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ABSTRACT
Urban gathering events such as social protests, sport games, and
traffic congestion bring significant challenges to urbanmanagement.
Identifying gathering events timely is thus an important problem
for city administrators and stakeholders. Previous techniques on
gathering event detection are mostly descriptive, i.e., using real-
time on-site observations (e.g., taxi drop-offs, traffic volume) to
detect the gathering events that have already emerged. In this
paper we propose a predictive approach to identify future gathering
events through destination prediction of incomplete trajectories.
Our approach consists of two parts, i.e., destination prediction and
event forecasting. For the destination prediction part, we relax
the Markov property assumed in most of the related work and
address the consequent high-memory-cost challenge by proposing
a novel Via Location Grouping (VIGO) approach for destination
prediction. For the event forecasting part, we design an online
prediction mechanism that learns from both historical and recent
trajectories to address the non-stationarity of urban trip patterns.
Gathering events are predicted based on projected arrivals in each
location and time. A case study on real taxi data in Shenzhen, China
shows that our proposed approach can correctly and timely predict
gathering events. Extensive experiments show that the proposed
VIGO approach achieves higher accuracy than related work for
destination prediction and has orders of magnitude less memory
cost than a baseline approach. The event forecasting based on VIGO
is effective and fast enough for continuous event forecasting.

CCS CONCEPTS
• Information systems→ Geographic information systems;

KEYWORDS
Gathering Events, Destination Prediction, Trajectory Mining
ACM Reference format:
Amin Vahedian, Xun Zhou, Ling Tong, Yanhua Li, and Jun Luo. 2017. Fore-
casting Gathering Events through Continuous Destination Prediction on Big
Trajectory Data. In Proceedings of ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, Redono Beach, California,
USA, November 2017 (SIGSPATIAL’17), 10 pages.
https://doi.org/10.475/123_4

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGSPATIAL’17, November 2017, Redono Beach, California, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

1 INTRODUCTION
Gathering events is the scenario where an unexpectedly-large num-
ber of moving objects (pedestrians, vehicle, etc.) arrive at the same
region during a short period of time. Gathering events in urban
areas pose serious challenges for city management as more-than-
ordinary resources will be required and public safety concerns will
be raised. Example consequences may include traffic jams and high
risk of injury, crimes, and terror-attacks. Shanghai’s 2014 new year’s
eve stampede is a tragic example [20]. If given timely warning of
future gathering events, city officials will have the opportunity to
react to these situations in a timely manner, e.g., re-routing usual
traffic, adopting necessary provisions, etc.

State-of-the-art techniques on urban event detection are mostly
descriptive, i.e., the region and time of events are detected based
on available on-site observations such as taxi drop-offs or traffic
volume around the venue. These methods lack the ability to forecast
future events before the gathering becomes significant.

In this paper we investigate a gathering event forecasting ap-
proach through trajectory destination prediction. The approach
works in two steps. First, a spatio-temporal destination prediction
model is learned from historical trajectories of moving objects (e.g.,
taxis). Second, we use this model to continuously predict the desti-
nation and arrival time distribution of incomplete trajectories, and
identify future spatio-temporal regions with high projected arrivals
as gathering events. To our best knowledge, this is the first work
on gathering event forecasting through trajectory prediction.

Designing the aforementioned approach for event forecasting is
very challenging. First of all, a common way in the literature for
trajectory destination prediction is to assume Markov property for
the trips [12, 22, 23]. This assumption is unrealistic and adversely
affects the prediction accuracy. Relaxing this assumption, however,
result in prohibitive memory cost due to the huge number of source,
via location and destination combinations. Second, urban trips tend
to deviate from historical distribution in case of rare gathering
events. A global destination prediction model generates poor results
in such cases and affect event forecasting effectiveness.

To address these challenges, this paper proposes two novel tech-
niques. First, we relax the Markov assumption and predict the desti-
nation of a trajectory based on the source and the current location.
To address the memory cost challenge, we design a scalable Via
Location Grouping (VIGO) approach to effectively reduce memory
cost. The VIGO approach reduces the memory cost of a baseline
approach by 80%. Second, we propose an online learning mecha-
nism to address the challenge posed by temporal non-stationarity
of the trips. We perform a case study on real taxi trajectory data
to demonstrate the effectiveness of the proposed solutions. We
show through experiments that the events would not have been
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predicted without the proposed online mechanism. Also, the pro-
posed event forecasting algorithm takes less than 0.4 milliseconds
per trip, which makes continuous online event forecasting feasible.

Specifically ourmain contributions in this paper are sum-
marized as follows:

- We design a novel Via Location Grouping (VIGO) algorithm to
learn destination probabilities with efficient memory cost, while
relaxing the Markov property assumption.

- We design an online learning mechanism using VIGO to ad-
dress the temporal non-stationarity of the trips and to do real-time
gathering event forecasting.

-We do a case study using a real taxi trajectory dataset to validate
the effectiveness of the proposed approach for event forecasting.

- Extensive experimental evaluations using real data demonstrate
the time and memory efficiency of the proposed solutions.

The reminder of the paper is organized as follows. In Section 2,
we discuss the related work. In Section 3 the destination prediction
and event forecasting problems are formulated as computational
problems. Sections 4 and 5 discuss the proposed solutions. Section
6 presents our evaluation and section 7 concludes the paper.

2 RELATEDWORK
To the best of our knowledge, destination prediction has not been
used in the context of event forecasting before. The works of Martin
Kulldorff andNeill [8–11] and other recent works on event detection
[5, 13] are based on detecting events using already observed counts
at locations. The works of Zhou et al. and Vahedian et al. [18, 26]
are based on real-time monitoring of significantly high flows in
space and are categorized as early-detection and not forecasting.
In this paper, we use destination prediction of incomplete trips to
predict the number of arrivals at each location ahead of the time,
which enables us to forecast unexpected events at a future time.

The literature of destination prediction problem can be orga-
nized into two broad categories based on the data used: (1) using
context-related and personal trip data and (2) only using anony-
mous trip data (e.g., no traveler information). In the first category,
personalized trip data is one type of context-related data used by
researchers to predict the destinations of incomplete trips of re-
identifiable individuals [3, 4, 6, 17, 23, 25]. Krumm et al. and Yam-
aguchi et al. [7, 24] used spatial region data and personalized trips
to predict the destinations of incomplete trips. Alvarez et al. [2]
use similar information to do the predictions by proposing a novel
method to partition the space. Xue et al. [23] use social network
related data to predict destinations of individuals by developing a
set of learning trajectories for groups of people who share network
or behavioral similarities. However, in this paper, we only use the
anonymous trajectory data to approach this problem.

In the second category, an important challenge is the complex
dependencies among the segments of of an urban trip. To address
this challenge, most researchers have adopted a Markov model-
based approach. In this approach, the trip is decomposed into a
sequence of transitions between locations in space. These transi-
tions are modeled by low-order Markov chains, hence facilitating
the calculation of the probability of an incomplete trip. Xue et al.
[21, 22] use this technique to calculate the destination probabilities
using the Bayes rule. However, using a Markov model results in a

memory-less model, meaning that future movements along a trip
are independent of the past movements. However, this Markov
property assumption is frequently violated in real-world scenarios
and adversely affects the prediction accuracy. Li et al. [12] use a sim-
ilar approach but distinguish between transitions among via points
and transitions from via points to destinations in their calculations
of the transition probabilities. This approach still does not prop-
erly address the independence issue in the Markov model-based
approaches. Wang et al. [19] propose to condition the destination
probability on the start location. They learn three transition proba-
bility matrices: source to destination, via points to destination and
via point to via point. They also define a direction concept called
Mobility Gradient for each sub-trajectory, which is used together
with the three transition matrices to calculate the destination proba-
bilities. However, in each of the transitionmatrices, the probabilities
are calculated based on the assumption that they are independent
of the other locations in the trip, which also imposes limitations on
the accuracy of the predictions.

In this paper, we propose a destination prediction method that
calculates the destination probabilities conditioned on all the three
locations: source, current location and destination by proposing an
efficient learning algorithm that allows real-time predictions with
efficient use of memory.

3 OVERVIEW
The Gathering Event Forecasting through Trajectory Destination
Prediction problem can be solved in two steps: (1) Build a model for
trajectory destination prediction. (2) Use the model to predict the
destination probability distributions of incomplete trajectories and
identify potential events based on the predicted arrivals in every
location and time slot. In this section we define basic concepts and
formulate these two steps as two sub-problems. Then we discuss
the challenges in solving these problems as well as an overview of
our proposed solution.

3.1 Concepts and Definitions
A spatial field S is a two-dimensional geographical region parti-
tioned into a grid. Grid cells l1, l2, ..., ln represent distinct locations
in the field. Given a spatial field, the location of any moving object
at a certain time can be mapped to a grid cell. For example, locations
of a moving taxi in a trip can be represented by a sequence of grid
cells, paired with the corresponding time.

Definition 3.1. A trajectory Y = {(s, ts ), (v1, tv1 ), (v2, tv2 ) , ...,
(vn , tvn ), (d, td )|s,vi ,d ∈ S} represents a trip of a moving object
with a sequence of location and time pairs. s and ts are the source
location and start time of the trip, while d and td are the destination
location and arrival time of the trip. The locations of the rest of the
points vi in the trajectory are called via locations of Y .

Taxi trips are examples of trajectories. The pick-up location is the
source of the trajectory and the drop-off location is the destination.
Based on definition 3.1, we define sub-trajectories to represent the
incomplete trips.

Definition 3.2. A sub-trajectory Yc = {(s, ts ), (v1, t1), ..., (c, tc )}
is the first few elements of trajectory Y , where c ∈ {vi }.
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The first record of a sub-trajectory still represents the source
of the trip but the last element of a sub-trajectory is a via-point
instead of the destination of the trip.

Definition 3.3. A spatio-temporal region R = (SR ,TR ) is a pair
of spatial region SR and a timewindowTR , where SR is a rectangular
sub-region of the spatial field S .

In this paper we follow the definition of events in prior work [26].
For a spatio-temporal region R, we calculate the average number
of trips ending in SR during the same time of day as TR , denoted
as BR or the baseline. The predicted number of trips ending in SR
during time TR is denoted as CR . We employ a Expectation-Based
Poisson Model [14] to calculate the log likelihood ratio between the
hypothesis that there will be an elevation of arrivals in R versus the
hypothesis that the predicted arrival count is normal. Specifically,
the log-likelihood ratio is calculated as follows:

LLR(R) =
{
CR log CR

BR + (BR −CR ) if CR ≥ BR

0 otherwise
(1)

As proved in a prior paper [26], the LLR(R) score is statistically
significant at α level if 1-Pr (X < CR ) ≤ α , where X ∼ Po(BR ).

Definition 3.4. A gathering event is a spatio-temporal region
R such that LLR(R) is statistically significant at α level.

3.2 Problem Statements
We formulate the two steps of our approach into two sub-problems,
namely, the destination prediction problem and the event forecast-
ing problem.
Sub-Problem 1: Destination Prediction. Given: a spatial field S,
a set of historical trajectories X , and a sub-trajectory Yc , Find: the
probability of each location in S to be the destination of Yc as well
as the probability distribution of the arrival time.
Sub-Problem 2: Event Forecasting. Given: a spatial field S , a set
of historical trajectories Xh , a list of sub-trajectory U at current
time, a target time-window t , and statistical significance threshold
α , Find: Top-k gathering events at time t with the highest LLR scores.
The Objectives of both sub-problems are to reduce computation cost
while improving the accuracy of results.

3.3 Challenges and Solution Overview
Two challenges arise when designing the computational solutions
to our proposed problem. We illustrate them with examples to
motivate our solutions.

First, it is challenging to handle the trade-off between destina-
tion prediction accuracy and computational cost. Prior research
have assumed the urban trips have low-order Markov property
[22], i.e. the movement at each stage of the trip is only dependent
on the current location but independent of previous steps. This
assumption, although helpful in reducing computational cost, is
unrealistic and limiting, and might lead to lower accuracy. Figure
1 shows a counterexample of this assumption. A quiet two-way
street (light-shaded, top-down) overpasses a busy one-way express
way (darkly shaded, left to right) at c , where the traffic volume on
the latter is 9 times of that on the former. A moving object started
a trip at location s and currently at location c will be predicted to

Figure 1: Example
of an error caused
by Markov prop-
erty assumption

Figure 2: High-level workflow of the
event forecasting framework.

go right with 90% probability, if assuming first-order Markov prop-
erty. However, considering the source of the trip, the probability
of moving downwards (100%) is much higher than moving to the
right (0%).

In our approach, we relax the Markov assumption to predict
the destination of a moving object based on the current location
and the start location. However, doing so significantly increases the
memory cost required to store all the combinations of source, via lo-
cation, and destination. To address this challenge, we propose a Via
Location Group (VIGO) approach that combines via locations with
the same destination distributions to effectively reduce memory
cost.

Another challenge is the temporal non-stationarity of urban trip
patterns. Popular destinations of trips from the same source might
deviate significantly from the overall historical statistics in case of
rare events. For example, generally taxis taking passengers from
a hotel zone are more likely to end up at the airport. However,
during a big event such as a sports game or a concert, the most
likely destination might be a stadium instead. This phenomenon is
particularly challenging to handle for gathering event forecasting
since a global destination prediction model might not be able to
accurately predict destinations for trips going to these events.

We address this challenge by proposing an online prediction
mechanism for destination prediction. A historical model learned
from all the historical trajectories is combined with an online model
learned from recent trajectories to improve the event forecasting
effectiveness.

Figure 2 demonstrates the high-level overview of the solution
framework proposed in this paper and how the two components,
destination prediction and event forecasting, interact with each
other. A destination predictor is built using complete trajectories,
then the event forecaster takes real-time sub-trajectories as input
and uses the output of the destination predictor to forecast top
gathering events.
4 TRAJECTORY DESTINATION PREDICTION:

COMPUTATIONAL SOLUTIONS
4.1 A Simple Classification Model
The destination prediction problem can be defined as a classification
problem, i.e. every location is treated as a class. To classify each
sub-trajectory, the Bayes classifier is commonly used to compute
the probability of a location as the destination, conditioned on the
observation of a sub-trajectory Yc . Based on the definition of the
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Figure 3: The Nested Quad-Tree Structure. lvi means a via lo-
cation at li and ldj means a destination at lj

conditional probability and Bayes’ Theorem, we have:

p(d |Yc ) =
p(d ∩ Yc )
p(Yc )

=
p(Yc |d) × p(d)

p(Yc )
(2)

In this paper, by probability of a location, we mean the proba-
bility of the moving object being at that location. Therefore, p(d)
in equation 2 means probability of being at d . The approach of
equation 2 involves calculating p(Yc |d). Commonly, related work
(e.g., [22]) solve the problem based on the Markov property assump-
tion. That means, the probability of a sub-trajectory p(Yc ) is the
product of the probabilities of all the pair-wise transitions. As previ-
ously illustrated in Section 3.3, this assumption is not realistic and
may give poor results particularly when predicting destinations of
trajectories along unpopular routes.

To address this limitation, we relax the Markov property assump-
tion by using the combination of source and current location (s, c)
to replace the entire partial trajectoryYc . This suggests that the des-
tination is dependent on the combination of source and the current
location. We argue that this is a realistic yet computation-friendly
simplification of Equation 2, which achieves higher accuracy. We
rewrite Equation 2 in the following way:

p(d |s ∩ c) = p(s ∩ c ∩ d)
p(s ∩ c) =

dest(s, c,d)
via(s, c) (3)

In Equation 3, s is the source of Yc and c is its current location.
via(s, c) is the total number of trajectories with s as the source and c
as a via location. dest(s, c,d) is the total number of such trajectories
that end at d in the data. A naive approach to learn the prediction
model of Equation 3 is to store the counts via(s, c) and dest(s, c,d)
of every combination of s , c andd in S . In such a case, if S is a 128×64
grid, we will need to store (128 × 64)3 ≈ 5.5 × 1011 counts. With a
4-byte data-type, we will need 2 TB of memory to learn and apply
the model of equation 3. Considering the hardware capabilities of
an average machine, this approach is infeasible. To address this
challenge, we propose a simple quad-tree based approach as a
baseline solution.

4.2 Baseline: A Nested Quad-Tree Approach
The 3D array described above to store the destination counts is
very sparse. Many (s, c,d) combinations do not exist in the real data.
Thereby, we could simply use a spatial tree index structure to store
the via and destination locations and the corresponding counts to
save memory cost.

Figure 4: The proposed VIGO index structure.

Here we propose a simple nested quad-tree (NesQ) as a baseline
solution. NesQ consists of three levels, where the top level is a
an index of each source location and the other levels both use a
variation of the quad-tree discussed in [16]. Figure 3 shows an
example of the NesQ data structure, in which four trajectories,
starting from s , have been learned.

The first level is a two dimensional grid indexing all the possible
sources. Each location s points to a via quad-tree at the second level,
which stores the counts of via locations c for source s . Also stored
in each leaf node is a pointer to a quad-tree in level three, which
stores the counts of the destinations of trips that start from s and
pass c . The counts stored in the second and third levels are used
to calculate destination probabilities of sub-trajectories by using
equation 3. These counts can be learned by going through all the
complete trajectories once.

In Figure 3, one can observe that many destination quad-trees are
identical, which could be stored only once. we use this observation
to propose a novel and efficient model in the next section.

4.3 VIGO: A Scalable Via-Location Grouping
Approach for Destination Prediction

The many identical destination quad-trees in Figure 3 suggest that
many via locations of the same source share exactly the same des-
tination distributions. This is particularly true for locations along
major roads with high traffic volume. For instance, imagine a se-
quence of locations on a major expressway between two exits.
These locations will for sure have the same destination probabilty
distributions for a particular s . Based on the above observations,
we propose a scalable Via-Location Grouping (VIGO) approach to
efficiently reduce the memory cost of NesQ.

4.3.1 The VIGO Index Data Structure. First we introduce the
concept of a “via group”, which is a key idea in our proposed VIGO
Index structure.

Definition 4.1. A via group of a source location s , denoted as
VGi (s) is a set of via locations lvj where for every lvj ∈ VGi (s) we
have via(s, lvj ) > 0 and ∀lvj , l

v
k ∈ VGi (s) and d ∈ S , dest(s, lvj ,d) =

dest(s, lvk ,d). Each via location of the same source could belong to
only one via group.

In Figure 3, the destination quad-trees of via nodes lv2 , l
v
5 , and

lv6 are exactly the same. They should form a via group of s . We
only need to store one copy of the destination counts for the two
of them. Our proposed VIGO Index Structure is based on the above
definition. Figure 4 demonstrates the VIGO index for a particular
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source location s . The structure for other sources are similar. The
top two levels are similar to the NesQ structure. It has a source grid
index, where each source location points to a quad-tree to store
the counts of via locations. However, for each via quad-tree leaf
node, we add a pointer to the destination list of a “via group”. Each
destination list has an array storing destinations and counts. Via
locations within the same via group will have pointers to the same
list, because they have the same destination count distribution. In
level 2 of Figure 4 the partitioning of the via tree is shown on the
right. Each shaded area in the partitions represents a unique via
group. There are four via groups in total in this example.

For each destination list, we track the number of via locations
in the group. For instance, . This count is followed by an array of
destinations and their counts. For example,VG4 has 2 via locations
and it has 3 possible destinations: ld9 , l

d
14, and l

d
16, all with count=1.

4.3.2 Learning of the VIGOModel. The above data structure can
save quite much memory by reducing the number of destination
counts stored. However, we also need to design an efficient and
correct learning algorithm to build this model. To learn the VIGO
model, we still read each historical trajectory at a time and scan all
the points from the source to the destination.

Algorithm 1 shows the VIGO-Learner algorithm based on the
proposed VIGO index structure. The input is a set of trajectories
and the output is the updated VIGO Index. The algorithm takes
one trajectory at a time, and updates the underlying VIGO index.
For a trajectory Y with source s and destination d , we fetch the
corresponding via quad-tree Qv (s). Then we scan each via location
v inY sequentially (Line 6) and update the VIGO indexM according
to the following rules.
(1) If a via location lv ∈ Y was not in Qv , we insert it into Qv and

set via(s, lv ) = 1 (line 5-7).
(2) All the “new” via locations lvi along Y that are newly inserted

intoQv should be assigned to the same new group. When scan-
ning the first such via location, we create a new groupVG_new
and add d as the only destination, with count = 1 (Line 8-10).
For all the following new via locations, we assign all of them to
this group (Line 11).

(3) All the “old” via locations lvj along Y that were already in Qv
also need to be moved to new groups, because a new destination
d could potentially change the destination distribution of these
via locations. Thus we create a new group to hold these via
locations. Suppose lvj was in old_дroup before Y was learned
(Line 15-16). If lvj is the first via location in old_дroup to be pro-
cessed, then we create a new via group new_дroup by copying
the destination array of old_дroup. If d is already in the array
then we increment the count. Otherwise we append d at the
end with count = 1. Then lvj ’s via group pointer will change to
new_дroup(Line 17-19). To avoid creating multiple new_дroup
for future via locations in old_дroup, we thereby put a pointer
map in old_дroup to new_дroup to record this group transfer
(Line 20). For future lvk in old_дroup, we use this pointer to
find new_дroup and move lvk over (Line 22-23). Also, when a
new trajectory comes in, all the group mapping information
will be reset. We simply use another variable cur_tr j in each
destination array to make sure that old mappings are not used
when learning the next trajectory (Line 21).

Algorithm 1: The V IGO Learner Procedure

Input: List of all trajectories (X )
Output: A VIGO Index (M)

1 cur_tr j ← 0;M[] ←NULL
2 for each Y ∈ X do
3 Qv ← M[Y .s]
4 for each via location v ∈ Y do
5 if v not in Qv then
6 via_node ← Qv .insert(v)
7 via_node .count = 1
8 if VG_new == NULL then
9 VGnew ← Create new via group

10 VGnew .dst_array[0]←(Y .d , 1)
11 via_node .дroup ← VGnew

12 else
13 via_node ← Qv .get_node(v)
14 via_node .count + +
15 old_дroup ← via_node .дroup
16 new_дroup ← old_дroup.map
17 if new_дroup == NULL | | old_дroup.tr j ! cur_tr j

then
18 new_дroup ← Create a copy of old_дroup
19 new_дroup.increment_count(Y .d)
20 old_дroup.map ← new_дroup
21 old_дroup.tr j ← cur_tr j
22 via_node .дroup ← new_дroup
23 new_дroup.v_count + +
24 old_дroup.v_count − −
25 if (old_дroup.v_count) == 0 then
26 Delete old_дroup

27 VGnew ← NULL; cur_tr j + +
28 returnM

(4) After each via location is moved to a new via group, we check
the number of via locations remaining in the old_дroup and
delete it if it is empty. This avoids unnecessary memory cost
(Line 24-26).

An illustrative example: Figure 5 shows an example of how
the trajectories are learned into the VIGO structure. First, Y1 =
{s, lv2 , lv5 , lv6 , ld1 } is fed to the learner (Figure 5 (a)), via locations
lv2 , l

v
6 and lv5 do not exist in the via tree of s . Therefore, a new via

group is created VG1(s) = {lv2 , lv5 , lv6 }, which has only one destina-
tion ld1 . When Y2 = {s, lv7 , lv11, lv10, ld9 } is fed to the learner (Figure
5 (b)), same scenario happens and group VG2 = {lv7 , lv10, lv11} is
created. When Y3 = {s, lv7 , lv11, lv10, ld14} is fed to the learner (Fig-
ure 5 (c)), it copies VG2 to create VG3 and appends ld14. Then VG2
gets deleted because no via locations point to it anymore. When
Y4 = {s, lv7 , lv11, lv12, ld16} is fed to the learner (Figure 5 (d)), VG3 is
copied to create VG4. Then ld16 is appended to VG4. When Y4 visits
lv12, similar to Y1 and Y2 where the via point was being visited for
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(a) Learning Y1 (b) Learning Y2 (c) Learning Y3 (d) Learning Y4

Figure 5: An example of learning the VIGO structure.

the first time, a new group is created and ld16 is added to it. However,
VG3 does not get deleted this time, because it has one remaining
member lv10 after losing l

v
7 and lv11. Finally the VIGO index has four

destination arrays, one for each via group.
We show, through the following lemma and theorem that the

VIGO Learn algorithm can correctly build the VIGO Index with all
the necessary counts.

Lemma 4.2. Given a set of via locations lv1 , l
v
2 , ...l

v
k that belong to

the same via group VGi (s). If an incoming trajectory Y traverses all
of them, then after Y is learned, these via locations will still belong to
the same via group in VIGO.

Proof. Since lv1 , l
v
2 , ...l

v
k were in the same via group VGi (s),

they share the same destination array Dest(s,VGi (s)). Since each
trajectory only has one unique destination, the new destination
count distributions of vi , i = 1...k after learning Y are identically
Dest(s,VGi (s))

⋃(d, 1). Per the definition of a via group, lv1 , lv2 , ...lvk
still belong to the same via group. !

Theorem 4.3. The VIGO Learner algorithm is correct, i.e., the via
locations assigned in the same via group in a learned VIGO Index
always have the same destination distribution.

Proof. Algorithm 4.2 always moves the via locations that were
in the same old via group and passed by the same trajectory to the
same new via group. According to Lemma 4.2 and Definition 4.1,
the VIGO Learner algorithm is correct. !

4.4 Spatio-Temporal Destination Prediction
To complete the entire trajectory destination prediction component
presented in Figure 2, we need to predict not only the destination lo-
cation, but also the arrival time. However, equation 3 only predicts
the location of the destination. To predict the destination time, we
calculate travel time probability distribution between pairs of via
and destination locations, defined as p(∆t |c,d), where d is destina-
tion and c is a via location ∆t = td − tc . Therefore, we compute the
probability of spatio-temporal destination {d, td } for sub-trajectory
Yc with source s and current location c using the following equation:

p({d,∆t}|s ∩ c) = p(d |s ∩ c) × p(∆t |c,d) (4)
Equation 4 is obtained based on the assumption that the travel time
between two given points c and d is independent of the points the
trajectory visited before c . In other words, the travel time between
two points in space only depends on the two points themselves. We
argue that this assumption is reasonable because unlike destination,

Figure 6: Travel time distributions.

travel time is only determined by the route that will be taken rather
than determined by a travel plan made ahead of time.

To save memory cost, we use a data structure similar to the top
two levels of the VIGO Index to store the travel time distributions.
Figure 6 shows an example of this data structure. The top level is
a two dimensional grid index for the current location c . Each grid
points to a quad-tree of possible destinations from c . Each leaf node
of this quad-tree contains the destination d as well as an array of
possible travel time and the corresponding counts. Through the
analysis of our data we find that more than 93% of all the trips are
shorter than 30 minutes. Therefore we limit the size of the array to
30. The travel time distribution can be learned simultaneously with
the VIGO Index structure. We integrate this process with the VIGO
Learner algorithm and design a V IGO_ST algorithm. The pseudo
code is presented in Algorithm 2. The algorithm takes one trajectory
at a time and scans all the via locations sequentially. A via location
v is used to update the VIGO index first (Line 5), and then the count
for travel time d .t −v .t is incremented (Line 6-9). The output is an
integrated ST destination predictorMST . Compared to the learning
phase, destination prediction using the ST destination predictor
is relatively simple. Given a partial trajectory Yc with source s
and current location c , we first predict the destination location
probability. This can be done by finding via(s, c) at the via node of
c in VIGO index. Then we also find desc(s, c,di ) for all the possible
destinations di by scanning every entry in the destination array of
c’s via group. The destination probability is calculated according to
Equation 3. Then we find all the possible travel time values between
c and di and their probability. Finally we use Equation 4 to calculate
the ST destination probabilities.

5 GATHERING EVENT FORECASTING
This section presents the Event Forecasting component of our pro-
posed solution. First we develop an online model for continuous
prediction of arrival counts in every location. Then based on the
predicted arrivals we identify the spatio-temporal footprint of the
gathering events.
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Algorithm 2: VIGO_ST Learner

Input: List of all trajectories (X )
Output: A Spatio-Temporal Destination PredictorMST

1 cur_tr j ← 0;M ← NULL; L ← NULL
2 for each Y ∈ X do
3 Qv ← M[Y .s]
4 for each via location v ∈ Y do
5 Same as Line 5-26 in VIGO Learner
6 if L[v].get_node()==NULL then
7 node ← L[v].insert(d)
8 node .count[td - tv ]++
9 node .total++

10 Same as Line 27 in VIGO Learner
11 returnMST =(M ,L)

Algorithm 3: VIGO_ST Predictor

Input: A VIGO_ST ModelMST = (M,L), Sub-trajectory Yc
Output: Destination probability D at each location and time

1 D ← 0
2 via_node ← M[Yc .s].get_node(c)
3 via_count ← via_node .count
4 dst_array ← via_node .group->dst_array
5 for each d in dst_array do
6 probd = dst_array[d]/via_count
7 for each ∆t in L[c].get_node(d) do
8 probt = (L[c].get_node(d))[d]
9 D[d][tc + ∆t ] ← probl × probt

10 return D

5.1 Online Arrival Count Prediction
As mentioned in Section 3.3, due to the temporal non-stationarity in
the urban trips, one global prediction model may not make accurate
predictions at all time, especially for trips to rare gathering events.
Instead, recent trajectories may better reflect short-term changes
of trip patterns. Therefore we propose an online destination pre-
diction model, which consists of a historical model learned offline
using long-term historical data, and a recent model dynamically
built only based on recently observed trajectories. The final desti-
nation probability of each location and arrival time is calculated
as a weighted average of the results from these two models. We
update the online model for every time window to continuously
predict the arrival count at each location and time slot.

First we split historical trajectoriesX into two subsets,Xτ which
contains the completed trajectories within the last τ time-steps,
and Xh which contains all the earlier trajectories. Then we train
a historical model Mh using only Xh , and an online model Mo
using Xτ . (Line 1-2). Then we predict the destinations of each sub-
trajectory at time tд . When doing destination prediction, we feed a
sub-trajectory to bothMh andMo . The final destination probability
is calculated as a weighted average as shown in Equation 5. β is a

weight between 0 and 1 to adjust how much we trust theMh versus
Mo . ph ({d,∆}|s, c) and po ({d,∆}|s, c) are the destination probabil-
ities of d , after ∆t time-steps given by Mh and Mo respectively,
while ∆t = td − tc . Note that due to the limited amount of data
used in the online model, it is possible that the (s, c) combination is
not found in the online model. In such cases we use the result of
historical model.

p({d,∆t}|s ∩ c) =(1 − β) × ph ({d,∆t}|s ∩ c)
+ β × po ({d,∆t}|s ∩ c) (5)

The arrival count is predicted as the expectation of trips ending at
each location and time slot, given the list of sub-trajectories at tc .
We calculate the predicted arrival count of each location at target
time tд as follows:

A(d, tc , td ) =
∑

Yc ∈U (tc )
p({d, td − tc }|s ∩ c) (6)

WhereU (tc ) is the list of sub-trajectories at time tc , s is the source
and c is the current location of Yc .

The above procedure is summarized in the line 1 to 5 in Algo-
rithm 4. After the prediction is made, we discard the online model
for time tc and rebuild a new online model in the next time slot
tc + 1. Meanwhile, the all the trajectories completed in time tc are
used to update the historical modelMh (Line 24).

5.2 Event Forecasting
After obtaining the predicted counts at each location at time tд ,
we find the top-k ST regions with statistically significant arrival
counts based on Definition 3.4. Scalable algorithms have been pro-
posed to identify regions of statistically significant hotspots and
events [14, 15]. These algorithms find the most likely event by
searching all the possible spatio-temporal regions with pruning
strategies. However, finding the exact solution is computationally
costly and is inapplicable in the context of online event monitoring.
Thereby we use a heuristic algorithm to identify k events that are
statistically significant.

Given the predicted arrival count for each location at time tд ,
we first find the grid locations with predicted arrival counts sig-
nificantly higher than their respective baselines. We feed them as
seeds to an area expansion algorithm to summarize the footprints
of potential events. Algorithm 4 shows how the online procedure
and the proposed expansion algorithm work. First, each location
is tested using Definition 3.4 to filter those with significantly high
counts, which are added to a seed list Es (lines 7 to 9). Then we sort
Es based on their LLR score and pick each seed location Ei ∈ Es
to expand. For every iteration, we expand Ei by moving its bound-
ary on one of the four directions further by one grid. Whichever
direction results in the highest new LLR score for Ei is chosen.
If expansion from none of the directions results in a significant
count for Ei , the expansion stops (lines 12 to 18). The result is a
rectangularly-shaped area, which is added to the priority queue E as
a predicted event. Any other significant location that are included
in Ei as a result of expansion, are removed from the original seed
list E0. Finally, the top k elements of E are returned. To continue
the real-time prediction,Xτ ,U are updated and the trajectories that
completed at tc are fed toMh to be learned.
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Algorithm 4: The event forecasting procedure

Input: Historical trajectories (Xh ), Recent trajectories (Xτ ),
Sub-trajectories (U ), current time tc , target time tд ,
baseline arrival count at each location at tд (B), k , α

Output: k significant gathering events
1 Mh ← V IGO_ST_Learner (X ); A ← 0
2 while program not terminated do
3 Mo ← V IGO_ST_Learner (Xτ )
4 for each Yc inU do
5 A ← A +V IGO_ST_Predictor (Yc ,Mh ) × (1 − β) +

V IGO_ST_Predictor (Yc ,Mo ) × β

6 E,E0 ← ∅
7 for all locations d do
8 if is_significant(A[d][t],B[d][t], α ) then
9 E0 ← E0

⋃
d

10 Sort E0 on LLR(d) in descending order
11 for each d ∈ E0 do
12 G ← d
13 do
14 for directions dir ∈ {top, riдht ,bottom, le f t} do
15 G_next[dir ] ← expand G along dir
16 score[dir ] ← LLR(G_next[dir ])
17 dir_exp = arдmaxdir {score[dir ]}
18 if is_significant(G_next[dir_exp]) then
19 G ← G_next[dir_exp]
20 while G expanded
21 Add G to E
22 E0 ← E0 − (E0 ∩G)
23 Sort E on LLR(G) in descending order
24 output E.top(k)
25 Update Xτ ,U ,Mh ; t0 = t0 + 1

6 EVALUATIONS
6.1 The Dataset
The dataset we use contains the GPS records taxis operating in
Shenzhen, China. The data is recorded during the month of No-
vember 2014. The location of each taxi is recorded periodically in
short intervals. In addition to location, each record includes a taxi
identifier, a time-stamp and a field that indicates if the taxi has a
passenger or not. We map every record into a 128 × 64 grid with
cells of size 500 × 500 meters. Also, we map the records into one-
minute time intervals. We extract the taxi trips from this dataset
by excluding the records in which the taxi is unoccupied which
results in around 14 million trips. Because the longest distance in
study area in Shenzhen can be traveled in less than two hours, we
exclude all the trajectories that have trip duration longer than 120
minutes as not being purpose-driven trips.

6.2 Case Study
To demonstrate the effectiveness of the event forecasting frame-
work, we apply our proposed method to the real-world dataset de-
scribed above. We use a default setting for the parameters: β = 0.9,
τ = 30. We train the VIGO model for all days in the month, exclud-
ing the day onwhichwe are predicting events. Moreover, we trained
different models for weekdays, Saturdays and Sundays. Thenwe ran
algorithm 4 for every minute of the day. Figure 7 shows a predicted
event on November 21st , 2014. The black dot in figure 7 (a) to (c)
and the black arrow in (d) and (e) are the location of Shenzhen Bay
Sports Center. The red box in figure 7 (a)-(b) is the area reported by
algorithm 4 at α = 0.01%. After we observed this output, we looked
into public records and found that it corresponds to a real event,
i.e. a concert that started at 20:00 with nearly 30,000 attendees [1].
Figure 7 (a) shows the forecast 10 minutes before the event (i.e.
19:50). Figure 7 shows the prediction 5 minutes before the event (i.e.
19:55). Figure 7 (c) shows footprint of the event obtained by apply-
ing the area expansion algorithm to true arrival counts. Figure 7 (d)
shows a heat-map of the predicted arrival counts of the trips that
are going to end at event location using only the historical model.
We can see the drops are predicted to be spread in a wider region
around the stadium rather than the stadium itself. This is caused
by the temporal non-stationarity of the urban trips, i.e. historically,
similar trajectories often end in other locations rather than the
stadium. Figure 7 (e) shows the predictions of the same trajectories
using equation 5, i.e. using both historical and online models. This
time the predicted counts are correctly concentrated at the stadium
because the online model has captured the recent behavior of the
recent urban trips and is able to predict the event.

Figure 8 (a) and (b) show the predicted arrival count error. The
counts are predicted 10 and 5 minutes before the target time. Neg-
ative values mean underestimation and 0 is the time of the event.
It is clear that the historical model consistently underestimates
the arrival counts while incorporating online model reduces the
error effectively. Figure 8 (c) shows the predicted counts as we get
closer to the event time, i.e. target time is fixed to the event time
(20:00). We can see that the counts predicted by the historical model
never reach the significance threshold, thus making it impossible
to forecast the event, while incorporating the online model allows
us to forecast the event 11 minutes in advance.

Figure 9 shows the result of continuous forecasting from one
hour before the event. The x-axis is the target time of forecast,
while the y-axis is the earliest time when a significant event at
each target time is forecast. The dashed line along the diagonal
represents real-time detection, i.e. no forecasting. The curve being
located well below the dashed line indicates that our proposed
approach consistently forecast the event ahead of the time. The
average forecast time is 10 minutes before the target time.

6.3 Experiments
In this section we conduct experiments to evaluate the accuracy
and scalability of the proposed solutions.

Destination PredictionAccuracy. In this experiment, wemea-
sure the prediction error of the VIGO approach and compare it with
related work, to show how relaxing the Markov property assump-
tion impacts prediction accuracy. To do this, we implemented the
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(a) 10 minutes ahead of the time. (b) 5 minutes ahead of the time. (c) Footprint based on true ar-
rivals.

(d) Historical model. (e) Historical and online model.

Figure 7: Event predicted on day 21 (best viewed in color).

(a) 10 minutes before. (b) 5 minutes before. (c) Predicted counts with τ = 30.

Figure 8: Effect of incorporating the online model in arrival count prediction
Figure 9: Earliest time of
event forecast.

Table 1: Destination location prediction error for VIGO algo-
rithm vs. Sub-Syn[22] measured in Manhattan Distance.

Completion k VIGO Sub-Syn
30% 1 10.55 (grid cells) 12.78 (grid cells)
70% 1 6.06 (grid cells) 8.01 (grid cells)
30% 5 7.91 (grid cells) 8.24 (grid cells)
70% 5 3.76 (grid cells) 4.75 (grid cells)

Prediction Rate - 99.76% 96.69%

method proposed by Xue et al. [22] and ran it on our dataset with
one day’s data held out of training for testing. We used the default
settings presented in section 6.2. We use sub-trajectories that are
30% and 70% completed, and measure the Manhattan Distance be-
tween the true and the predicted destinations. We use the closest
predicted destination among the top-k given by each method as
the predicted destination, with k = 1 and k = 5. The results in table
1 show that the VIGO approach performs consistently better than
the competitor. Also we are able to give predictions on more test
sub-trajectories (99.76% vs. 96.69%).

Memory Cost Evaluation. In this experiment, we examine
the memory cost of the VIGO Index and the NesQ approach by
varying number of trajectories learned and varying grid size. For
this experiment, we run the algorithm for the entire dataset with
default settings, i.e. we train the model of Equation 3 using all the
14 million trajectories in the dataset. We measure the size of the
model in memory as we train every 2 million trajectories. Figure
10 (a) shows that the growth of VIGO’s size in memory is orders of
magnitude slower than NesQ. The final size of the model learned
by VIGO is 412 MB vs. 2.27 GB of NesQ, yielding a memory cost
saving as high as 82%.

(a) By increasing number of trajecto-
ries learned.

(b) Varying grid size.

Figure 10: Model size in memory.

Then, we measure the size of the model when using VIGO and
NesQ structures by varying the grid size. Figure 10 (b) shows that
size of the model in memory increases by increasing the number of
grid cells in both structures. However, the growth is much faster
when using NesQ.

Running Time Evaluation. In this experiment, we evaluate
the running time of the proposed solutions. First, we evaluate the
training time.We train both NesQ and VIGO using the entire dataset
and measure the total training time by increasing number of trajec-
tories learned and the time spent to learn every 2 million trajectory
as the model gets larger. Figure 11 (a) shows the training time as
the model learns more trajectories. This figure shows that both
structures can be learned efficiently with almost the same training
time. Figure 11 (b) shows the time spent to learn every 2 million
trajectories by increasing number of trajectories learned. Although
VIGO shows minimal increase in training time as the model gets
larger, both NesQ and VIGO have stable learning times at any stage
of training. Finally, we evaluate the event forecasting processing
time. Fast processing is important for continuous event forecast-
ing. Event forecasting include online model training, calculating
destination probabilities for all destinations and running the area
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(a) Total learning time with growing
number of trajectories.

(b) Learning time of 0.2 million trajectories
by increasing number of trajectories learned.

Figure 11: Training time evaluation.

(a) Varying grid size. (b) Varying τ

Figure 12: Event Forecasting time.

expansion algorithm. In this experiment we use one-minute time
slots. Figure 12 shows the time cost of doing forecasting for one tar-
get time by varying grid size and τ . Event forecasting time increases
by increasing both parameters. In Figure 12 (b) the event prediction
time increases since more trajectories are used to train the online
model. The results show that even with finest grid resolution and
largest τ the forecasting time cost is less than 1.5 seconds. This
level of performance makes it possible for real-time forecasting of
gathering events at 1-minute level.

7 CONCLUSIONS
In this paper, we addressed the gathering event forecasting problem
through destination prediction of incomplete trips. Event forecast-
ing in urban setting is important to traffic management and public
safety. Prior event detection techniques are mostly descriptive,
which only reply on on-site observations such as taxi drop-offs
therefore lacking the ability to make forecasts ahead of the time.
Our work, for the first time, solved the gathering event forecast-
ing problem through trajectory destination prediction. We relaxed
the Markov property commonly assumed by related work, and ad-
dressed the consequent memory cost challenge through a novel Via
Location Group (VIGO) approach. We also addressed the temporal
non-stationarity of urban trip patterns through an online predic-
tion mechanism. A case study and experiments showed that our
proposed approach could effectively and timely predict gathering
events ahead of time with orders of magnitude less memory cost
than baseline solutions.
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