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Abstract— Urban public transit planning is crucial in re-
ducing traffic congestion and enabling green transportation.
However, there is no systematic way to integrate passengers’
personal preferences in planning public transit routes and
schedules so as to achieve high occupancy rates and efficiency
gain of ride-sharing. In this paper, we take the first step tp
exact passengers’ preferences in planning from history public
transit data. We propose a data-driven method to construct a
Markov decision process model that characterizes the process
of passengers making sequential public transit choices, in bus
routes, subway lines, and transfer stops/stations. Using the
model, we integrate softmax policy iteration into maximum
entropy inverse reinforcement learning to infer the passenger’s
reward function from observed trajectory data. The inferred
reward function will enable an urban planner to predict pas-
sengers’ route planning decisions given some proposed transit
plans, for example, opening a new bus route or subway line.
Finally, we demonstrate the correctness and accuracy of our
modeling and inference methods in a large-scale (three months)
passenger-level public transit trajectory data from Shenzhen,
China. Our method contributes to smart transportation design
and human-centric urban planning.

I. INTRODUCTION
In urban areas, public transit modes, such as buses and

subway lines, greatly benefit the society in reducing carbon
footprint and traffic congestion. However, it is challenging
to design public transit routes and schedules to attract more
people to use them for their (daily commute) needs. Figure 1
shows the dynamics of in-vehicle passengers of three new
bus routes in Shenzhen launched in Dec 26th, 2014. It
shows clearly that the two new routes M441 and M446 were
popular ones, with larger numbers of passengers aboard over
time, sometimes exceeding the total number of seats (the
straight red line). At the same time, fewer passengers took
the new M444. This indicates a potential problem in the
existing planning approach. Currently, new transit plan is
designed primarily based on covering the most estimated trip
demands volumes [1]. This approach completely ignores the
underlying passengers’ personal preferences (such as waiting
time, traffic condition, and so on), when selecting public
transit routes.

Let us consider a passenger as an agent, who decides how
to reach a destination via a sequence of decisions. This is
clearly a sequential decision problem, where the decisions
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Fig. 1. Popularity of new bus routes in Shenzhen, China.

made by the passenger depend on a certain inherent personal
(reward) function of various features such as transit schedule,
weather, traffic condition, etc. Hence, understanding and
characterizing such personal (reward) functions of passengers
will allow us to understand how passengers make decisions,
which will in turn enable the urban planners to better design
the public transit routes and schedules.

In the literature, various inverse reinforcement learning
(IRL) methods for MDPs have been proposed to learn human
behavior preferences and patterns (as reward functions) [2],
[3], [4]. Apprenticeship learning algorithms [2], [3] extract
the optimal reward function of an expert (e.g., a coach driver)
from observed behaviors by choosing the reward function
with a maximum gap of total reward from the best sub-
optimal policy. However, different from the apprenticeship
learning problem, passengers often adopt sub-optimal poli-
cies than a global optimal policy when choosing a public
transit path to the destination. Such a problem of learning
reward functions from observed sub-optimal behaviors is
then related to maximum entropy Inverse Reinforcement
Learning (IRL) [4], where the authors propose a probabilistic
approach to discover reward function for which a near-
optimal policy closely mimics observed behaviors. In recent
years, this line of studies has drawn significant attentions
from the research community, where various extensions
and applications have been proposed, including IRL with
nonlinear reward functions [5], infinite horizon decision
problems [6] and learning from demonstration in robotics [7].
However, none of these works has studied the urban transit
route selection problem with large-scale real data. In this
paper, by analyzing a large scale (3 months) passenger-
level public transit trajectory data from Shenzhen, China,
we make the first attempt to extend and apply maximum
entropy IRL for urban transit planning and inverse learning
passengers’ preferences. The contribution in this paper are
three-fold: First, we construct a high-fidelity MDP model
to characterize the urban transit path selection process of
different passengers. Second, we develop a novel inverse
learning algorithm that employs softmax policy iteration to



perform gradient decent in maximum entropy IRL. Such an
algorithm enables us to consider various discounting factors
and different levels of sub-optimality, namely, we relate the
temperature parameter in softmax policy iteration as a way to
modulate the sub-optimality in agent’s decision and provides
deeper insight about passengers’ behavior in real data. Last
but not the least, we validate our method with both synthetic
data and large-scale real-world urban transit data. The eval-
uation results demonstrate that our proposed approach can
extract the passenger reward function with a near-optimal
policy very close to the observed passenger behaviors, which
strongly justifies our hypothesis that passenger makes sub-
optimal decisions.

The rest of the paper is organized as follows. In Sec II,
we briefly introduce the preliminaries of MDP and maximum
entropy IRL. Sec III describes our datasets and introduces
the data-driven modeling of passenger’s trip trajectory se-
lection process as an MDP. Sec IV introduces the softmax
policy iteration algorithm to inversely learn the passengers’
personal preferences as reward functions. Sec V evaluates the
proposed approach using both synthetic data and real data.
Finally, sec VI concludes the paper.

II. PRELIMINARIES

In this section, we briefly review the basics of finite
Markov Decision Process and Maximum Entropy Inverse
Reinforcement Learning, which are the foundations of our
data-driven model and inverse learning algorithm for urban
passenger preferences characterization.

A. Markov Decision Process (MDP)

An MDP is represented as a tuple 〈S,A, P, γ, µ0, r〉,
where S is a finite set of states and A is a set of actions.
P is the probabilistic transition function with P (s′ | s, a) as
the probability of arriving at state s′ by executing action a at
state s, γ ∈ (0, 1] is the discounting factor, µ0 : S → [0, 1]
is the initial distribution, and r : S × A → R is the reward
function. In our problem, each Markov Decision Process
(MDP) has one terminal state sterminal ∈ S. It ensures that
every trajectory ends at that terminal state.

A randomized, memoryless policy is a function that spec-
ifies a probability distribution on the action to be executed
in each state, defined as π : S × A → [0, 1]. The planning
problem in an MDP aims to find a policy π, such that the
expected total reward is maximized, namely,

π∗ = arg max
π∈Π

Eπ(

T∑
t=0

γtr(St, At) | S0 ∼ µ0),

where St and At are random variables for the state and action
at the time step t, and T ∈ R ∪ {∞} is the set of time
horizons. The initial state S0 follows the initial distribution
µ0. Here, Π is the memoryless policy space.

B. Maximum Entropy IRL

The inverse reinforcement learning problem in MDPs
aims to find a reward function θ : S × A → R such
that the distribution of action and state sequences under a

(near-)optimal policy match the demonstrated behaviors. One
well-known solution to Maximum Entropy IRL problem [4]
proposes to find the policy, which best represents demon-
strated behaviors with the highest entropy, subject to the
constraint of matching feature expectations to the distribution
of demonstrated behaviors.

The reward function θ is given as a linear combination of
k features φi with weights θi such that ∀(s, a) ∈ S × A :
r(s, a) = θ · φ(s, a). And for a trajectory ρ, which is a
sequence (s0, a0, s1, a1, s2, a2..., sN ) of states si ∈ S and
actions ai ∈ A, for i = 0, . . . , N where sN = sterminal is a
terminal state in the MDP, the reward of this trajectory can
be written as

r(ρ) = θ · φ(ρ), (1)

where φ(ρ) =
∑N−1
i=0 γiφ(si, ai) is the discounted feature

vector counts along trajectory ρ.
Applying the principle of maximum entropy, the following

equation holds, ∑
ρ∈P

P (ρ)φ(ρ) = φ̃,

where φ̃ = 1
m

∑
ρ∈P φ(ρ) is the expected empirical feature

vector calculated from demonstrated trajectories, and P (ρ)
is the probability of the path ρ in the Markov chain induced
from a near-optimal policy π, which ensures that if two
trajectories ρ′ and ρ have the same total reward, then P (ρ) =
P (ρ′). In non-deterministic MDPs, we can easily estimate
the distribution using maximum likelihood estimation, θ∗ =
arg maxθ L(θ) = arg maxθ

∑
ρ∈P logP (ρ̃|θ). Then, a stan-

dard gradient decent method can solve it with

∇L(θ) = φ̃−
∑
ρ∈P

P (ρ|θ)φ(ρ) = φ̃−
N−1∑
i=0

x(si, ai)φ(si, ai),

(2)
where x(si, ai) =

∑N−1
i=0 γtxt(si, ai) is discounted state-

action (si, ai) visitation frequency and xt(si, ai) is state-
action (si, ai) visitation frequency at time step t. For infinite
horizon planning, the time step N can be chosen as the
mixing time in the Markov chain induced with the optimal
policy π in the MDP [8].

To compute the state visitation frequency, [4] proposes
an algorithm, which does not consider discounting factor γ,
and the level of agent’s sub-optimality in choosing policies,
which are both important factors in modeling passengers’
decision making process. In Sec IV, we propose an extended
maximum entropy IRL algorithm that adopts softmax policy
iterations to calculate the state visitation frequency, that can
naturally incorporate both discounting factor γ and the agent
sub-optimality level (as a temperature factor τ ).

III. DATA-DRIVEN MODELING OF URBAN
TRANSIT CHOICE

Now, we are in a position to elaborate on the real world
datasets we use, the process we prepare the data for our
study, and the MDP model we develop to capture passengers’
decision making process.



Fig. 2. Shenzhen subway lines
and road map

Fig. 3. Map griding (` = 0.01◦)

A. Data set description

We employ two sets of urban data sources for our study,
including both urban transportation infrastructure data and
public transit transaction data, which are detailed as follows.
Urban transportation infrastructure data include ur-
ban road network structure, bus routes, and subway lines
in Shenzhen, China. In our study, we retrieve a bound-
ing box of Shenzhen City, specified by the south-west
and north-east corners as (22.447203◦, 113.769263◦) and
(22.70385◦, 114.33991◦) in latitude and longitude.Figure 2
visualizes all road segments and subway lines. The public
transit system consists of buses routes and subway lines. In
2014, there were in total about 890 bus routes covering all
the road segments on the road map. Moreover, there were
five subway lines (as shown in Figure 2).
Public transit trip trajectory data. In Shenzhen, passengers
take public transits, including buses and subway lines with
their smart cards, and all the fares are collected by the
automatic fare collection (AFC) system. Each passenger can
be uniquely identified by the card ID. Our AFC data include
all events, when a passenger entering, or exiting a subway
station, and getting on or off a bus. For example, an AFC
data record has four fields 〈PID, SID, t, u〉, where PID is
the passenger ID, SID is an unique ID indicating a subway
station or a bus stop of a particular bus route, t is the event
time, u is a binary variable indicating if it is an entering
(u = 1) or exiting (u = 0) event. Our datasets were
collected during 10/1/2014-12/31/2014 in Shenzhen, China,
representing on average 11 million trip segments, equivalent
to 6 million trip trajectories on a regular working day.

B. Data processing

An urban trip demand of a passenger indicates the intent
of a passenger to travel from a source location src to a
destination location dst from a given starting time t, which
can be represented as a triple 〈src, dst, t〉. Instead of viewing
each individual passenger as an agent, we consider an agent
as a group of passengers with nearby source and destination
locations. Since in reality, people who live in the same
residential community and working in the same commercial
area tend to have the similar income level and family sizes,
that likely lead to the similar preference profile in public
transit decision making [9]. Moreover, this allows each agent
(as a group of people) to have more trajectory data samples
to learn their preferences modeled by reward functions. We
partition the entire urban area into small regions, so that
the commute passengers with the same home and working
regions are aggregated as one agent.

For the ease of implementation, in this paper, we adopt the
gridding based method, which simply partitions the map into
equal side-length grids [10], [11]. Moreover, the gridding
based method allows us to adjust the side-length of grids,
to better examine and understand impacts of the grid size.
Figure 3 shows all partition grids in the bounding rectangle
region of Shenzhen, China, with side-length ` = 0.01◦. After
removing inaccessible grids, Figure 3 highlights (in light
color) those grids on the road network of Shenzhen, China.
Hence, each agent is represented as a source-destination grid
pair during a certain time interval (e.g., morning rush hour
7–9AM), representing all trip trajectories that start from the
source grid and end at the destination grid during that time
interval. In the next subsection, we develop a data-driven
MDP model for each agent to characterize the decision-
making problem of the trip demands of the particular agent.
With the model, we will further inversely learn the agent’s
preference (See Sec IV).

C. Data-driven model: Urban transit choice as an MDP

Given the agents defined above, we model the process of
how a passenger (of an agent) makes an urban public transit
choice as an optimal planning problem i.e., an MDP

M = 〈S,A, P, γ, µ0, r〉.

Below, we detail how each MDP component can be extracted
from real world data.
State set S: Each state s ∈ S is spatio-temporal region,
denoted as a tuple (g, t), where g represents a grid on the
road map and t is a discrete time slot with a predefined
time interval. The state space S is finite, since the map is
partitioned into a finite number of grids (e.g., 1, 018 grids
in Figure 3) and each day is divided into a fixed number
of 5-minutes intervals. For an agent, with a starting grid gs,
and a destination grid ge, and morning rush time duration
7 − 9AM , the state space only includes a limited number
of spatio-temporal regions along the bus and subway lines
from gs to ge.
Action set A: An action a ∈ A is the decision made by a
passenger in an agent, to take a certain bus route or take a
subway line.
Transition probability function: P : S × A × S → [0, 1]
Due to the dynamics of urban road traffic and crowd flow
conditions, after an agent takes an action a (e.g., bus route)
at a state s, the time of reaching the transfer stop may varies,
leading to different state s′ (of the same spatial grid but dif-
ferent time interval). Such uncertainty is characterized by the
transition probability function as P (s′ | s, a), representing
the probability of arriving at the state s′ after choosing action
a at the state s. The transition probability is obtained from
maximum likelihood estimation from real-world urban transit
trajectory data as follows. Suppose that we observed m
trajectories for an agent in the historical data. Each trajectory
ρ is represented as a sequence of discrete states and actions
ρ = {s0, a0, s1, a1, · · · , sN} where sN = sterminal is a
destination and s0 ∈ S is a source. With this information, the
maximum likelihood estimator for the transition (s, a, s′) is



obtained by P (s′ | s, a) = N(s,a,s′)∑
s′∈S N(s,a,s′) , where N(s, a, s′)

is the count of this transition observed from all historical
trajectory data.
γ and r: In the MDP, γ is the discounting factor and r :
S×A→ R is the reward function. Both capture the unique
personal preferences of an agent, and to be inversely learned
from data.

IV. INVERSE INFERENCE WITH SOFTMAX
POLICY ITERATION

In this section, we first present multiple features we ex-
tracted from real data, which determine how people evaluate
different transit choices. Then, we propose a novel algorithm
with softmax policy iteration for obtaining the state-action
visitation frequency, which is used as input to the gradient
descent algorithm Eq. 2 in Sec II for computing the reward
function.

A. Feature extraction

As alluded earlier, the reward of an agent taking an action
a at a state s is a linear combination of a list of k features,
i.e., r(s, a) =

∑k
i=1 θiφi(s, a) = θ · φ(s, a), with k ≥ 1.

These features are presumably what passengers evaluate
strongly in reality, when making their decisions of public
transit choices. We construct four such features based on
common sense and available data, including fare, travel time,
remaining time and transfer time.
Fare. Given a state-action pair (s, a), we calculate average
amount money that passengers spend on it.
Travel Time. For a state-action pair (s, a), this feature
captures the average time of passengers’ getting their next
state s′.
Remaining Time. When we talk about commuters, there
always is a deadline associate with their commuting. For
instance, in Shenzhen, people usually are required to start
work at 9AM. So we calculate how many minutes left before
9AM in a state-action pair (s, a).
Transfer Time. Passengers always want to avoid too much
transfering between different bus routes or subway lines. So
we use average number of routes that passengers at a state-
action pair (s, a) would take in the future before finishing
their trip as Transfer Time. It can represent level of service
at certain level, also.

B. Softmax policy iteration for computing state visitation
frequency

In this section, we introduce softmax policy iteration, for
calculating the visitation frequency x(s, a), as input to the
gradient descent algorithm for solving the reward function
of a given agent. The proposed algorithm consists of two
stages: First, it calculates the maximum entropy policy π.
Then, it computes the state-action visitation frequency in the
Markov chain induced by the policy π.
Stage 1: Softmax policy iteration.

Algorithm 1 shows the algorithm to calculate maximum
entropy policy π(s, a). The first two steps initialize a uniform
starting policy πsoft

0 (s, a) = 1
|A(s)| , with A(s) as the set of

Algorithm 1 Softmax Bellman policy

1: The initial policy: πsoft
0 (s, a) = 1

|A(s)| , k = 0;
2: V0(s) = 0, for all s ∈ S;
3: Set temperature τ ≥ 0;
4: while ‖Vk+1 − Vk‖ ≥ ε do
5: for s ∈ S \ sterminal, and a ∈ A(s) do
6: Qk+1(s, a) = θ · φ(s, a) + γ

∑
s′∈S P (s′ | s, a)Vk(s′)

7: πsoft
k+1(s, a) =

exp(Qk+1(s,a)/τ)∑
a∈A(s) exp(Qk+1(s,a)/τ)

8: Vk+1(s) =
∑
a∈A(s)Qk+1(s, a)π

soft
k+1(s, a))

9: Vk+1(s) = 0 for s = sterminal

10: k ← k + 1
11: return πsoft(s, a)

actions available at the state s, and set initial values of all
states to be 0. Then, starting from the initial policy πsoft

0 (s, a),
Line 6–9 performs policy improvement and evaluation.

Comparing to classical policy iteration method [6], the
policy update step is replaced by a soft update: The proba-
bility of selecting action a from state s is proportional to a
weighted exponential of the state-action value, which is com-
puted from the policy evaluation. When a temperature param-
eter τ → 0, the softmax policy iteration recovers to classical
policy iteration step and is equivalent to a deterministic
policy π : S → A such that π(s) = arg maxa∈A(s)Q(s, a).
The convergence to an optimal policy using softmax policy
iteration is not guaranteed. On the other hand, large value
of τ causes the policy to approximate a uniformly random
policy. One way to enforce convergence is to adapt τ with
the step of iterations. In our case, having multiple sub-
optimal policies is actually desired because human does not
necessarily make the optimal decisions. Our idea is to use
softmax policy iteration to perform the gradient descent step
with some temperature parameters, not to solve the optimal
policy.
Stage 2: State-action pair visitation frequency.

For a given policy π(s, a), we employ the following set
of linear equations to solve the state-action pair visitation
frequency x(s, a): ∀s ∈ S,∑
a∈A(s)

x(s, a)−γ ·
∑
s′∈S

∑
a′∈A(s′)

x(s′, a′)·P (s′, a′, s) = u0(s),

and
x(s, a)∑

a′∈A(s)x x(s, a′)
= πsoft(s, a),

where u0 is the initial distribution, πsoft is the softmax policy
obtained with the current parameter θ and policy iteration,
and variable x(s, a) can be frequency of visiting state s and
taking action a. Once the set of equations is solved, we can
update the feature parameter θ by following (2).

V. DATA-DRIVEN EVALUATIONS

In this section, we evaluate our proposed inverse learning
algorithm for extract passengers’ preference reward func-
tions, with both synthetic data, and real-world urban public
transit trajectory data.



A. Evaluation configuration

We use stopping criteria as ε1 = 1e−5 for Softmax policy
iteration and ε2 = 1e−6 for Gradient Decent. Given an
agent, our inverse learning algorithm can learn a reward func-
tion θ∗ corresponding to sub-optimal policy πsoft and an ex-
pected feature count vector φsoft =

∑N−1
i=1 x(si, ai)φ(si, ai).

We measure the difference between this expected feature
count vector φsoft and the expected feature counts from
demonstrated trajectories, i.e., φ̃ = [ 1

m

∑m
i=1 φ(ρi)], with 2-

norm difference, which is referred to as feature difference.
Moreover, we can estimate an empirical policy from the his-
torical trajectory data π̃, using maximum likelihood method,
similar to how we estimate the transition probability function
(as stated in Sec III). As a second evaluation metric, we also
evaluate the difference between πsoft and π̃, using 1-norm
difference, which is called policy difference.

B. Evaluations with synthetic data

We evaluation the method first with synthetic data. First,
we construct an MDP M with user-specified numbers of
states and actions and a randomly generated transition prob-
ability function. To obtain demonstration trajectories, we
define a randomized policy π in the MDP as the expert
policy and produce a set of trajectories using the Markov
chain induced from M with the policy π. Since there is no
features discussed in Sec IV in synthetic data, we created
an artificial feature vector φs(s, a) for each state-action pair
(s, a) as follows. Each entry in φs(s, a) corresponds to a
state-action pair in the MDP M . Only the entry in φs(s, a)
corresponding to state-action pair (s, a) is 1, and other entries
are 0’s. Next, we apply our algorithm to inverse learn, from
the synthetic trajectories, a reward function. The correctness
and accuracy in the learned reward function is evaluated
through the comparison between a policy computed from
the learned reward function and the expert policy π.

Figure 4 shows the convergence of feature difference with
an MDP of 25 states and 8 actions. The number of iterations
to converge is 150, though the policy difference is not
convergent yet at that iteration number (See Figure 5). This
is reasonable, since passengers follow sub-optimal policy in
reality, and there are multiple sub-optimal policies for the
same reward function. It is note that at the iteration of 150
the policy difference reaches as low as 0.08. To test the
efficiency in the proposed algorithm, we generated MDPs
with different sizes — M1, M2, M3 — with 25 states and 8
actions, 50 states and 10 actions, 100 states and 20 actions,
respectively. For these MDPs, we randomly generate 10, 000
trajectories as input data. Moreover, we generated an MDP
M4 with the same size of M3, but 100, 000 trajectories.
Figure 5) shows interesting results: As we increase the
size of MDPs (from M1 to M3), the convergence speed
decreases. This is expected, because a larger MDP has
a larger feature parameter vector to learn from data. On
the other hand, when we increase the trajectory set, from
10, 000 (M3) to 100, 000 (M4), the accuracy (in terms of
the policy difference) improves, but the convergence rate
becomes slower. This is also expected, since more sampled

trajectories provide more accurate estimation of transition
probability functions and feature count vectors.

In Figure 6, we study the impact of discounting factor
to the rate of convergence using the MDP with 50 states
and 10 actions. Generally, as γ decreases, error increases. It
is because we use discounted state-action visiting frequency
x(si, ai) =

∑∞
t=0 γ

txt(si, ai) which can be viewed as a
weighted sum over state-action visiting frequency xt(si, ai)
at different time step t. If we denote εt as error term in
time step t, we can easily calculate error of discounted state-
action visiting frequency using ε(si, ai) =

∑∞
t=0 γ

tεt(si, ai).
Clearly, when decreasing γ, ε(si, ai) tends to contain only
short term errors which can be smaller than error accu-
mulated over a long term. For example, assume we have
a state sp that only be visited at time step 20. Then we
have

∑
a′∈A(sp) ε(sp, a

′) =
∑
a′∈A(sp) γ

20x20(sp, a
′). If γ

is small enough, we can assign any policy to sp and still
have very small error in sp.

Next, we conduct experiments to see the influence of
different temperatures on the convergence. Results are shown
in Figure 7. For the MDP with 50 states and 10 actions, we
generate 10,000 trajectories with γ = 0.7. Figure 7 shows
that error goes up when temperature is either too large or too
small. If temperature is too large, a policy tends to be equal
probability policy which certainly has a higher error. On the
other hand, if we set a small temperature, the policy tends
to be an optimal deterministic policy which has a higher
error because the demonstration policy is assumed to follow
the principle of maximum entropy and thus sub-optimal and
randomized.

C. Evaluations with real data

In this subsection, we evaluate our model on real traffic
trajectory data in Shenzhen, where we extract features in
Sec IV. The MDP includes 638 states and 80 actions for an
agent. Figure 8 and Figure 9 show accuracy and speed of
convergence. We set γ = 1 and τ = 1 for discount factor
and temperature parameters. In Figure 9, we compare our
method with Appreticeship Learning method and MaxEnt
IRL under optimal policy. The results shows that our softmax
sub-optimal method outperform those two baselines. The
IRL+OP method have the worst performance and the feature
different bounces around 0.25, which clearly indicates that
we can’t model human transit decision making process as
an optimal decision making process. Besides, comparing to
AL, our method would achieve better result and smoothier
converge. Also, We observe that our algorithm converges
very fast within 40 iterations. Moreover, within the first 10
iterations, the feature difference already converges to 10−5.
For policy difference, it converges within 40 iterations. The
policy difference is also monotonically decreasing.

Then, we use our method with different settings in terms
of discounting factor γ. Figure 10 shows that we can obtain
an optimal γ which has the lowest error. Recall that Figure 6
indicates that a smaller γ always tends to have a lower
accuracy. But in Figure 10, we can observe that the model
achieve best performance around γ = 0. This suggests that



Fig. 4. Feature difference over
iterations with synthetic data.

Fig. 5. Policy difference over
iterations with synthetic data.

Fig. 6. Policy difference vs dis-
counting factor γ with synthetic
data.

Fig. 7. Policy difference vs tem-
perature τ with synthetic data.

Fig. 8. Feature difference over
iterations with real data.

Fig. 9. Policy difference over
iterations with real data.

Fig. 10. Policy difference vs dis-
counting factor γ with real data.

Fig. 11. Policy difference vs tem-
perature τ with real data.

when passengers make transit decisions, they usually tends to
only evaluate their choice based on current status rather than
future ones. It makes sense because it is hard for passenger
to predict future without limited information.

Temperature τ makes difference in agents’ sub-optimal
decision making too, as we show in Figure 11. Similar
to Figure 7, a best τ can be found to achieve the lowest
feature difference. As we have stated, higher temperature
usually means that passengers tend to evaluate all possible
choice as the same. The optimal τ we obtain is around 6,
that implies that passengers’ preference on different features
we extract can play an importance role in passengers urban
transit decision making.

VI. CONCLUSION

In this paper, we introduce a framework of modeling and
inverse learning of human preferences in urban public transit
choices. We first develop a Markov decision process model
to characterize how passengers make sequential urban public
transit choices. Then, we propose a novel inverse learning
algorithm to extract the passengers’ personal preferences,
that integrates a softmax policy iteration into gradient descent
in the maximum entropy IRL. This modification enables
us to consider various discounting factors and different
levels of sub-optimality in passengers’ decision making.
We conducted extensive experiments using large-scale real
urban public transit data from Shenzhen, China, to evaluate
our proposed method, which yielded promising results: Our
proposed approach can extract the passenger reward function
with near-optimal policy very close to the observed passen-
ger behaviors, which strongly justifies our hypothesis that
passenger makes sub-optimal decisions.
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