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Abstract. Due to the energy security concern, our society
is witnessing a surge of EV fleet applications, e.g., public
EV taxi fleet systems. A major issue impeding an even more
widespread adoption of EVs is range anxiety, which is due
to several factors including limited battery capacity, limited
availability of battery charging stations, and long charging time
compared to traditional gasoline vehicles. By analyzing our ac-
cessible real-world EV taxi system-wide datasets, we observe
that current EV taxi drivers often suffer from unpredictable,
long waiting times at charging stations, due to temporally and
spatially unbalanced utilization among charging stations. This
is mainly because current taxi fleet management system simply
rely on taxi drivers to make charging decisions. In this paper, In
this paper, we develop REC, a Real-time Ev Charging schedul-
ing framework for EV taxi fleets, which informs each EV taxi
driver at runtime when and where to charge the battery. REC is
able to analytically guarantee predictable and tightly bounded
waiting times for all EVs in the fleet and temporally/spatially
balanced utilization among charging stations, if each driver
follows the charging decision made by REC. Moreover, REC
can further efficiently handle real-life issues, e.g., allowing a
taxi driver to charge at its preferred charging station while still
guaranteeing balanced charging station utilization. We have
extensively evaluated REC using our accessible real-world EV
taxi system-wide datasets. Experimental results show that REC
is able to address the unpredictability and unbalancing issues
existing in current EV taxi fleet systems, yielding predictable
and tightly bounded waiting times, and equally important,
temporally/spatially balanced charging station utilization.

1 Introduction

Energy security is one of the biggest issues in the global
political climate. Instability in global oil producing nations
has driven the need for major energy importing nations to be
less reliant on foreign sources of energy. The transportation
sector, which currently accounts for nearly 72 percent of global
oil demand [[17], is one such sector that has seen a major
impetus to transform. Many countries have been promoting the
usage of electric vehicles (EVs). For instance, U.S. is expected
to have one million EVs by 2015 [19]]. More recently, our
society is witnessing a surge of EV fleet applications, where
a fleet of EVs is managed and operated as a single entity. A
particular example is the public EV taxi fleet system (e.g., the
Electric Cab Corporation), where EV taxis are used to replace
traditional gasoline taxis for serving customers.

EVs have the potential to alleviate the energy security
concerns and reduce city pollution by having zero tail pipe
emissions. Most EVs nowadays are equipped with multiple
lithium-ion battery modules as the power source [18]]. Cur-
rently, there exist a major issue impeding the widespread

adoption of EVs, i.e., range anxiety, which is largely due to the
combined impact of the limited battery capacity and the limited
availability of battery charging stations in most cities. Due
to range anxiety, existing EV taxi fleet management systems
simply allow taxi drivers to freely make charging decisions,
i.e., when and where to charge the battery. Unfortunately, such
unpredictable and often greedy charging decisions made by
individual drivers may easily cause certain charging stations
over-utilized, while left some other stations under-utilized.

Key motivation of this work. We are fortunate to have access
to real-world EV taxi system-wide datasets, which include EV
taxi trajectory data, road map data, and charging station data.
These datasets were collected from the same time window
from November 1°¢ - 30*", 2013, in Shenzhen City, China.
The datasets were generated from 550 EV taxis equipped with
GPS sets consisting 23,967,501 GPS records. By thoroughly
analyzing these datasets (data analysis details are given in
Sec. EI), we conclude that current EV taxi drivers often suffer
from unpredictable, often long waiting times at charging
stations, due to the unbalanced charging station utilization
both spatially and temporally. This undesirable consequence
is intuitive because certain charging stations and certain time
periods are always preferred by many taxi drivers due to
common sense principles, e.g., most drivers may have the
same tendency of driving to a large charging station with more
charging poles. This unpredictably long waiting time issue is
significantly exaggerated by the fact that compared to gasoline
vehicles, it takes a much longer time to fully charge an EV
under current charging techniques. For instance, even with the
latest supercharger technology, it still takes 30-75 minutes to
fully charge an EV battery [23].

Making individual charging decisions may not be an issue
for traditional gasoline EV taxis, because there is a sufficient
number of gasoline stations in most cities. For EV taxis,
unfortunately, the limited number of charging stations existing
in most cities make the charging issue rather challenging.
Clearly, simply replying on individual taxi drivers to make
charging decisions will result in bad performance in terms of
unpredictable waiting time at charging stations, and city-wide
unbalanced charging station utilization. This will further cause
both individual taxi drivers and the fleet system lost revenue.
To resolve this challenge, this paper investigates the following
question: how to design an EV charging scheduling protocol
that guarantees predictable and tightly bounded waiting time
for all EV taxis in a taxi fleet system. Using a heuristic-
based scheduler is undesirable because it cannot guarantee
predictable system performance: individual taxi drivers do not
know the waiting time at a charging station scheduled by the
system, thus may refuse to follow the charging scheduling
decisions given to them. Moreover, guaranteeing predictable



waiting times at charging stations may often imply a suffi-
ciently balanced utilization among all available charging sta-
tions, particularly given a limited number of charging stations.
Thus, designing a fleet-wise charging scheduling solution that
guarantees predictable and tightly bounded waiting times for
all EVs in the system is critical in making any such solutions
be practically implementable in real-world scenarios.

In this paper, we develop REC, a Real-time Ev Charging
scheduling framework for an EV taxi fleet system, which
informs each EV taxi driver at runtime when and where to
charge the battery. REC is able to guarantee predictable and
tightly bounded waiting times for all EVs in the fleet if each
driver follows the charging decision made by REC. To reach
this goal, REC employs a fast charging scheduling policy,
fundamentally motivated by the existing real-time schedul-
ing theory on scheduling a set of hard real-time suspend-
ing tasks on multiprocessors, due to the equivalence of our
charging scheduling problem and this classical real-time CPU
scheduling problem. Moreover, REC can further efficiently
handle real-life issues, e.g., what if a taxi driver has a strong
preference on a specific charging location and refuses to
charge at the REC-scheduled location? REC further develops
a novel taxi migration plan that allows drivers to charge
at their preferred charging station, while still guaranteeing
balanced station utilization through migrating a minimum set
of EVs among charging stations. To compensate drivers who
are chosen to migrate to a new charging station, REC identifies
the best migration plan for each such driver in terms of various
compensation objectives, e.g., a minimum migration-induced
detour distance or migrating to a hot-spot charging location
with busy trip demands predicted using historical data.

Our specific contributions are listed as follows:

e  To the best of our knowledge, this is the first solution
studying the charging scheduling problem of a fleet
of EVs, which yields predictable waiting times at
charging stations for all EVs in the system.

e  QOur developed charging scheduling protocol REC is
rather simple, thus being practically implementable
in real-world taxi fleet systems. Despite its simplic-
ity, it analytically guarantees tightly bounded waiting
times at charging stations and is capable of handling
real-life issues including giving the option to certain
taxi drivers to choose their own preferred charging
locations while still guaranteeing predictable waiting
times.

e  We have extensively evaluated REC using our acces-
sible real-world EV taxi system-wide datasets. Exper-
imental results show that REC is able to address the
unpredictability and unbalancing issues found through
analyzing the original datasets, yielding very pre-
dictable and tightly bounded waiting times, and equal-
ly important, both spatially and temporally balanced
charging station utilization.

2 Motivation

Traditional gasoline taxi systems provide a primary trans-
portation service in modern cities. Most street taxis respond to
passengers’ requests on their paths, and take passengers to their
specified destinations. Therefore, traditional taxi systems rely
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Fig. 1: The road map of Shenzhen city.

on drivers to drive around and arbitrarily pick up passengers on
streets. This service model has successfully served up to 25%
public passengers in metropolitan areas, such as San Francisco
and New York [16]. In a traditional taxi system, a couple of
key dynamics affect their service quality: a) dynamic passenger
demand. The spatiotemporal patterns of demand include both
regular factors, such as rush hours and busy areas, and irregular
ones, such as weather, traffic, holiday schedule, etc. b) dynamic
taxi supply. Taxis have different mobility patterns, since drivers
have different working schedules.

Comparing to traditional taxis, the long recharging time of
EV leads to the forming of a gap between EV and its supplying
equipment. Thus, the electric taxi system introduces a third
factor on their service quality: when and where to re-charge the
battery. Intuitively, if drivers follow their individual schedule
and choose the popular charging stations for recharging, they
often end up queueing in the charging stations and suffer
unpredictable and long waiting time. This will further cause
both temporally- and spatially-unbalanced demands among
charging stations.

We now describe our accessible real-world EV taxi system-
wide datasets, and present the potential issues and insights
observed from analyzing the datasets. Then, we formally
formulate the problem and outline our solution framework.

2.1 Data Description

We have three accessible sets of data for the analysis,
including (1) EV taxi trajectory data, (2) road map data, and (3)
existing charging station data. All these datasets were collected
from the same time window, i.e., November 15¢ -30t", 2013.
Below, we describe each of the datasets in detail.

EV taxi trajectory data.The EV taxi trajectory dataset con-
sists of sequential GPS records for electric taxis, which was
collected during November 1st-30th, 2013 in Shenzhen City,
China. The dataset was generated from 550 electric taxis
equipped with GPS sets consisting 23,967,501 GPS records of
EV taxis. For EV, the average GPS recording period is about 40
seconds. Each GPS record contains five useful fields for our
study, including the taxi ID, time stamp, latitude, longitude,
passenger load indicator (PLI), where PLI is a binary variable
indicating whether or not a taxi is taking passenger(s).

Road map data. We obtain a bounding box of Shenzhen city
through Google Geocoding API [1]]. The south-west and north-
east corners of the bounding box are (22.447203, 113.748964)
and (22.83385, 114.601127) in latitude and longitude covering
an area of roughly 1,804 km?. Fig. [I| shows the roads within
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Fig. 2: The average waiting time at different charging stations during different time periods.

the bounding box. With the bounding box, Shenzhen road map
data were obtained from OpenStreetMap [2], which contains
all road segments and their road types.

Charging station data. Within the bounding box, there are 25
charging stations deployed and in use throughout November
2013. The spatial distribution of these charging stations is
presented in Fig. [T] in which the number of deployed charging
points is indicated with different marker size. The large circle
represents the charging stations with more than 50 charging
poles and the small ones indicate the charging stations with
less than 50 charging poles. As we could observe in Fig.
there are three large charging stations and 22 small charging
stations.

2.2 Data Analysis and Observed Issues

For EV taxi drivers, one of the most critical issue they
concern about is the amount of waiting time wasted at charging
stations. Thus, we first analyzed these three datasets to check
whether the waiting time for each EV at charging stations is
reasonable. We them conducted further data analysis to identify
potential issues of the charging decisions made by taxi drivers.

To conduct such analysis, we need to first verify whether
an EV taxi is inside a charging station during each time
slot. This can be simply analyzed by examining whether the
geolocation of a trajectory is inside the range of any charging
station. Secondly, we need to determine whether an EV taxi
is charging or waiting within a charging station. We assume
that for each EV taxi, the last longest idle period within a
charging station area is considered to be the charging period
while other idle periods are considered to be waiting periods.
We are thus able to extract the average waiting time across
different charging stations during different time intervals. The
results are shown in Fig[2] We observe that the average waiting
time varies significantly during different time intervals and
among different charging stations. In many cases, the average
waiting time can be viewed as long. For example, as seen in
Fig. 2a] the average waiting time at station 13 is almost 2
hours, while the waiting time at station 25 is almost 0.

To understand the fundamental reasons behind these obser-
vations, we further summarize the results of Fig. 2] and present
them separately in Fig. [3] and Fig ] which reveal two major
charging scheduling issues for EV taxis, including (i) spatially
unbalanced charging station utilization, (ii) temporally unbal-
anced charging station utilization.
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Fig. 3: Average waiting time when charging at different
charging stations, demonstrating significant spatial imbalance
of EV charging loads.
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Fig. 4: Average waiting time when charging at different time
of the day, demonstrating significant temporal imbalance of
EV charging loads.

Spatially unbalanced charging station utilization. As
shown in Fig. 3| the average waiting time of EV taxis varies
significantly at different charging stations. For instance, the
average waiting times at stations 2, 5, 13, 14 are considerably
longer than many other stations. This implies that more EV
taxis drivers tend to charge batteries at these stations, thus
causing over-utilization. By analyzing the data, the potential
reasons behind are due to 1) the scale of a charging station, 2)
the chance of serving more customers if charging at a certain
charging station, and 3) the distance between taxi location
and a charging station. In many cases, a taxi driver tends to
make greedy charging decisions, e.g., drive to nearest large-
scale charging station. Such greedy choices unfortunately often
cause decreased and unpredictable system-wide performance.

Temporally unbalanced charging station utilization.
Moreover, Fig. ] shows the average waiting time among all
charging stations over six time slots (each covers four hours
of a day). As seen, the average waiting time also varies
significantly over different time intervals within a day. For
example, the average waiting time for EVs charged during
time slots [0 : 00,4 : 00) and [8 : 00,12 : 00) is considerably
longer compared to other time slots. A potential reason for this
observation is because certain charging stations are reserved



for electric bus/shuttle charging during those early morning
time slots.

Insights obtained from the data analysis. The above
two shortcomings observed from analyzing the EV datasets
highlight the importance of developing a smarter EV fleet
charging scheduling system. Balancing spatio-temporal taxi
supply across the entire city is a design requirement. For each
individual driver, unbalanced charging station utilization often
yields unpredictable, long waiting time in charging stations,
which results in a direct cost on the taxis’ service time and thus
revenue. To resolve these issues, we seek to develop a fleet-
wide EV taxi charging scheduling system that recommends
each taxi driver the time and location for recharging its EV
battery. Our goal is to guarantee predictable and bounded
waiting time at the charging station for each taxi in the
system, and balance the charging demand both temporally and
spatially.

2.3 Formal System Model on EV Charging
Scheduling

We now mathematically describe our system model. We
consider an EV taxi fleet with a set S = T1,75,753,...,T,, of
n EV taxis providing public transportation services in a city
24-hours a day. Each taxi has two operation modes: driving in
the city to deliver passengers to their destinations and staying
in the charging station for recharge. If the fleet management
system simply relies on individual drivers to decide when and
where to recharge batteries, the waiting time for EVs vary in a
large range, e.g., from 0.1-hour to 1.95-hour according to our
analyzed data shown in Sec.[2.2] A 1.95-hour waiting time is
clearly unacceptable for any EV taxi driver. The fundamental
reason why such unpredictable waiting time occurs is the
utilization of charging stations suffers from spatial and tem-
poral imbalance as we observed from the data sets. The over-
utilized charging stations will cause increased waiting time
at those stations, while the resources in other under-utilized
charging stations get wasted. We thus propose to develop a
fleet-wise real-time EV charging scheduling framework (REC),
which schedules each EV taxi in the system to one of the m
charging stations spatially distributed in the city. Following the
charging scheduling decisions made by REC, all EVs in the
system will have predictable and tightly bounded waiting time
at charging stations, which will further ensure a spatially and
temporally balanced utilization among all charging stations. To
be practically implementable in real-world, REC is designed
to be capable of handling real-life issues including giving the
option to certain taxi drivers to choose their own preferred
charging locations while still guaranteeing predictable waiting
times.

2.4 Intuitive Ideas behind REC

Before describing our detailed design of REC, we first
explain a key intuition behind REC. The EV charging schedul-
ing problem becomes rather trivial to resolve if we make the
following hypothesis: EVs can be instantly transported to a
charging station with no cost. Then, a simple yet effective
solution would be to instantly transport an EV when its battery
becomes empty to a charging pole with the shortest waiting
time. This will yield the charging demand among charging
stations temporally and spatially balanced, while guaranteeing
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Fig. 5: Taxi working period.

a minimum waiting time for each EV in the system. This hy-
pothesis borrows the concept of “work-conserving” scheduling
from multiprocessor real-time scheduling. A multiprocessor
scheduling algorithm is said to be work-conserving if it does
not idle any processor when one or more jobs are waiting.
Any work-conserving scheduling algorithm is known to be
able to achieve good balanced resource utilization among
processors [8]. Similarly, if REC can instantly transport each
EV to a charging station with the smallest waiting time, then
it is work-conserving and shall achieve the demand balancing
goal. Thus, if this hypothesis were realistic, we can simply
dispatch the EVs under any work-conserving multiprocessor
real-time scheduler and derive a predictable waiting time for
each EV accordingly.

Unfortunately, this hypothesis is clearly unrealistic for the
EV scenario. It takes both time and energy for an EV to
reach a charging station. Nonetheless, this hypothesis reveals a
key challenge of the EV charging scheduling problem and an
interesting idea. The challenge is that how to design a charging
scheduling algorithm that achieves the predictability/balancing
goal while considering the scheduling overhead, i.e., the time
and energy used by an EV to reach its scheduled charging
station. Our high-level idea is to leverage a new set of real-
time scheduling techniques that allow tasks to suspend during
their execution on processors. Thus, we can model each EV as
a suspending task, where a suspension phase is used to model
an EV’s status when it travels to its scheduled charging station
and an execution phase is used to model an EV’s status when
it is charged at the charging station.

Following this idea, we design REC, which is a two-
layer scheduling framework, including a basic design layer
that addresses the fundamental predictability/balancing issue,
and an advanced design layer that considers real-world factors
such as taxi drivers’ preferences.

First layer of REC. The first layer of REC is an EV taxi
charging scheduling algorithm, which informs each EV in the
system its scheduled charging station when the EV’s battery
energy drops below a specific threshold. If all EVs in the
system follow the scheduling decisions made by REC, then
we will show that REC can guarantee predictable and tightly
bounded waiting time for each EV in the system, and thus
balanced charging demand among charging stations.

Second layer of REC. Although the first layer addresses the
predictability/balancing issue, it assumes that taxi drivers will
all obey the scheduling decisions made by REC. However,
in real-world scenarios, drivers may often have their own
preferences about where to charge their EVs. To address this
important practical issue, the second layer of REC devel-
ops a migration technique, which allows any taxi driver of
EV T, to submit a preferred charging station at the time
when the battery energy drops below the threshold. REC will
then re-schedule and migrate EVs among charging stations
accordingly to satisfy 7;’s request while still guaranteeing
predictable waiting times at charging stations for all EVs in
the system. In such scenarios, if REC needs to migrate some



EVs to other charging stations in order to guarantee fleet-
wise predictability, then REC will always find a migration
plan that compensates such migrated EVs. We define a general
compensation function that can be used to describe different
optimization objects. We illustrate how to use this function
to describe two example optimization objectives: 1) minimum
migration overhead, which represents the additional time a
migrated EV needs to reach its newly scheduled charging
station, and 2) maximum short-term profit, which represents
the time taken for a migrated EV to serve a passenger after
charging at its re-scheduled charging station.

3 First Layer of REC

In this section, we present a charging scheduling algorithm
that guarantees predictable waiting times for all EVs in the sys-
tem. Our overall approach is to transform this problem into a
real-time multiprocessor suspending task scheduling problem,
and leverage existing solutions designed for the suspending
task scheduling problem. We first introduce some concepts and
terms that are needed to define this transformation.

3.1 Taxi working period

Before presenting our designed charging scheduling algo-
rithm, we first describe when REC will inform a taxi where to
charge its battery. During a taxi’s working period, the driver
may first serve various passengers. When its EV battery energy
drops to a certain threshold (defined later), REC will advice
the driver to drive to a charging station. The time taken by the
driver to reach the scheduled charging station is defined to be
a scheduling cycle, as illustrated in Fig. 5] After arriving at
the charging station, the taxi may experience certain waiting
time first and then start charging. After being fully charged,
the taxi will begin serving passengers again. Since this pattern
will repeat for each taxi, we define a working period of a taxi
to be composed of a scheduling cycle, following by a waiting
time cycle, then a charging cycle, and finally a serving cycle.
Such a working period will repeat for each taxi. Note that
different working periods may have different lengths. We now
formally define these components.

Definition 1. Let p; denote T;’s working period, which is
composed by a scheduling cycle with length s;, a charging
cycle with length e;, and a serving cycle with length g;. T;
experiences such working cycles in a repeating manner.
Definition 2. Based on the definitions of p; and e; for taxi
T;, the charging station utilization of T; is defined as u; = £
(note that u; < 1). The total charging station utilization of all
taxis in the system is given by U = >, ;— Intuitively, u;
characterizes the amount of charging resource T; needs during
each of its working periods.

We now define the upper bounds of each component of
a working period for later analysis purposes. Note that we
will not upper bound the waiting cycle herein since we will
show how to bound it under our developed charging scheduling
algorithm.

Scheduling cycle s;: In order to achieve balanced utilization
of the charging stations, theoretically, an EV taxi shall be able
to be dispatched to any charging station in the city. Thus, any
scheduling cycle of T; can be safely upper-bounded by the
amount of time needed for 7; to travel between the two farthest
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Fig. 6: Example illustrating the scheduling period.

locations on the city map, as illustrated by the red line shown
in Fig.[6] According to our data sets, an EV can travel over 200
miles after a single charge. Since an EV can reach any charging
station within 30 miles from anywhere in the Shenzhen City,
an EV can start driving to its scheduled charging station when
the battery has around 15% remaining energy (this threshold
can be flexibly set to a larger number for safety purposes).

Charging cycle e;: When a taxi enters into a charging station,
its battery is assumed to be at some low level. Thus, the
charging cycle e; of T; is upper-bounded by the amount of
time 7T; takes to charge its battery from an empty status to a
full status, which takes around 30-75 minutes under the latest
supercharging techniques [3]], [23]].

Serving cycle g;: According to the discussion on the schedul-
ing cycle, EVs may consume around 85% (specific to the
ShenZhen City environment) of the battery energy in during
the serving cycles. The corresponding travel distance is at least
170 miles. Through analyzing our data sets, the serving cycle
can thus be upper bounded by the amount of time used to drive
170 miles. (Note again that parameters including the serving
cycle can be upper bounded under different scenarios following
the same reasoning.)

Working period p;: Given the definitions of the scheduling
cycle s;, charging cycle e;, and serving cycle g;, the working
period p; of a taxi T; can be safely bounded by s; + e; + g;.

3.2 REC’s Charging Scheduling Algorithm

Without a judicious charging scheduling algorithm, multi-
ple EVs may arrive at one charging station roughly at the same
time, which will cause rather long waiting time for later-arrived
EVs. More importantly, such waiting time is completely un-
predictable, which may cause the overall fleet management to
be orderless. Thus, we propose a smart charging scheduling
algorithm to properly prioritize and schedule EV taxis to
charging stations in real time, which guarantees each EV in
the system a predictable and tightly bounded waiting time at
any scheduled charging station. Besides this essential goal, our
charging scheduling algorithm should also be simple enough
to implement in practice. Particularly given a large number
of EV taxis traveling in the city, any complicated charging
scheduling algorithm may cause significant amount of runtime
overheads to make real-time scheduling decisions.

We now present REC’s charging scheduling algorithm,
which is developed through transforming the charging schedul-
ing problem into a real-time multiprocessor suspending task
scheduling problem. We first introduce the real-time multipro-



cessing suspending task scheduling problem and then show the
transformation.

Real-time multiprocessor suspending task scheduling. This
CPU scheduling problem is to schedule a set of real-time
sporadic tasks that may self-suspend (e.g., due to accessing
shared resources) on a multiprocessor platform. Each sporadic
task is released repeatedly, with each such invocation called a
job. Jobs alternate between computation and suspension phases
in any arbitrary manner. Each job of 7; executes for at most e;
time units (across all of its execution phases) and suspends for
at most s; time units (across all of its suspension phases). The
jth job of 7;, denoted 7; ;, is released at time r; ; and has a
deadline at time d; ;. Associated with each task 7; are a period
pi, which specifies the minimum time between two consecutive
job releases of 7;, and a deadline d;, which specifies the relative
deadline of each such job, i.e., d; ; = r; ; +d;. The utilization
of a task 7; is defined as e;/p;, which characterizes the long-
term processor capacity requested by 7; (i.e., a task with a
utilization of 0.5 is expected to utilize half of the processor
capacity over the long term).

Similarity between the two problems. The charging schedul-
ing model can be equivalently viewed as the real-time suspend-
ing task scheduling model. Each charging pole can be viewed
as a CPU core. Each EV can be viewed as a suspending task,
where an EV’s working period is equivalent to a suspending
task’s period. Within each working period of an EV, it incurs a
scheduling cycle, a charging cycle, and a serving cycle, which
correspond to a suspension phase, an execution phase, and
another suspension phase of a suspending task, respectively.
The charging activity can be equivalently viewed as task
execution on a CPU core. Each working period of an EV can
be equivalently viewed as a newly release job of a suspending
task. The start time of each working period (also the start time
of the scheduling cycle) can be viewed as a new job release
of a suspending task.

An EV may experience waiting time after arriving at a
charging station because all charging poles may be in use by
other EVs. This corresponds to the scenario where a real-time
task is interfered and delayed by other tasks that occupy all
available CPU cores. Thus, in order to bound the wait time
under the charging scheduling problem, we can alternatively
seek for a scheduling algorithm that may bound the response
time (thus the interference delay) of any job released by a
suspending task under the real-time task scheduling scenario.

The global-earliest-deadline-first (GEDF) scheduler. GEDF
is designed to schedule real-time suspending tasks on a mul-
tiprocessor [13]. Under NPEDF, a job 7; ; with the smallest
d; ; has the highest priority. Ties are broken by task ID. At
each time instance, GEDF schedules the M jobs with the
highest priorities among all release jobs on M CPU cores for
execution.

Motivated by the above problem transformation, we apply
GEDF in our problem context to prioritize EVs. Since EVs
do not have deadlines, we set a deadline of the jth working
period (or the j** job) of EV Tj to be the time when a working
period ends (i.e., the end of the corresponding serving cycle).
Whenever a new job is released (i.e., a new working period of
an EV starts), REC will schedule it to a charging station with

a charging pole that has the shortest waiting time. Note that

this waiting time accounts for the charging cycle of any other
EV that has already been scheduled to this charging pole, even
if such EVs have not physically arrived at the charging station.

The rest of this section focuses on showing that GEDF is
able to yield a waiting time for each EV tightly bounded by
p; — e; — s;. We recently introduced new scheduling analysis
techniques showing that (Theorem 1 in [4]]), any HRT suspend-
ing job 7; ; can complete by the end of its period scheduled

under GEDF, provided that Uy, + Z]K:1 v <m—(m—1)-

K
maxr,e-(955) and 3K (2 < K < ), 02 B> proga
where Usy,, is the total system utilization, v? is the jth
maximum suspension ratio, where a task’s suspension ratio
is defined to be the ratio of its suspension length divided
by its period, e;, s;, and p; denotes task 7;’s execution time,
suspension length, and period, respectively, p.,q. denotes the
maximum task period in 7, and E* denotes the 7" minimum
(e; + s;) among tasks 7; € 7.

As discussed above, the EV charging scheduling model can
be equivalently viewed as the HRT suspending task model,
each EV is guaranteed to complete both its scheduling phase
and execution phase by the end of its period according to
Theorem 1 in [4]]. Thus, the waiting time for an EV T} can be
tightly upper bounded by p; — e; — s;. In other words, if we
use GEDF to schedule EVs to charging stations as explained
above, then each EV is guaranteed to wait at its scheduled
charging station for at most p; — e; — s; time units (recall that
pi. €; and s; are defined in Sec. [3.1).

Addressing the practical non-preemptive charging issue.
GEDF is a preemptive scheduler, where a higher-priority task
may preempt the execution of a lower priority task. For our EV
charging scheduling problem, the above predictable waiting
time bound can be guaranteed if any EV with higher priority
arrives at its scheduled charging station no later than any other
EV with a lower priority. If not, GEDF will allow the later-
arrived higher priority EV to preempt another EV with a lower
priority that is charging. Clearly, this behavior conflicts with
the practice, where EVs are charged in a first-in-first-out order.
It is not practical to assume that drivers may be willing to wait
while there are charging poles available.

Thus, we further twist the above-mentioned analysis on
bounding the waiting time to accommodate this practical
consideration. Our key observation is the following: any high-
priority EV that has arrived at its scheduled charging station
may be blocking by a low-priority EV for at most once. This is
because any such blocked high-priority EV T; will get charged
whenever a lower-priority EV finishes charging, unless there
are other EVs with higher priorities than 7; arrive at the same
charging station as 7; before 7T is assigned a charging pole.
The later case is not a problem because GEDF intends to let
this higher-priority EV to be charged earlier than 7; anyway.
Due to this observation, we know that when this blocking (due
to non-preemptive charging process) behavior is allowed in
practice, the waiting time of any EV can still be bounded by
Di — €; — Si + €max, Where e, represents the maximum
charging time of any EV in the system. This additional term
emaz 18 €xactly due to the fact that any EV may be blocked
by at most one lower-priority EV.

Despite the above-derived waiting time bounds, we be-



lieve a fundamentally more important goal achieved by this
transformation-based solution is that it allows us to develop an
efficient scheduling policy that has strong analytical properties
in theory, thus having a higher possibility to execute well in
practice compared to other pure heuristic-based approaches
built on a rather weak foundation (as also proved by our
extensive experimental results discussed in Sec. [3).

4 The Second Layer of REC

In Sec. 3] we have developed a transformation-based ap-
proach that can tightly bound the waiting time for any EV
in the system, provided that all EV drivers are willing to
follow the scheduling decision given by our system. However,
in practice, a common observation is that different EV drivers
may have their own preference on the charging location, and
such preferences may be totally unpredictable. For example,
if an EV driver has a very important appointment close to
charging station A, but it is scheduled to be charged at another
station B by REC, then this driver may be willing to suffer
a longer waiting time at A and still choose to charge at A.
The second layer of REC is designed to fully consider such
real-life issues. Note that the requests can only be sent to REC
at the time when an EV’s energy level drops to its charging
threshold.

REC is able to accommodate a EV driver’s specific charg-
ing location request while the utilization of all charging station-
s remains spatially and temporally balanced. REC enables this
capacity through incorporating a novel EV migration scheme,
under which REC will change the charging location for a
minimum set of EVs whenever an EV driver in the system
requests a different charging location which is different from
the scheduling decision made by REC. Since such migrations
may negatively impact some EVs in the system (e.g., they may
be de-toured and need to spend additional time to reach the
newly assigned charging station), we design this migration plan
that can “compensate” such migrated EVs’ drivers. We define
a rather general compensation function that can be customized
in practice, and show how our design works under two example
compensation functions, including (/)minimizing the detour
distance for any migrated EV, and (i) re-scheduling a migrated
EV to a “hotspot” charging location where demanding service
requests often occur in nearby locations according to historical
data (e.g., downtown city area).

REC achieves this goal through two steps. In the first step,
REC identifies all feasible migration plans under which the
resulting modified charging scheduling decisions still guaran-
tee predictable and tightly bounded waiting times for all EVs
in the system. During this step, we will construct an auxiliary
directed graph to transform the EV migration problem into a
classical directed cycle detection problem. We can thus apply
a rich set of existing fast algorithms designed for the directed
cycle detection problem to resolve the original migration
problem [6], [9], [12], [24] (e.g., using the Tarjan’s strongly
connected components algorithm [22], which has been shown
to be very efficient in terms of runtime complexity). Then in
the second step, REC further identifies the best migration plan
among all feasible ones given a user-defined compensation
function.

Step 1: Identify feasible migration plans.

Plan 1 @
/@\@ Pla@/ \@ @
D7 %
C—C) @ B
(@ (®) ©

Fig. 7: An intuitive example illustrating various feasible mi-
gration plans: (a) the constructed auxiliary graph, (b) a feasible
migration plan, (c) a most efficient migration plan.

In order to efficiently identify all feasible migration plans
at runtime, we develop a fast graph-based method. Before
presenting the detailed techniques, we show a simple example
to illustrate the intuitive idea behind this method.

Example 1. Consider an example system where five EVs are
scheduled among three charging stations. When Ty’s energy
drops to its charging threshold, REC schedules it to s1. Assume
that Ty requests to charge at so. If T travels to s directly, it
may either experience a long waiting time or will cause later
arrived taxis scheduled by REC to experience longer waiting
times. Thus, an intuitive idea to resolve this is that, if Ts travels
to So, then one of the EVs assigned to sy shall be rescheduled
to s1. Such a “switching” action may make the utilizations of
charging stations balanced again. If there is an EV originally
scheduled to so has enough energy to travel to si, then the
problem gets easily solved. Now consider the harder case.
Assuming that no EVs originally scheduled to ss have enough
energy to travel to s1; while T1, which is originally scheduled
to so, has enough energy to travel to s3, and Ts, which is
originally scheduled to s3, has enough energy to travel to s.
In this case, a possible migration plan for scheduling Ty to its
preferred charging station at s, is to re-schedule T to charge
at so instead of s1, T1 to charge at ss instead of so, and Ts
to charge at sy instead of s3. After these switch actions, the
number of EVs scheduled to each charging station remains
the same, which implies that the utilization among charging
stations is still balanced.

To find the possible migration plan for an EV in a general
case, we construct an auxiliary directed graph G(V,E) to
transform the EV migration problem into a classical directed
cycle detection problem in this constructed auxiliary graph.
By solving the directed cycle detection problem using exist-
ing algorithms, we can identify all feasible migration plans
that guarantee predictable waiting times. To construct this
graph, for each EV T; € T, there is a corresponding vertex
vi; € V(G) where 1 < i < nand1 < j < m . v,
represents that EV T; is assigned to charging station s;. Let
t; ; denote the time instant when T; will arrive at s; according
to the scheduling decision given by REC. For any two different
vertices v;, 5, , Vi, € V(G), there is a directed edge from
Viy,jy 10 Viy jp (€8, (Viy j1sVig.j,) € E(Q)) if T;, has enough
battery energy to travel to s;, by t;, j,.

Example 2. We now use the same example taxi system given
in Example |l| to illustrate how to construct the auxiliary
graph and how to find feasible migration plans by detecting
directed circles in this graph. Suppose Ty, Ts, Ts, and Ty are
dispatched to ss, s3, so, and sy respectively. When 15 ’s energy
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Fig. 8: Average waiting time when charging at different
charging stations.

drops to its charging threshold, REC schedules it to s;. Since
Ty is scheduled to so, according to the definition of vertex, we
have a vertex v12 in the graph. For the same reason, there
are 5 vertices in the graph, which are v 2, v2 3, V32, V4,1 and
vs,1. Suppose Ty is traveling to si and it has enough energy to
travel to so. According to the definition of links, there are two
links in the graph, i.e., (v41,v32) and (v41,v1,2). Generally
speaking, if there is a link from vy, j, to vs, j,, then T has
enough energy to travel to s;,. All the vertices and links are
shown in Fig. [/{a).

In the following, we illustrate how to use the graph to find
a possible migration plan for Ty if it requests to be charged at
its preferred charging location ss. Assume Ty still has enough
energy to travel to any of the four charging stations in this
example system. This implies that there is a link from Vi1
to any vertex in the graph except Vy 1, since Ty is scheduled
to the the same destination so with Ts. In this graph, REC
can find two directed cycles in the auxiliary graph containing
the links from Ts to sy. They are Vs1 — V3o — Vo3 —
Vsi and Vs1 — Vig — Va3 — V1. These two detected
directed cycles correspond to two feasible migration plans, as
shown in as illustrated in Fig. Erb). Consider Vs 1 — V12 —
Va3 — Vs.1 for example. According to this directed cycle, the
corresponding migration plan will be: Ty will charge at s,
and Ty is re-scheduled to charge at ss instead of so, and Ts
travels to charge at sy instead of ss.

Note that under this graph-based approach, for any iden-
tified feasible migration plan, the number of EVs scheduled
to each charging station remains the same. Thus, if REC
is able to guarantee predictable waiting times and balanced
utilization among charging stations as shown in Sec. |3} then
the utilization of all charging stations remains spatially and
temporally balanced under any feasible migration plan. This
has also been proved by our extensive experimental results as
discussed in Sec.

Step 2: Select the best migration plan among all feasible
ones.

As discussed above, REC finds a migration plan in order
to satisfy certain drivers’ “greedy” requests while trying to
maintaining the balancing status w.r.t. charging station utiliza-
tion, through migrating some other taxis to charging locations
different from the originally scheduled ones. This may have
negative impact on such migrated taxis, e.g., some taxis may be
already on the way to its originally scheduled charging station
and has to be detour and spend additional time in order to
reach the new location. Given practical considerations, REC
is designed to “compensate” such migrated taxis by choosing
the best migration plan that may benefit a migrated taxi the
most. Intuitively, there exist a number of compensation goals
that may be attractive to such migrated taxis. In the following,
we use two intuitive compensation goals to illustrate how REC

Average Waiting Time (Hours)
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Fig. 9: Average waiting time when charging at different
charging stations

would select the best migration plan accordingly.

Minimum detour distance: The most compensation goal that
would attract taxi drivers might be to provide a migration
plan that results in the minimum detour distance, which is
defined to be the distance between the newly assigned charging
location and the location of the taxi when it receives the
migration request. Thus, towards this goal, REC will choose
the migration plan among all feasible ones that result in the
minimum total detour distance considering all migrated EVs.
For instance, consider the two feasible migration plans given in
Example E} If the migration plan V51 — V3o — Vo3 — Vi1
results a shorter total detour distance for 75 and T3, this
migration plan will be selected. Clearly, REC can efficiently
select the best migration plan in linear time complexity.

Maximum short-term revenue: Another intuitive compen-
sation goal that may attract those migrated taxi drivers is
to re-schedule them to ‘“hotspot” charging locations where
demanding service requests often occur in nearby locations
according to historical data (e.g., downtown city area). Towards
this goal, it is clear that REC can also easily pick the best
migration plan that results in the maximum number of migrated
taxis to be re-scheduled to such hotspot charging locations.

There may exist a large number of options defining the
compensation function. We note that the key challenge is
to identify all feasible migration plans. Whenever a specific
compensation function is defined, REC can always find the
best migration plan accordingly in an efficient manner.

5 Experiments

To evaluate the efficacy of REC in practice, we conduct-
ed extensive experiments based on our accessible real-world
datasets as described in Sec. 2.1

5.1 Experiment overview

To show the effectiveness of REC, we compare the per-
formance of REC with “Ground Truth,” which represents the
original GPS traces analyzed from the datasets without any
modifications. We also include an optimal yet impractical
Oracle solution, which performs an offline iterative search
that identifies the best possible charging scheduling plan that
minimizes the total waiting time. Thus, Oracle clearly yields
a performance upper bound, thus being useful to help us
understand the performance gap between REC and an optimal
solution.

These three approaches are evaluated using three practical
real-world metrics that matter to any commercial public taxi
fleet systems, including: (i) average waiting time among EVs
in the fleet, (ii) total number of EVs that have enough energy
to serve trip requests during certain time windows, and (i)
total travel distance of all EVs within time windows of fixed
lengths.
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Fig. 10: Serving capacity.

We have also conducted experiments to validate the second
layer of REC, where minimum detour distance and maximum
short-term revenue are used as the compensation goal to
evaluate whether REC is able to identify good migration plans,
given arbitrary drivers’ requests to charge at their self-selected
charging locations.

5.2 Waiting Time and Utilization Balancing

Fig. [§] shows the average waiting time at each charging
station under REC and Ground Truth. As seen in this figure,
the average waiting time yielded by Ground Truth varies
significantly at different charging stations. For instance, the
average waiting times at stations 2, 13, 14, 20 are considerably
longer than other stations. On the other hand, under REC,
the average waiting time is around 0.2 hours for almost
all charging stations with a almost negligible variance. This
implies that REC is able to provide predictable and tightly
bounded waiting times as well as spatially balanced utilization
among all charging stations.

Fig. [0 shows the average waiting time during six time slots
(each covering four hours of a day) under REC and Ground
Truth. Again, temporally speaking, Ground truth yields an
average waiting time that varies significantly during different
time slots. While under REC, the variation of the average
waiting time is rather small. We can see that during most of the
time slots, the average waiting time is around 0.2 hour except
for the time slot [0 : 00, 4 : 00), in which an around 0.3 hour
average waiting time is observed. This again implies that in
addition to spatially balanced utilization goal, REC can also
achieve temporally balanced utilization among all charging
stations.

5.3 Serving Capacity

Fig. plots the average waiting time during 24 hours of
a day. As seen in the figure, both REC and Oracle outperform
Ground Truth by an average waiting time decrement of 38%
and 43%, respectively, confirming the efficacy of our designed
REC. Also, the performance gap between REC and Oracle
is reasonably small, around 5% on average. Thus, REC may
achieve a near-optimal charging scheduling plan with rather
low runtime complexity.

Fig [T0b] plots the number of EVs that have enough energy
to serve trip requests during 24 hours of a day. As seen in this
figure, REC outperform Ground Truth by 32% on average. This
implies that through carefully scheduling charging requests
among charging stations in a temporally and spatially balanced
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Fig. 11: Efficacy of REC when handling the practical issue us-
ing two compensation functions: (a) minimum detour distance,
(b) maximum short-term revenue.

manner, REC is able to allow more EVs to have enough
energy to serve trip requests, instead of spending a long time
waiting at charging stations. Moreover, compared to Oracle,
REC is only being outperformed by around 5% on average.
An interesting observation is that the number of available EVs
increases during time window [6:00, 20:00] under all three
approaches. This is because all three approaches choose to
schedule more EVs to be charged during non-rush hours, i.e.,
[0:00, 6:00] and [22:00, 24:00].

We have also conducted a set of experiment evaluating the
performance under the three approaches in terms of the total
travel distance of all EVs during 24 hours of a day. This metric
can also be used to reflect the effectiveness of each approach
since a shorter waiting time experienced by a taxi often results
in a longer travel distance on the road within a window of
fixed length. Fig. shows the result using this metric.
As seen, REC outperforms Ground Truth by a considerable
margin, while remaining a rather small performance gap with
the optimal Oracle solution.

5.4 Migration Policy

In this set of experiments, we evaluate the efficacy of REC
when handling the practical issue discussed in Sec. @4 with
those two mentioned compensation functions. Fig. [ITa| shows
the evaluation results. We randomly generate a set of charging
location requests by different taxis, which are different from
the originally scheduled charging locations under REC. We
use the metric “average reduced detour distance” (in miles)
to reflect the compensation function of minimizing total de-
tour distance. Similarly, we use “average reduced distance to
hotspots™ to represent the total reduced distance driven by a
migrated EV to reach a hotspot charging location compared



to the case where the same EV needs to drive from its
originally scheduled charging location to this same hotspot
charging location, to reflect the second compensation function
of maximizing short-term revenue.

Fig. [[Ta(a) shows the results w.r.t. the first compensation
goal. As seen in the figure, with increasing number of migrated
EVs, the percentages of the performed requests increase from
0% to 90%, and the the average reduced detour distance
increases from 0 to 6.75 miles. This implies that the more
EVs involved in the migration plan, the larger chance of
performing the drivers’ charging location requests under REC.
More importantly, REC is able to find such a migration plan
that maximize the compensation function. One interesting
observation is that when the number of migrated EVs exceeds
15, both the percentage of performed requests and the average
reduced detour distance stop increasing. This implies that
the best migration plan w.r.t. this compensation function can
always be found with 15 migrated EVs. Fig. [ITb|shows similar
results under the compensation function of maximizing short-
term revenue. Same observations are obtained in this figure.
Thus, we believe that REC can effectively handle the practical
isse very well, where drivers’ may make runtime requests to
charge at their preferred charging stations.

6 Related work

A recent set of studies have been conducted on developing
smarter EV charging schedulers. They mostly target at saving
charging cost by avoiding charging during the peak hours at
day time but rather charging during night hours when the
power price is cheap [5], [10], [14]]. Smart energy control
strategies are proposed for EV charging [7], [15]], [20], which
are based on quadratic programming aiming at minimizing the
peak load and flatten the overall load profile. Taking smart
grid constraints into account, novel methods of planning EV
charging are given in [11]], [21], which reduce the overloading
in the electricity grid and improve the charging efficiency
of EVs. Different from these works, this paper address a
practical problem motivated by analyzing the real-world EV
taxi datasets, which is to develop a EV taxi charging schedul-
ing framework that yields analytically predictable and tightly
bounded waiting times for EV taxis, and thus temporally and
spatially balanced utilization among charging stations.

7 Conclusion

Motivated by observing the unpredictably long waiting
times and unbalanced charging station utilization through
analyzing real-world EV taxi datasets, this paper develops a
smart EV taxi charging scheduling framework, REC, which
analytically guarantees predictable and tightly bounded waiting
times for EV taxis in a fleet system. REC is also designed to be
capable of addressing practical issues where taxi drivers may
request to charge at their preferred charging stations. Extensive
experiments using the real-world EV taxi datasets prove the
effectiveness of REC under various scenarios.
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