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ABSTRACT
Renewable energy becomes increasingly popular due to its
zero carbon dioxide emissions and increasing energy demand.
To better utilize renewable energy, hybrid Alternative Cur-
rent (AC)-Direct Current (DC) microgrids have been pro-
posed because the most common renewable energy that can
be harvested in residential homes is solar energy, which pro-
vides DC power. However, a major issue in a hybrid AC-DC
microgrid is privacy leakage because power consumption in-
formation of each home can be exposed through the power
lines or compromised neighbors in the microgrid. Power con-
sumption data then can be used to reveal precise information
about appliances’ activities with non-intrusive load monitor-
ing algorithms. To mitigate leakage of human behaviors in
homes, battery-based load hiding (BLH) is widely studied.
In this approach, a battery is used to store and supply en-
ergy to appliances to hide the actual power consumption.
However, BLH requires to deploy large and expensive bat-
teries at each home. In this paper, instead of using batteries,
we propose to leverage the unique features of hybrid AC-DC
microgrids to hide power consumption information. Specif-
ically, we design Shepherd, a privacy protection framework
to hide power consumption information from different types
of power consumption detection techniques. To minimize
energy transmission among neighboring homes, we provide
an optimal offline solution and an efficient heuristic online
solution. We conducted extensive system evaluations with
40 homes. Results indicate that our proposed approach can
i) significantly reduce the detection ratio from 33% to 13%
compared to BLH, and ii) effectively hide consumption in-
formation even with 25% compromised neighbors.

1. INTRODUCTION
With the increasing demand of energy consumption and

the desire to reduce carbon dioxide emissions, renewable en-
ergy has become an important alternative choice. The gov-
ernment is encouraging the utilization of renewable energy
and expects the renewable energy can reach up to 33% of
total energy supply by 2020 [1] [2]. However, renewable en-
ergy that can be harvested in residential homes is typically
DC power (e.g., solar energy), while the power grid nowa-
days is only providing AC power. In fact, many appliances
in residential homes are operated using DC power, such as
TVs, computers, DC water heaters and lighting. Accord-
ing to the government survey, these DC appliances consume
around 20% to 30% energy in residential homes [3]. Fur-
thermore, with the popularity of the electrical vehicles, the
DC appliances will consume much more energy in residential

homes. To utilize the renewable energy in existing AC power
grid, DC power from renewable energy must be converted to
AC and then converted back to DC again to power DC ap-
pliances. The conversion loss of DC-AC-DC can be as high
as 50% [8]. Therefore, instead of using the existing AC grid,
researchers are studying the possibility of the hybrid AC-DC
microgrids, in which homes obtain AC power from existing
AC power grid to power AC appliances (e.g., air condition-
ers, compressors, etc.) and utilize DC power from renewable
energy (e.g., solar energy) and batteries to power DC appli-
ances (e.g., TVs, computers, DC water heaters, etc.). The
advantages of the hybrid AC-DC microgrids are: i) higher
energy efficiency for DC appliances because DC appliances
can directly use DC power, which reduces energy conversion
from renewable energy of DC power to AC and conversion
from AC power to DC to power DC appliances; ii) lower
conversion loss for batteries because they can be charged
and discharged in DC power; and iii) lower cost of utilizing
renewable energy because with higher energy efficiency for
DC appliances and lower conversion loss for batteries, the
amount of renewable energy needed is smaller and the in-
vestment cost of renewable energy (e.g., solar panels) can be
lower. Recently, system architecture of co-existence of AC
and DC power lines has been proposed [20] and the homes
in a microgrid can utilize DC power line to share renewable
energy to minimize the energy cost [10]. It is highly possi-
ble that in the near future we will witness a paradigm shift
from a centralized AC power grid to a hybrid AC-DC micro-
grids in residential communities. Therefore, it is essential to
explore this frontier in advance.

Although hybrid AC-DC microgrids have many advan-
tages, they impose a major challenge on privacy leakage.
This is because homes are connected to both AC and DC
power lines, which provides vulnerability for malicious users
to reveal power consumption information of neighboring homes
in power lines. For example, illegal eavesdropping on the
wireless communication of smart meters is investigated in
[12]. In this paper, the authors discover two novel possi-
ble vulnerabilities for malicious users to obtain the accurate
power consumption of individual homes under the infras-
tructures of the hybrid AC-DC microgrids: i) high accuracy
power consumption leakage via voltage based on the power-
voltage relationship; and ii) monitoring energy sharing from
compromised homes in DC power line to obtain power con-
sumption information of neighbors. Therefore, malicious
users or third-parties can easily utilize these vulnerabilities
to obtain the high granularity power consumption data of
homes in the hybrid microgrids.



With the high granularity power consumption data, Non-
Intrusive Load Monitoring (NILM) can be applied to analyze
the data for revealing appliances’ activities [9]. The widely
used technique is the edge detection [11], which looks for
the sharp edges that reveal the significant changes in the
steady power consumed by the household. More seriously,
we demonstrated a new signature detection technique which
can reveal appliances’ usage more accurately than existing
approaches. Appliances usage information can then be used
to reveal private information of occupants. For example,
usage time of certain appliances (e.g., water heater) can re-
veal the number of people living in the home. Furthermore,
changes of appliances usage patterns can also reveal private
information (e.g., health conditions). For example, if a per-
son usually turns off all the lights when he/she sleeps, and
suddenly he/she turns on and off the lights frequently in
the night while other appliances’ usage patterns stay the
same; this indicates that he/she may be sick or has a sleep-
ing problem. Thus, it is critical to protect power consump-
tion information and prevent privacy leakage for occupants
in individual homes.

To achieve this, researchers proposed battery-based load
hiding (BLH) algorithms in [13] [19], which utilize batter-
ies to partially supply the net demand load from the home
to alter the external load as seen by the smart meter. The
battery is charged and discharged at a specific time to hide
the power consumption. However, battery-based algorithms
have three limitations: i) they have to cope with limited
battery capacity and discharge rates or need batteries with
large capacities; ii) they need to charge and discharge bat-
teries frequently, which will significantly decrease the bat-
tery’s lifetime; and iii) they lack a generic model for privacy
preserving under different types of attacks. To overcome
these limitations of BLH, we leverage the unique features of
hybrid AC-DC microgrids and propose Shepherd, a privacy
protection framework to effectively protect occupants’ pri-
vacy. In Shepherd, we provide a generic model for energy
consumption hiding from different types of detection tech-
niques. We also propose a novel approach of coordinating
AC and DC power lines to hide energy consumption in indi-
vidual homes. Specifically, each home obtains partial energy
from neighboring homes to power its DC appliances and hide
its own power consumption information while protecting the
actual power consumption information from its neighbors.
Because power consumption collected by the smart meter
of each home is different from the actual amount of energy
consumed by its own appliances, the power consumption in-
formation of each home can be protected. To ensure that
every home is correctly billed based on the amount of en-
ergy consumed by its own appliances instead of shared or
obtained energy, we propose the energy sharing control pro-
tocol for control and billing. The main contributions of the
paper are as follows:
• We study the privacy leakage problem in hybrid AC-DC
microgrids and discover two novel vulnerabilities for mali-
cious users to obtain power consumption information of in-
dividual homes without occupants’ authentication.
• We leverage the unique features of hybrid AC-DC mi-
crogrids and propose Shepherd, a privacy protection frame-
work to allow homes in a microgrid to coordinate with each
other to hide power consumption information. Because dif-
ferent homes need to coordinate with each other, we also
analyze how compromised neighbors in a microgrid can be
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Figure 1: Overview of Shepherd

used to provide energy consumption information to mali-
cious third-parties. The corresponding defense models are
proposed and we present an optimal offline solution and an
efficient heuristic online algorithm so that the transmission
loss is minimized.
• We conduct real-world experiments by deploying energy
meters in multiple homes to collect the consumption signa-
tures of individual appliances. We also run large-scale sim-
ulation with the empirical power consumption traces from
40 homes. Results show that Shepherd can i) significantly
reduce the detection ratio from 33% to 13% compared to
BLH, and ii) effectively hide consumption information even
with 25% compromised neighbors.

The rest of the paper is organized as follows: the overview
of Shepherd is introduced in §2; generic security models for
energy consumption information hiding in a single home and
with compromised neighbors are presented in §3 and §4; im-
plementation and simulations are provided in §5; related
work is discussed in §6; finally, we conclude the paper in §7.

2. OVERVIEW OF SHEPHERD
In this paper, we leverage the unique feature of hybrid

AC-DC microgrids to enable homes to help their neighbors
hide the power consumption information from the malicious
third parties on the traditional power grid. To hide power
consumption information for homes in a microgrid, we pro-
pose Shepherd, a privacy protection framework in hybrid
AC-DC microgrids. The overview of our design is shown in
Figure 1(a), which contains two components: a home con-
troller at each home and a central controller.

The detailed design of the home controller is shown in
Figure 1(b). It collects real-time power demand from smart
meter measurements. Then we analyze the single home ad-
versarial model based on different detection techniques of
power consumption (§ 3.1). To defend from the adversarial
model, we propose a generic single home defense model to
calculate the amount of power required to defend from the
single home adversarial model (detailed discussion in § 3.2).
The defense requirements would be sent to central controller.

The central controller collects defense requirement from
homes in the community in order to generate energy shar-
ing solution for homes to defend from single home adver-
sarial model. We also analyze the adversarial model with
compromised neighbors in hybrid AC-DC microgrids (de-
tailed discussion in § 4.1) and propose corresponding defense
model to protect privacy of occupants (detailed discussion
in § 4.2). The defense model is then illustrated as a convex
optimization problem. To solve the optimization problem,
we propose an optimal solution for energy sharing so that



Notations Definitions

di(t) Power demand of home i at t

ei(t) Real power consumption home i at t

ci Power capacity of home i

ζi(t) Min power increase to avoid both detections

δi(t) Min power decrease to avoid both detections

pi(t) Power difference between di(t) and ei(t)

ηi(t) Energy transmission efficiency of home i at t

mj(t) Modelled power of appliance j at t

gij Power of appliance j for edge detection at home i

ρij(t) Similarity between appliance signature j and ei(t)

Table 1: Definitions of notations

the transmission loss can be minimized (detailed discussion
in § 4.4). To further reduce the computation complexity,
we also propose an efficient heuristic online algorithm (de-
tailed discussion in § 4.5). The generated energy sharing
solution will return to each home controller through trans-
mission protocol (detailed discussion in § 4.6).

3. SECURITY MODEL IN A SINGLE HOME
In this section, we analyze the generic security models for

power consumption information hiding in residential homes.
We provide the adversarial model in a single residential home
and propose the corresponding defense model. All the nota-
tions used in this paper are summarized in Table 1.

3.1 Single Home Adversarial Model
The single home adversarial model is to detect appliances’

activities based on the real-time power consumption of a sin-
gle home. The detection techniques are widely studied [14]
and the key idea is to match detected power consumption
with labelled power consumption of appliances. We present
case studies for two representative detection techniques.

3.1.1 Edge Detection
Edge detection technique looks for significant changes in

the energy being consumed by the household [19]. Such
changes are characterized by sharp edges in the energy con-
sumed by the appliances. These edges are then clustered
and matched against known appliance profiles. Let power
consumption of appliance k at home i for edge detection be
gik, We define the appliance j detected by edge detection
with power consumption ei(t) at home i as follows:

|gij − ei(t)| = min
k
|gik − ei(t)| (1)

For instance, if someone turns on/off a 20W lamp, then the
net power consumption increases/decreases by 20W . The
algorithm detects the pair of edges with equal magnitude
and opposite direction, and matches them against the elec-
tric profile for a 20W lamp.

3.1.2 Signature Detection
While edge detection methods are simple, they are often

inaccurate, because they fail to capture the complex power
usage patterns of different loads. Recently, researchers re-
vealed the empirical power consumption signature of dif-
ferent electrical loads [5]. Electrical loads are categorized
into five consumption signature models. With the energy
consumption signatures of different appliances, we design
a more efficient method than edge detection to reveal ap-
pliances’ usage patterns with a home’s energy consumption
data. The key idea is to detect appliances’ usage by the
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Figure 2: An example of detection results

similarity between real power consumption and appliances’
consumption models. If consumption model of an appli-
ance ai is most similar to real power consumption, then it
is highly possible that appliance ai is working but not other
appliances. In this paper, we propose a Euclidean distance-
based function to quantify the similarity between two vec-
tors. Let e(t) be the real energy consumption and mi(t)
be energy consumption data generated by models at time
t, where length(ai) is the signature length of appliance ai.
The similarity between two vectors can be calculated as:

ρi =
1

1 + l(e,mi)

(2)

where

l(e,mi) =
1

length(ai)

length(ai)∑
t=1

(e(t)−mi(t))
2 (3)

Equation (3) is used to calculate the distance between two
vectors. Because different appliances’ models have differ-
ent lengths of signature sequences, we use 1/T to normalize
the distance of two vectors. For example, the signature se-
quences of a lamp are short due to the on-off model; while
the signature sequences of TV is long due to dynamic power
consumption during usage. Equation (2) is used to transfer
distance to similarity within range of [0, 1].

Based on the similarity between consumption models of
different appliances and real consumption data, we detect
the appliances’ usage patterns. Suppose that appliance i
has the highest similarity with real power consumption from
time t, we then consider that appliance i is working. Because
several appliances can be working at the same time, we can
remove the detected appliance’s model from real data and
then repeat the detection process again. When the similar-
ity between rest of appliances and real consumption is low,
we end the detection process for time t and continue the de-
tection process from the time when detected appliances stop
working. An example of detection results are shown in Fig-
ure 2. In our experiment results, our proposed consumption
signature detection method can detect appliances’ activities
30% more accurate than edge detection method and can still
detect 70% appliances’ activities when the power consump-
tion is processed with BLH.

Note that there are many other detection techniques too
[4]. However, the detection techniques are mostly based on
matching between detected power consumption and labelled
power consumption, which provides us opportunities to alter
power consumption to hide from these detection techniques.

3.2 Single Home Defense Model
To defend from the single home adversarial model, each



home can increase or decrease its power consumption by
sharing energy with neighbors in a microgrid. We define
the minimum change of power consumption ζ (increase) or
δ (decrease) as follows:

ζi(t) = min{p ∈ R>0|Ai(ei(t)) 6= Ai(ei(t) + p)} (4)

δi(t) = min{p ∈ R>0|Ai(ei(t)) 6= Ai(ei(t)− p)} (5)

Ai(ei(t)) is the detected appliance based on power consump-
tion ei(t) at home i with a given adversarial model. Equa-
tions (4-5) show that ζ and δ are the minimum change of
power consumption to avoid detection from a given adver-
sarial model. Here we present two case studies for the calcu-
lation of the minimum change of power consumption. Note
that our defense model is generic. The minimum changes
of power consumption for specific detection methods can be
calculated based on Equations (4-5).
• For edge detection, we assume the appliance’s modeled
data mi(j−1)(t) ((mi(j−1)(t) < di(t)) with minimum di(t)−
mi(j−1)(t) and appliance’s modeled datami(j+1)(t) (mi(j+1)(t) >
di(t)) with minimum mi(j+1)(t)−di(t). Based on Definition
(1), we have the minimum change of power consumption
ζi(t) = [mi(j+1)(t)−di(t)]/2 and δi(t) = [di(t)−mi(j−1)(t)]/2.
• For signature detection, we not only need to change power
consumption based on current power consumption, but also
power consumption in history because signature detection
can detect appliances usage by their unique consumption
patterns. The consumption signature is based on similarity
of real consumption and model, thus we can hide power con-
sumption based on minimizing the probability of detection.
The key idea is to let the probability of detection decrease
with new power consumption. Let ei(t) be the real power
consumption, di(t) be the power demand of the appliance,
and ρi(t) be the similarity of consumption and demand data,
where t = 1, 2, ..., T . Then at time T , we need to make sure
with ei(T ) that ρi(T ) ≤ ρi(T −1). To find minimum change
of power change ζsi (T ) or δsi (T ), we first solve the equation
ρi(T ) = ρi(T − 1). With definition of similarity in Equation
(2) and (3), we can rewrite the equation as:

1

T

T∑
t=1

[ei(t)− di(t)]2 =
1

T − 1

T−1∑
t=1

[ei(t)− di(t)]2 (6)

Theorem 1. There exist two solutions e1i (T ) and e2i (T )
of Equation (6), and e1i (T ) < di(T ) < e2i (T ).

The detailed proof is in the Appendix. After solving
Equation (6), we can calculate minimum power change. Let
ei(T ) < e1i (T ), because e1i (T ) < di(t), with Equation (2) and
(3), we have ρi(T ) ≤ ρi(T−1). Thus ζsi (T ) =

√
l(ei,di)(T − 1).

Similarly, we can also have δsi (T ) =
√
l(ei,di)(T − 1).

For the homes that need to defend against different de-
tection techniques, we select the minimum change of power
consumption as the maximum of minimum change of power
consumption for all detection techniques. Note that our de-
fense model is generic to any detection techniques. To de-
fense a new detection technique, we only need to analyze the
technique to obtain ζi(t) and δi(t), then our defense model
can be applied to defend from the detection technique.

4. SECURITY MODEL WITH COMPROMISED
NEIGHBORS

With the minimum power change calculated, we can en-
sure that the power consumption pattern cannot be detected

by power consumption data collected by smart meter in a
single home. However, in a hybrid AC-DC microgrid, homes
can share extra energy from renewable energy through DC
line. Thus, it is possible that some compromised homes can
use their power consumption change to detect their neigh-
bors’ power consumption. In this section, we analyze the
adversarial model with compromised neighbors and propose
the defense model. Then we illustrate the defense model
as a convex optimization problem and provide optimal and
heuristic solutions.

4.1 Adversarial Model with Compromised Neigh-
bors

With the compromised neighbors in hybrid AC-DC mi-
crogrids, it is possible that some homes can use their power
consumption change to detect their neighbors’ power con-
sumption. For example, home i turns on the lamp for 20W .
To hide from edge detection, it finds the appliance with clos-
est power consumption is laptop with 100W . Then based on
single home defense model, we have ζi = 40W . In a micro-
grid, home i can share energy to home j and k for 20W to
defense single home adversarial model. However, if home j
is compromised by third-parties and provides them the in-
formation that home i shares 20W energy to home j. Then
based on single home adversarial model, malicious third-
parties can know the power consumption increase of home i
is 40W instead of 60W . Although it is not totally accurate
as 20W , malicious third-parties can detect lamp is turned
on at home i but not laptop based on edge detection. We
define the condition that compromised homes can reveal real
appliances’ activities of other homes.

Definition 1. Let home set that home i shares energy
to be Di and compromised home set be Ci , the condition
for adversarial model with compromised neighbors to work
at time t is ∑

j∈Di&j /∈Ci

pj(t) ≥ ζi(t) (7)

Clearly, if enough homes are compromised by malicious
third-parties, the third-parties can get enough information
of energy sharing among homes. Then with the energy shar-
ing information, the appliances’ activities can be with the
power consumption of home i.

4.2 Defense Model with Compromised Neigh-
bors

To defend from adversarial model with compromised neigh-
bors, we propose that each home’s power change should not
be balanced by only one home, but several homes to hide
power consumption from neighbors. Because homes do not
know that which homes are compromised, we propose the
defense model to avoid detection from given number of com-
promised neighbors. For practical solutions, we also propose
an online solution in §4.5 to work under the scenario that the
number of compromised neighbors is unknown. To avoid de-
tection from k compromised neighbors for home i, we need
to ensure that any k neighbors are compromised, the ap-
pliances’ activities are still protected. We propose two ap-
proaches for defense model with compromised neighbors: i)
sharing energy with more homes to reduce detection prob-
ability. Because it reduces the amount of energy shared to
one single home, it also reduces the probability of detection



from multiple homes adversarial model. ii) sharing the same
amount of energy to other homes. If homes i shares more
energy to home j and less energy to home k, when home j
is compromised, home i may not be protected. If home i
shares same energy to home j and k, any single home of j
or k would not affect the protection of home i.

4.3 Problem Formulation of Defense Models
Because we need to hide power consumption from detec-

tion techniques, the amount of power consumption to be
hidden is determined by detection techniques. We already
gave the formulation to calculate the minimum power change
to avoid those detection techniques. A simple approach is to
generate random power consumption for each home to avoid
those detection techniques. Then the power consumption to
be hidden can be calculated by real power consumption and
generated random power consumption. The problem is to
generate random power consumption for each home, which
would require homes to either i) use large batteries to ran-
domize power consumption; or ii) exchange a lot of energy
among homes. Solution i) is limited because large batter-
ies cost lots of money and the capacity of batteries decreases
with frequent charging and discharging operations. Solution
ii) may be limited because each home has its own maximum
power consumption from the power grid and energy trans-
mission introduces some transmission loss. Thus we try to
minimize the energy to be transferred to hide the power
consumption information of each home.

Based on the above definitions and defense models, we
theoretically formulate the problem and illustrate it as a
convex optimization problem. The design goal is to minimize
energy transmission in alternative local power lines while
hiding power consumption information of homes from both
the utility company and their neighbors:

We categorized homes in a hybrid AC-DC microgrid and
define two terms as follows:
• Supplier set S : A set of homes in a microgrid that need
to hide power consumption information by decreasing their
power consumption.
• Demander set D : A set of homes in a microgrid that
need to hide power consumption information by increasing
their power consumption.

Note that a home can increase its power consumption at
one time and decrease its power consumption at another
time; thus, a home can belong to different sets at different
time.

min

N∑
i=1

|pi(t)| (3.1)

s.t.
N∑
i=1

pi(t) · ηi(t) = 0 (a)

pi(t) ≥ γ · ζi(t), i ∈ S (b)

pi(t) ≤ γ · δi(t), i ∈ D (c)

pi(t) + pj(t) ≥ γ · ζi(t), i ∈ S; j 6= i (d)

pi(t) + pj(t) ≤ γ · δi(t), i ∈ D; j 6= i (e)

di(t) + pi(t) ≤ ci, i = 1, ..., N (f)

ηi(t) is the energy efficiency of home i at time t. If home
i supplies energy to other homes, then ηi(t) = 1; if home i
demands energy from other homes, then ηi(t) is the trans-
mission efficiency between home i and its suppliers. Con-
straints (b) and (c) indicate that the power change of each

home is larger than the minimum power change to defend
against detection models. Constraints (d) and (e) indicate
that even with one neighbor’s real power consumption data,
the power consumption data of other homes still can be pro-
tected. γ is used to control power consumption to hide. To
hide appliances’ usage patterns, γ should be larger than 1.
Constraint (f) indicates that the real power consumption of
each home should not exceed its own maximum power con-
sumption. Because all the constraints are linear functions,
which are always convex; and the objective function is also
convex, our problem is a convex optimization problem.

4.4 Optimal Solutions
With the formulation of defense models, in this section,

we develop an optimal solution with convergence and com-
plexity analysis.

4.4.1 Barrier Method
To solve the convex optimization problem, we use the bar-

rier method to provide an optimal solution. The key idea of
the barrier method is to make the inequality constraints im-
plicit in the optimization objective and convert the original
problem into a sequence of linear equality constrained min-
imization problems. The solutions of these linear equality
constrained minimization problems are called central points
in the central path related to the original problem. The
central point will be more accurately approximated to the
optimal solution as the parameter s increases. For the mini-
mization problem (3.1), we first need to remove all inequality
constraints into a logarithmic barrier function φ(p):

φ(p) = −
N∑
i=1

log(ci − pi(t) − di(t))

−
∑
i∈S

(log(pi(t) − γ · ζi(t)) +
∑
j 6=i

log(pi(t) + pj(t) − γ · ζj(t)))

−
∑
i∈D

(log(−pi(t) + γ · δi(t)) +
∑
j 6=i

log(−pi(t) − pj(t) + γ · δj(t)))

(8)

Then we write f(p) =
N∑
i=1

|pi(t)| and rewrite the mini-

mization problem with a certain parameter s as:

min ψ(p) = −s · f(p) + φ(p) (4.1)

s.t. Ap = 0 (a)

where

Ai,j =

{
1 i = j

0 otherwise
(9)

The optimal solution to problem (4.1) is an approximation
of the original problem. As s increases, the approximation
is much closer to the optimal solution. At the centering
step of the barrier method, Newton’s method is employed
to compute the central point.

The details of algorithm are described in Algorithm 1.
First, we need to find a feasible starting point that satisfies
the constraint of Equation (Line 1). Then we select proper
α and β to apply Newton’s method (Lines 2-3). With New-
ton’s method, we calculate centering path until λ2/2 ≥ εn
is fulfilled (Lines 4-11). Then we update p and p?(s) (Lines
12-13). Finally, we check if threshold ε is fulfilled, if not,
increase t by µ; otherwise, the algorithm ends (Lines 14-17).



Algorithm 1: Barrier Method

Input: Home’s d, c and δ and ζ
Output: Home’s p.

1: Find strictly feasible point p, s ≥ 0, tolerance ε ≥ 0,
µ ≥ 1;

2: Centering path: Compute p?(s);
3: Starting point p, subject to Ap = 0, tolerance
εn ≥ 0,α ∈ (0, 1/2),β ∈ (0, 1);

4: Compute ∆p and λ = −5 ψs(p)∆p;
5: if λ2/2 ≥ εn then
6: Go to Line 4;
7: end if
8: Backtracking line search on ψs(p) and h = 1;
9: while ψs(p+ h∆p) ≥ ψs(p)− αhλ2 do

10: h = βh;
11: end while
12: Update p = p+ h∆p;
13: Update p?(s) = p;
14: if (N + 2)/t ≥ ε then
15: Increase s = µs;
16: Go to Line 2;
17: end if

4.4.2 Solution Analysis
With the barrier method, it is guaranteed that we can

achieve any desired accuracy we need. In this section, we
analyze the number of iterations to converge to our desired
accuracy and computation complexity.

Convergence Result. Given the desired accuracy ε ≥ 0,
the convergence speed can be calculated by using Theorem 2.

Theorem 2. The centering steps to achieve a desired ac-
curacy ε is:

I =
log(m/εs(0))

logµ
(10)

where s(0) is the original s we choose and m is the number
of inequality constraints which in our case is N+2|S|+2|D|,
Convergence analysis for the barrier method is straightfor-
ward. Assuming that sf0 +φ can be minimized by Newton’s
method for s = {s(0), µs(0), µ2s(0), · · · }, the duality gap
after the initial centering step, and k additional centering
steps, is m/(µkt(0)). Thus, the centering steps to achieve ε

are
log(m/εs(0))

logµ
. The detailed proof can be found in [6].

Algorithm Complexity. The computational complex-
ity of the barrier method is mainly for the computation of
Newton’s method that needs matrix inversion with the com-
plexity of O(N3). However, because we don’t know whether
a home should be a supplier or demander to minimize the
total energy transmission, we need to try every combination
of the homes’ status, which can be 2N combinations, then
the complexity of the offline solution will be O(2N ·N3).

4.5 Online Solutions
To reduce the complexity of the offline solution, we pro-

pose an efficient heuristic algorithm. Furthermore, the of-
fline solution does not require the information of the num-
ber of compromised neighbors. The key idea is that when a
home shares power to another home, the amount of power
should be larger than its minimum power change, and less
than enough to detect other homes’ power consumption.

Theorem 3. If k homes are selected to share energy to
home i, to avoid detection from l compromised neighbors,

Algorithm 2: Heuristic Algorithm

Input: Home’s δ and ζ
Output: Home’s p.

1: Fetch home i with largest value of δi or ζi;
2: Calculate minimum energy transmission needed ri and

number of homes needed ni in Algorithm 3;
3: if i ∈ D then
4: for Home j in F and S do
5: Fetch home j with largest value of ζj ;
6: ζj = ζj − ri/ni; δi = δi − ri/ni;
7: Add (j, i) to energy sharing pair;
8: end for
9: else

10: for Home j in D do
11: Fetch home j with largest value of δj ;
12: δj = δj − ri/ni; ζi = ζi − ri/ni;
13: Add (i, j) to energy sharing pair;
14: end for
15: end if

l + 1 homes should at least share ζi(n)/(k − 1) to home i.

Proof. k homes are selected to share energy with home
i. To avoid detection from l compromised neighbors, any
k − l neighbors should share more energy than ζi(n). Then
for first k − l neighbors, at least one home k1 shares more
energy than ζi(n)/(k− l). Similarly, k− l neighbors without
home j should also share more energy than ζi(n) to avoid
detection, therefore, there would be another l homes that
share more energy than ζi(n)/(k−l). Finally, at least homes
k1 and other l homes share more energy than ζi(n)/(k − l)
with home i.

Based on Theorem 3, we can have a basic idea of the
total energy transmission with k homes shared to home i.
This is because there are l homes which share more than
ζi(n)/(k− l) and any k−1 neighbors share more than ζi(n).
Thus, for k homes, the total energy shared to home i should
be larger than ζi(n) · k/(k− l). Because k/(k− l) decreases
with the increase of k, it would be better to hide the real
power consumption with more homes to reduce energy trans-
mission. Based on the result, we propose an online solution
for calculating real-time energy sharing pairs. The overview
of online solution is shown in Figure 3. Because sharing en-
ergy with more homes can reduce energy transmission, we
find the maximum number of homes to share energy with
minimum transmission. Let ri be the minimum transmis-
sion of ni homes to protect home i, we have

ri =
ni

ni − 1
ζi +

∑
δj<

1
(ni−1)

ζi

(
1

(ni − 1)
ζi− δj) ∗ (ni− 1) (11)

Then we check if all the homes are protected, if yes, then our
solution ends, otherwise, it assigns energy sharing pairs and
update ζi(t) and δi(t) and then continue the process again
until all the homes are protected.

Algorithm 2 is proposed to calculate the amount of real-
time shared energy. First, we fetch the home with the largest
value of δi or ζi (Line 1). We then use Algorithm 3 to calcu-
late the minimum energy transmission needed and number
of homes needed (Line 2). If home i is a demander, then we
find a match in supplier set S and free set F , and update the
power change they need (Lines 3-8). If home i is a supplier,
then we find a match in demander set D, and update power
changes they need (Lines 9-15).
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Figure 3: Overview of online algorithms (S and D is
the set of homes that need to hide consumption by
increasing and decreasing their power consumption;
F is the set of homes that do not need to hide power
consumption)

Algorithm 3: Calculation of Minimum Energy Trans-
mission
Input: A homes’ di, ci, δi and ζ of homes in F and S
Output: Minimum energy transmission ri and number
of homes needed ni.

1: Fetch two homes in F and S with largest ζj and ζk;
2: ri = δi; ni = 2;
3: for Home j in F and S do
4: Fetch ni + 1 homes j with largest value of ζj ;
5: Calculate r′i for ni + 1 homes based on Equation (11);
6: if r′i > θ · ri then
7: break;
8: else
9: ri = r′i, ni = ni + 1;

10: end if
11: end for

Because we need to minimize energy transmission, an-
other problem is to find the minimum energy transmission
for each home. The detailed algorithm is described in Algo-
rithm 3. Because a single home cannot provide protection
by itself, the first step is to calculate the minimum energy
transmission with two homes (Lines 1-2). Then we increase
the number of homes to hide the power consumption of home
i (Lines 3-5). If the energy transmission increases, we select
two homes for energy transmission; otherwise, we continue
to find the minimum energy transmission by increasing the
number of homes (Lines 6-11). θ is used to control the num-
ber of homes to hide the power consumption of home i. Be-
cause it is more likely to hide power with more homes, a
larger θ can decrease the detection ratio with one compro-
mised neighbor.

4.6 Energy Sharing Control
With the solutions described in above, we can calculate

how much energy each home should share to its neighbors to
protect privacy. However, energy sharing in the microgird
introduces billing issues among homes. Thus, we present
how homes only pay the utility company for their actual
power consumption which does not include energy sharing.

To ensure homes share energy based on results generated
by our solution, we develop a transmission protocol to sched-
ule energy transmission. The detailed communication proto-
col is shown in Protocol 4. The controller first collects energy
data for every interval w and runs Algorithm 2 and 3 to get
the sharing results (Line 1). Then it sends TRANS START
and power consumption results to the homes (Line 2). It
monitors TRANS END signal from homes to ensure power
consumption for every home is correctly stored in order to

Protocol 4: Energy Transmission Protocol

For controller

1: Collect energy data from homes and execute
Algorithm 2 and 3 for every interval w;

2: Send TRANS START and energy consumption
instruction to homes;

3: If receive TRANS END from home i, store energy
consumption for home i;

4: If time w runs out, send TRANS END to homes.

For every home

1: Send energy data to controller;
2: If receive TRANS START, consumes energy according

to instruction from controller.
3: If receive TRANS END, send back energy consumption

details.

calculate bills for each home (Line 3). The last thing for
the central controller is to send TRANS END to all homes
after interval w (Line 4). For every home, it sends energy
data to the controller at a new window (Line 1). It then
waits for TRANS START signal to start power consump-
tion (Line 2) and sends back power consumption details to
the controller after a TRANS END signal. The controller
needs consumption details to calculate bills for each home.
The TRANS START signal should contain the home id and
amount of energy while TRANS END signal should contain
the home id and amount of energy each home consumes.

We then show that the utility company can still charge
homes for their actual power consumption without energy
sharing. The current price model of the utility company
charges consumers based on power consumption at every
window (for example every hour). The controller can add
the amount of energy home i shared to other homes and
get from other homes the aggregated amount of energy each
home consumes in the previous window. The utility com-
pany can charge homes with the readings from smart meters
for every window. Because the controller has the differences
between real power consumption without sharing and read-
ings from smart meters, it can charge homes with their real
power consumption instead of reading from smart meters.
Note in our paper, we consider that the data in controller is
not publicly available and the controller also deletes power
consumption every window after billing calculation.

5. IMPLEMENTATION AND EVALUATION
In this section, we evaluate the performance of Shepherd.

We collect the empirical data of power consumption from
40 homes and load events at one home. Then we evaluate
the detection ratio and energy transmission of our solutions
compared to existing approaches. Finally, we verify that our
approach also works well using the microgrids with homes
of similar power consumption patterns.

5.1 Data Collection
We deploy eGauge power meters at individual homes to

collect the total power consumption data every one second.
Experiment setup at one home is shown in Figure 4(a). In
our simulation, we use the power consumption traces that
we collected from 40 homes. We also collect the load events
of one home to get the consumption signature of all the elec-
trical loads (e.g., TV, oven, etc.). With the collected con-
sumption signature, other homes’ load events are detected
as ground truth.
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Figure 4: Experiment setup and data collection
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Figure 5: Original load and hidden load (blue lines
in figure are original load)

5.2 Evaluation Baseline and Metrics
Baselines. To verify the efficiency of Shepherd, we compare
Shepherd with two baselines. i) Battery-based stepping al-
gorithm (LS2) [19]. Yang et al. proposed four battery-based
algorithms to hide power consumption. In our paper, we se-
lect LS2 because LS2 performs the best in most scenarios.
ii) Random energy sharing. Each home aims to randomize
its power consumption by energy sharing.

Metrics. We use two metrics to evaluate the performance:
i) detection ratio: the number of events detected divided
by the total number of events; ii) power transmission:
average power transmission over the additional AC line.

5.3 Basic Evaluation Results
In this section, we evaluate the effectiveness of our pro-

posed offline and online solutions. All results are simulated
with six days empirical data of power consumption. The
battery we use to implement LS2 algorithm has 1kWh ca-
pacity and 2kW maximum charging rate. The parameter γ
and θ are both selected as 1 in this set of simulations.
Power Consumption. We show the power consumption
of four algorithms with comparison of the original loads in
Figure 5. To make the difference between four algorithms’
consumption visible, we show only 300 seconds of consump-
tion data in one home. The LS2 tries to maintain power
consumption at certain levels, thus its consumption can be
only -2kW , 0kW , 2kW , 4kW and 6kW . However, we can
still find that the shape of LS2 is similar to the original
load. For offline and online solutions, we can find their con-
sumption is totally different. Because their consumption is
either sharing energy with other homes or shared by other
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(a) Detection Ratio
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(b) Power transmission

Figure 6: Detection ratio, power transmission for 40
homes

0 2 4 6 8 10 12 14
0.1

0.2

0.3

0.4

D
et

ec
ti

o
n
 r

at
io

 

 

Offline

Online

Number of compromised neighbors

Figure 7: Detection ratio with compromised neigh-
bors
homes. Most of the time, power consumption for the online
and offline solutions are similar. For the random algorithm,
each home tries to consume random amount of energy at
any time, thus it has no relationship with the original load.
Detection Ratio. With power consumption results of four
algorithms, we then use both edge and signature detection
methods to detect load events. The average detection ratio
of 40 homes is shown in Figure 6(a). Because with LS2, the
power consumption shape is still similar to the original load,
it can be detected by signature detection method. Because
LS2 is adjusting power consumption at each home, detection
ratio is not relevant to the number of homes. For offline and
online solutions, the detection ratio gradually decreases with
the increase in the number of homes. This is because with
more homes in a microgrid, it is more likely you can find
some homes to share energy. Power consumption with the
random algorithm is not relevant with original consumption,
thus detection ratio is low.
Power Transmission. Because we propose energy shar-
ing to hide power consumption for homes, we also evaluate
the amount of energy transmission for offline, online, and
random algorithms. Even though random algorithm can
achieve lower detection ratio, we show in Figure 6(b) that
it costs nearly two times of energy transmission than on-
line and offline solutions, which increases the burden of DC
line and produces more transmission loss. This means that
for one day, the random algorithm needs to transfer energy
20.47kWhmore than offline and 15.28kWhmore than online
solutions. Assuming that energy transmission loss through
AC line is as low as 1%, it wastes 5-6kWh in a month.

5.4 Advanced Evaluation Results
In this section, we evaluate our design for homes with com-

promised neighbors in the community, similar power con-
sumption patterns and different parameter settings to verify
the robustness of our design.

5.4.1 Impact of Compromised Neighbors
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(b) Power transmission

Figure 9: Average number of neighbors and power
transmission with similar consumption pattern

Because homes share energy with each other to hide power
consumption, homes can reveal a portion of their power
consumption information to their neighbors in a microgrid.
Thus we also evaluate if neighbors are compromised, whether
homes in the microgird can still hide power consumption.
Because homes randomly share energy in random algorithms,
neighbors do not reveal much information, we only evaluate
online and offline solutions for 40 homes in the microgrid.
The results are shown in Figure 7. With more compromised
homes, the detection ratio of two solutions increases. How-
ever, even with 10 compromised homes (25% of total homes),
the detection ratio of Shepherd is still lower than LS2.

5.4.2 Impact of similar consumption pattern

The consumption data we used in the above simulations
comes from 40 different homes. Thus, their consumption
patterns can be different and provide us an opportunity to
balance energy transmission over AC line by consuming en-
ergy at different times. However, when homes have similar
consumption patterns, homes may not be available for hid-
ing power consumption for other homes. In this section, we
use data of 40 homes with similar consumption pattern to
verify that our design also works in this scenario.

We show the power consumption of online and offline al-
gorithms in comparison to the original loads in Figure 8.
For LS2 and random algorithm, the results are the similar
because LS2 and random algorithm do not take advantage
of neighbors’ power consumption. However, for offline and
online solutions, we can find their consumptions are quite
similar to the consumption that shifts the original load over
some time. This is because when homes have similar con-
sumption patterns, our solutions shift power consumption
for some time to avoid detection.
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Figure 10: Impact of differenet parameters

The results are almost the same for detection ratio of on-
line and offline solutions. Thus, only average power trans-
mission of 40 homes are shown in Figure 9(b). The average
power transmission of online and offline solutions increases
only with 0.1kW and 0.16kW and the gap between two solu-
tions also increases. Overall, even in scenario where homes
have similar consumption patterns in a microgrid, our pro-
posed approach can achieve relatively low detection ratio
and power transmissions. We also show the average number
of neighbors for energy sharing for similar and different en-
ergy patterns in Figure 9(a). For homes with similar energy
patterns, each home needs to find more homes to share en-
ergy because many homes have similar sharing needs. Thus,
average number of neighbors for energy sharing increases
from around 5-6 (different energy patterns) to 8-9 (similar
energy patterns).

5.4.3 Impact of different parameters

In basic evaluation results, the detection ratio with or
without compromised neighbors is still around 15%. In re-
ality, some homes especially some business buildings may
need to protect their information better. In our design, we
allow the user to tune the parameter γ to achieve even lower
detection ratio and the parameter θ to achieve lower detec-
tion ratio with one compromised neighbor.

The detailed results for impact of γ and θ are shown in
Figure 10(a) and 10(b). With a larger γ, homes try to hide
more energy from real power consumption, thus the detec-
tion ratio decreases. However, it does not help to decrease
the detection ratio with compromised neighbors. This is
because that with larger γ, every home hides more energy
but still with the same neighbors. Then with compromised
neighbors, the detection ratio is still high. For average power
transmission, it increases since more energy transmission is
needed to hide more energy.

With a larger θ, homes try to hide energy with more
homes, thus even with compromised neighbors, the detec-
tion ratio decreases. However, it does not try to hide more
energy for any home, thus the detection ratio without com-
promised neighbors is stable. For average power transmis-
sion, it increases with larger θ. This is because it needs more
energy transmission when hiding energy with more homes.
However, the increase of average power transmission for a
larger θ (1.32kW for θ = 1.5) is much less than with larger
γ (1.68kW for γ = 1.5). However, combined with larger γ
and θ, our design can achieve low detection ratio both with
and without compromised neighbors.

6. RELATED WORK
This work aims to protect the privacy of power consump-



tion data in a microgrid. The related work includes:
•Non-Intrusive Load Monitoring. The large-scale place-
ment of smart meters has introduced leakage of private and
valuable information about occupants’ activities [7]. NILM
algorithms have been widely used in the research of resi-
dential settings to reveal the usage of individual appliances
with consumption data [14]. In [11], NILM algorithms are
extended to evaluate the threat to individual privacy by con-
sidering the results on potential disclosure from smart-meter
data. An off-the-shelf statistical technique is used to de-
velop a simple approach to discover people’s life patterns [4].
In this paper, we develop a new detection technique based
on the consumption signature of appliances that achieves a
higher detection ratio.
• Battery-Based Load Hiding. The basic idea of BLH is
to use a rechargeable battery to store and supply power to
home appliances at strategic times to hide the appliances’
consumption from smart meters [19]. The BE algorithm [16]
tries to avoid charging the external load whenever possible,
and when the actual demand is different from the external
load, the battery can be charged or discharged to counteract
the difference. The NILL algorithm [13] has three states and
attempts to maintain a different constant load for each state.

Instead of using batteries, we propose a battery-free ap-
proach, which addresses the limitations of the above ap-
proaches. By leveraging the alternative local power line built
in a microgrid, our online and offline solutions can enable
homes to share energy with their neighbors to hide the real
power consumption from the malicious third parties.

7. CONCLUSION
In this paper, we study the privacy leakage problem in

hybrid AC-DC microgrids and discover two novel vulner-
abilities for malicious users to obtain power consumption
information of individual homes without occupants’ authen-
tication. To protect the occupants’ privacy, we leverage the
unique feature of hybrid AC-DC microgrids and propose
Shepherd, a privacy protection framework, to allow homes
in a microgrid to coordinate with each other to hide power
consumption information. We analyze the adversarial mod-
els in a single home and with compromised neighbors and
propose corresponding defense models to defend from these
two models. With the empirical data from more than 40
homes, we conduct extensive system evaluations. Results
show that Shepherd can i) significantly reduce the detection
ratio from 33% to 13%, and ii) effectively hide consumption
information even with 25% compromised neighbors.
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APPENDIX
Proof of Theorem 1

THEOREM 1. There exist two solutions e1i (T ) and e2i (T )
of Equation (6), and e1i (T ) < di(T ) < e2i (T ).

Proof. With Equation (3), we have:

l(ei,di)(T − 1) =
1

T − 1

T−1∑
t=1

(ei(t)− di(t))2

Then we can rewrite Equation (6) as follows:

1

T

T∑
t=1

[ei(t)− di(t)]2 −
1

T − 1

T−1∑
t=1

[ei(t)− di(t)]2

=
1

T
{[ei(T )− di(T )]2 − l(ei,di)(T − 1)} = 0

Since l(ei,di)(T − 1) ≥ 0, thus we have solutions of Equa-

tion (6): e1i (T ) = di(T )−
√
l(ei,di)(T − 1) < di(T ) < di(T )+√

l(ei,di)(T − 1) = e2i (T ).


