasing predictive
performance as the training dataset continues to grow to
massive size? This experiment aims to predict the poten-
tial churners in Month 7 in Table 1 by accumulating the
labeled instances of feature vectors from Month 6 to Month
1. Such a experiment repeats 3 times to predict churners
in Months 7, 8 and 9 by the sliding window in Figure 6,
and the average results are reported (variance is too small
to be shown). As Figure 7 shows (x-axis denotes volume
of training data measured by the number of months and y
is the predictive performance metrics AUC, PR-AUC, R@U
and P@U), the performance keeps improving even when we
add more than 4 times larger training data. We show re-
sults on U = {5× 104, 1× 105, 2 × 105}, which denotes the
number of predicted churners with top largest likelihoods.
As far as R@5 × 104 is concerned, the larger training data
achieves around 15% improvement, confirming that the Vol-
ume of big telco data indeed matters. This result suggests
that telco operators need to store at least 4 months’ data
for a better churn prediction performance.

One should note, however, that the AUC, PR-AUC, R@U
and P@U curves do seem to show some diminishing returns
to scale. This is typical for the relationship between the
amount of data and predictive performance, especially for
linear models like logistic regression [36]. The marginal in-
crease in generalization accuracy decreases with more train-
ing data for two reasons. First, the classifier may be too
simple to capture the statistical variance of larger dataset.
There is a maximum possible predictive performance due to
the fact that accuracy can never be better than perfect. Sec-
ond, more importantly, accumulating more earlier training
data in past months may be not helpful in predicting po-
tential churners in recent months. For example, the churner
behaviors in Month 1 may be quite different from those in
Month 7. Adding training data in Month 1 can provide lit-
tle information to predict churners in Month 7. This follows
the temporal first-order Markov property: the present state
depends only on the most closest previous state.

5.3 Variety
The experiments reported above confirm that Volume (the

number of training instances) can improve the predictive

Table 3: The overall predictive performance.
Top U Recall Precision AUC PR-AUC

50000 0.22775 0.95928

0.93261 0.71553

100000 0.41198 0.86764
150000 0.53930 0.75719
200000 0.62884 0.66218
250000 0.69362 0.58431
300000 0.74550 0.52334
350000 0.78498 0.47234
400000 0.81621 0.42974

Table 4: Importance ranking of some features.
Rank Features Category Importance

1 balance F1 0.163336
2 page download throughput F3 0.159772
3 localbase call dur F1 0.083948
6 page response delay F3 0.051910
9 voice quality F2 0.036732
11 search txt topic F8 0.015014
17 innet dura× total charge F9 0.008867
41 labelpropaagtion cooccurrence F6 0.003507
54 pagerank voice F4 0.000703
68 pagerank cooccurence F5 0.000518

modeling accuracy. An alternative perspective on increasing
data size is to consider a fixed number of training instances
and increase the number of different possible features (Vari-
ety) that are collected, stored or utilized for each instance.
This Variety perspective of big data motivates us to explore
extensively OSS features plus BSS features. We believe that
predictive modeling may benefit from a large variety of fea-
tures if most of the features provide a small but non-zero
amount of additional information about target prediction.
To this end, we add separately the following categories of
features to the baseline features (F1 for BSS features) one
by one in Table 2: F2 for CS features, F3 for PS features, F4
for Call graph-based features, F5 for Message graph-based
features, F6 for Co-occurence graph-based features, F7 for
Topic features (complaints), F8 for Topic features (search
queries), F9 for Second-order features. There are 150 fea-
tures (F1: 70, F2: 9, F3: 25, F4: 2, F5: 2, F6: 2, F7: 10, F8:
10, F9: 20), and detailed descriptions on these features can
be found in Section 4.1. On our dataset in Table 1, we re-
peat this experiment 7 times to predict churners in Months
3 ∼ 9, using one month labeled features for training and
predict the potential churners in the next month as shown
in Figure 6. The average results are reported (variance is
too small to be shown).

Table 2 summarizes the contribution of each category of
features to the baseline features. CS and PS features (F2 and
F3) contribute significantly 12.483% and 14.871% improve-
ments on PR-AUC, respectively. This result is promising
because churners are quite related with KPI/KQI features
from both voice and data services. We can use a customer-
centric network optimization solution to improve KPI/KQI
experiences of potential churners. PS features are more ef-
fective than CS features because customers use more and
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Figure 7: Adding more training data (x-axis) leads to continued improvement of predictive power (y-axis).

more data service in China, and the voice service becomes
less important than before. Surprisingly, message graph-
based features from complaint text (F4) has the least contri-
bution 1.031% improvement in terms of PR-AUC, because
almost all customers use the over-the-top (OTT) applica-
tions like Wechat, and seldom use the short message ser-
vice (SMS). In contrast, call graph (F4) and co-occurrence
graph-based (F6) features enhance the predictive perfor-
mance more than message graph-based features. The im-
portance of co-occurrence graph indicates that customers in
the same spatiotemporal cube tend to churn with similar
likelihoods. For example, university students have strong
edge weights in co-occurrence graph, and often churn simul-
taneously. Topic features of complaint text (F7) make a
small 1.955% improvement, implying that complaint is not
a major early signal for churning. Although a majority of
churners have bad experience, they still do not complain be-
fore churning. Similar results have also been observed in [27].
In contrast, topic features of search queries (F8) are more in-
formative. Potential churners may access to other operators’
portal, search other operators’ hotline, search new handset,
and so on. Finally, second-order features (F9) are beneficial
in practice, which has been verified in many KDD Cup com-
petitions [30]. These results support that features from OSS
can improve the churn prediction accuracy. It is worthwhile
integrating both BSS and OSS data for predictive modeling.

Table 4 shows importance ranking of some features among
150 features by RF classifier in each category. The most im-
portant feature is “balance”, because most churners with dif-
ferent causes often show low balance than non-churners. The
second important feature is “page download throughput”,
which becomes much smaller since churners often become in-
active in data usage. Some KPI/KQI features are ranked at
relatively higher places. Also, graph-based features play im-
portant roles in differentiating churners from non-churners.
Indeed, churners influence non-churners through call, mes-
sage and co-occurrence graphs, especially using label prop-
agation on co-occurrence graphs. The second-order feature
like“total charge × innet dura”means the product of the to-
tal charge and the in net duration of each customer, which
is also ranked at a higher place. Topic features from search
queries are informative with the rank 11.

Table 3 summarizes the final results using all 150 fea-
tures and accumulating 4 month training data. The pre-
cision P@5 × 104 is as high as 0.96, which means 96% of
the top 5 × 104 predicted churners will really churn in the
next month. Moreover, we gain 6.62% AUC improvement,
32.20% PR-AUC improvement, 52.44% R@2× 105 improve-
ment, and 37.57% P@2 × 105 improvement over the base-
line in Table 2. The improvement of AUC is not as high

Table 5: Velocity performance (U = 2× 105).
Velocity AUC PR-AUC R@U P@U ΔPR-AUC

30 days 0.87512 0.54081 0.40211 0.47093 0.000%
20 days 0.87770 0.54268 0.40994 0.47989 0.345%
10 days 0.87972 0.55116 0.41357 0.48201 0.576%
5 days 0.88073 0.55445 0.41392 0.48399 0.692%

as PR-AUC, R@U and P@U because AUC is not a good
performance metric for the imbalance of positive and nega-
tive instances [10]. Although each category of features can
improve PR-AUC, the integration of these features has the
shared information so that the overall improvement is not a
simple sum of their separate improvements in Table 5. One
should note that the baseline is a widely-used solution for
churn prediction in previous research work [16, 14, 13, 32,
1]. The only difference lies in that we use a larger volume of
training instances and a higher variety of features from OSS
data. In conclusion, Volume and Variety of telco big data
indeed make churn prediction much easier than previous re-
search work.

5.4 Velocity
Table 5 addresses the velocity question: how fast do we

need to update classifiers using new coming data (labeled
instances of features) to capture the recent behaviors of pre-
paid customers? To validate the effectiveness of velocity, we
move the sliding window every 30, 20, 10 and 5 days in Fig-
ure 6, and predict the churners in the next 30 days using
baseline features. By moving the sliding window, we repeat
experiments 5 times and report the average result (variance
is too small to be shown). We see that feature engineer-
ing and classifier updating with every 5 days gives a slightly
higher accuracy (less than 0.7% improvement with regard to
PR-AUC) than that with every 30 days. The improvement
steadily increases with the velocity increase of processing
new coming data. These results confirm that a high velocity
of processing new coming data is beneficial. However, we
should note that the improvement is limited by consuming
more computing resources in feature engineering and clas-
sifier updating. In practice, increasing velocity of updating
features and classifiers by every 5 days will predict around
2500 more true churners in the top U = 2 × 105 list. Con-
sidering only a subset of these churners will be retained,
the reward is not that high when compared with computing
costs. To make a good balance between computing efficiency
and prediction accuracy, we still choose to update classifiers
every month in practice. Another reason is that some big
tables for feature engineering are summarized automatically
by BSS monthly, which will save lots of feature engineering
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Table 6: Business value of churn prediction.

Month
Group A

Top 5 × 104 Top 5 × 104 ∼ 1 × 105

Total Recharge Rate Total Recharge Rate
8 7994 134 1.68% 8032 808 10.06%
9 8024 84 1.04% 8050 798 9.91%

Month
Group B

Top 5 × 104 Top 5 × 104 ∼ 1 × 105

Total Recharge Rate Total Recharge Rate
8 7972 1474 18.49% 8026 2280 28.41%
9 7988 2458 30.77% 8042 3194 39.72%

costs since we do not need to re-generate these big tables
manually by every 5 days. So, Table 3 summarizes the final
predictive performance of our deployed churn prediction sys-
tem (Volume = 4 months, Variety = 140 features, Velocity
= 1 month).

5.5 Value
The business value is a major concern of the deployed

churn prediction and retention system. Every month, the
system provides a list of top U = 1× 105 potential churners
ranking by classification likelihoods (4), which covers around
40% true churners as shown in Table 3. We select a subset
of potential churners4 (some from top 5 × 104 and others
from top 5×104 ∼ 1×105) for the following prepaid mobile
recharge offers: 1) Get 100 cashback on recharge of 100, 2)
Get 50 cashback on recharge of 100, 3) Get 500MB flux on
recharge of 50, and 4) Get 200-minute voice call on recharge
of 50, when they enter the recharge period. In the A/B test,
it is desirable to see a very low recharge rate of the predicted
potential churners without recharge offers (Group A), and
a relatively higher recharge rate of potential churners with
recharge offers (Group B). We carry out retention campaigns
in two consecutive months 8 and 9. In Month 8, we do not
train retention classifiers in Figure 6 to match churners with
recharge offers, but send offers by short message service to
churners according to domain knowledge guided by operator
experts. In Month 9, we use the campaign results as labels
(customers who accept different offers are defined as different
class labels in Subsection 4.3) to build a retention classifier,
matching proper offers with churners automatically. In this
way, we can gradually improve the retention efficiency to
retain more potential churners.

Table 6 shows the recharge rates of A/B test in Months
8 and 9. In group A, the recharge rate is very low in both
Months 8 and 9. In top 5 × 104 predicted churners, the
recharge rate is less than 2%, which means 98% predicted
churners in recharge period will not recharge within 15 days.
In top 5 × 104 ∼ 1 × 105 predicted churners, the recharge
rate is around 10%. All these results confirm that the high
accuracy of the churn prediction system. In Month 8, ran-
domly assigning recharge offers in Group B can significantly
enhance the recharge rate, e.g., from 1.68% to 18.48% and
from 10.06% to 28.41%, when compared with Group A. Fur-
thermore, in Month 9, after matching recharge offers with
churners in Group B, we see a further significant increase of
recharge rate, e.g., from 1.04% to 30.77% and from 9.91% to
39.72%, when compared with Group A. Indeed, the strategy
of matching offers with churners in Month 9 can retain more
potential churners, which leads to around 50% more profit

4This is a small-scale test due to the limitation of retention
resources at that time.

Table 7: Comparison of methods for data imbalance.
Methods AUC PR-AUC R@U P@U

Not Balanced 0.83712 0.49092 0.38969 0.43239
Up Sampling 0.84140 0.51882 0.39180 0.44187

Down Sampling 0.84791 0.51967 0.39757 0.45101
Weighted Instance 0.87468 0.54123 0.41251 0.48133

than Month 8. This provides one of the clearest illustra-
tion that the integration of churn prediction and retention
system is indeed more valuable. From this perspective, our
prediction target changes to those potential churners with a
higher likelihood to be retained by a specific retention offer.

5.6 Early Signals
Telco operators wish to predict churners as early as pos-

sible to provide proper retention strategies in a timely and
precise manner. In this setting, we change the sliding win-
dow in Figure 6. We use labels in Month N +2 and features
in Month N − 1 to train the classifier, and use features in
Month N and the classifier to predict the potential churners
in Month N +3. This setting can predict churners 3 months
earlier. Similarly, we can change the experimental setting
to predict churners from 1 ∼ 4 months earlier. Using base-
line features, we show the predictive performance of earlier
features in Figure 8. Obviously, the earlier features pro-
vide the worse predictive performance. The accuracy signif-
icantly decreases with the increase of time interval between
the observed features and the predicted labels in Figure 6.
For example, the PR-AUC drops around 20% using features
from 1 month to 2 month earlier for prediction. The re-
sults imply that the prepaid customers often churn abruptly
without providing enough early signals. Most churners show
their abnormal behaviors just before a month. These obser-
vations are consistent with Figure 7, where adding more
earlier instances of features provides little additional infor-
mation to improve predictive performance.

5.7 Data Imbalance
Data imbalance has long been discussed in building clas-

sifiers [6, 15]. There are four widely-used methods to han-
dle data imbalance: 1) Not Balanced, 2) Up Sampling, 3)
Down Sampling and 4) Weighted Instance. The first method
directly train classifier using imbalanced churner and non-
churner instances. The second method randomly copies the
churner instances to the same number of non-churner in-
stances. The third method randomly samples a subset of
non-churner instances to the same number of churner in-
stances. The fourth method assigns a proportion weight to
each instance, where higher weights are assigned to churn-
ers and lower weights to non-churners. We use baseline fea-
tures to evaluate different methods for data imbalance. Ta-
ble 7 shows the average predictive performance using differ-
ent methods (variance is too small to be shown). Clearly, the
Weighted Instance method outperforms other methods, hav-
ing around 10% improvement over the Not Balanced method
in terms of PR-AUC. So, we advocate the Weighted Instance
method to handle data imbalance in practice.

5.8 Classifiers
We compare some widely used classifiers in data min-

ing: RF, LIBFM, LIBLINEAR (L2-regularized logistic re-
gression) and GBDT. Some classifiers have won KDD CUP
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Figure 8: The earlier features produce worse predictive performance.
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Figure 9: Comparison of different classifiers.

champions based on complicated feature engineering tech-
niques [13, 36, 30]. RF and GBDT fix 500 decision trees
with default parameter settings. For example, the learn-
ing rate of GBRT, LIBFM and LIBLINEAR is fixed as 0.1.
LIBFM and LIBLINEAR use discrete binary features by
preprocessing the original continuous feature values, because
linear models are more suitable for sparse binary features.
Using the same baseline features, we find that RF performs
slightly better (less than 3%) than other classifiers in Fig-
ure 9 in terms of AUC and PR-AUC. The results are con-
sistent with several previous research works advocating RF
classifier for churn prediction [21, 7, 27]. Nevertheless, the
classifiers are not as important as features. Given a vari-
ety of features, most scalable classifiers can achieve almost
the same accuracy. The result indicates that adding a good
feature may enhance the predictive modeling more signifi-
cantly than changing to a better classifier, which have im-
portant implications for telco operators faced with competi-
tion. Telco operators dealing with larger data assets, more
important than prediction techniques, potentially can ob-
tain substantial competitive advantages over telco operators
without access to so much data.

6. CONCLUSIONS
This paper re-explores an old but classic research topic in

telco industry—churn prediction—from the 3V’s perspec-
tives of big data. Releasing the power of telco big data
can indeed enhance the performance of predictive analytics.
Extensive results demonstrate that Variety plays a more im-
portant role in telco churn prediction, when compared with
Volume and Velocity. This suggests that telco operators

should consider gathering, storing, and utilizing big OSS
data to enrich Variety, which occupy more than 90% size
of the entire telco data assets. Integration of BSS and OSS
data leads to a better automatic churn prediction and re-
tention system with a big business value. Extension work
includes inferring root causes of churners for actionable and
suitable retention strategies.

Previous churn prediction research is based only on BSS
data such as call/billing records, purchase history, payment
records, and CDRs, because it is much easier to acquire BSS
data. In contrast, OSS data are much less consistent and
much harder to acquire, because telco operators need do-
main knowledge from OSS/hardware vendors’ systems they
have. In OSS, the data quality and format will vary greatly
among telco operators since each has their own software and
hardware vendors. The cost of acquiring OSS data is often
high, because of the large volume of data storage as well as
license fees charged by OSS/hardware vendors. Therefore,
the key challenge of the telco big data platform is the OSS
data cleaning and integration layer as shown in Figure 2.
However, OSS data do have big business value for accurate
location information, mobile search queries and customer-
centric network quality measurements. If OSS data analysis
is done with appropriate technique, it can reward for the
telco operators, some of which have claimed that they have
been generating millions of revenue by selling OSS data anal-
ysis results. In this paper, our results on churn prediction
also confirm that OSS data have cost-cutting and revenue-
increasing benefits when combined with BSS data.
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