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ABSTRACT
Generative models, including Variational Autoencoders, aim to find
mappings from easily sampled latent spaces to intractable observed
spaces. Such mappings allow one to generate new instances by map-
ping samples in the latent space to points in the high dimensional
observed space. However, in many real-world problems, pervasive
noise is commonplace and these corrupted measurements in the
observed spaces can lead to substantial corruptions in the latent
space. Herein, we demonstrate a novel extension to Variational
Autoencoders, which can generate new samples without access to
any clean noise-free training data and pre-denoising stages.Our work
arises from Robust Principal Component Analysis and Robust Deep
Autoencoders, and we split the input data into two parts, 𝑋 = 𝐿 + 𝑆 ,
where 𝑆 contains the noise and 𝐿 is the noise-free data which can
be accurately mapped from the latent space to the observed space.
We demonstrate the effectiveness of our model by comparing it
against standard Variational Autoencoders, Generative Adversarial
Neural Networks, and other pre-trained denoising models.
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1 INTRODUCTION
Generative models have been successfully applied to many applica-
tion domains including image and text generation, semi-supervised
learning, and domain adaption [17, 20]. Some advanced applica-
tions of generative models have been proposed such as generating
plausible images from human-written descriptions [21], and recov-
ering photo-realistic textures from heavily down-sampled images
[15]. Building good generative models of realistic images is also a
fundamental requirement of current AI systems[7].
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In particular, there are two primary generative models, Gener-
ative Adversarial Networks (GANs) [10] and Variational Autoen-
coders (VAEs) [13]. A GAN trains a generator and discriminator
at the same time until they reach Nash Equilibrium [10]. A VAE
assumes that a collection of latent variables generates all the obser-
vations [13]. Recently, various flavors of GANs and VAEs have been
proposed, which have achieved compelling results in the image
generation area [2, 20].

Most generation models depend on clean noise-free input. How-
ever, anomalies and noise are commonplace and high-quality data is
not always available in many cases [26]. Recently proposed research
with generative models either focus on removing noise from cor-
rupted input [6] or generating new images from available cleaned
data, which can be obtained from existing off-the-shelf denoising
methods [4]. This raises the question: can we combine the denoising
and generation abilities of neural networks to create clean images
from corrupted input data directly? It may seem intuitive to denoise
first, then generate new data from denoising output. However, the
final generation depends highly on the denoising, which cannot be
guaranteed to pass clear images to the generative step.

To bridge the research gap of creating realistic images from noisy
input data directly, we propose a novel denoising generative model,
Robust Variational Autoencoder (RVAE), where an enhanced VAE
takes corrupted images and generates noise-free images. Our main
contributions are summarized as follows:

• We propose an extension of VAEs to robust cases where no
clean, noise-free data is available. Such an extension allows
denoising and inferring new instances at the same time,
which, to the best of our knowledge, is a novel combination
of robust models and generative models.

• Instead of separating the denoising and generation processes,
our model integrates them. The denoising part offers clear
inputs to the generative part and the generative part provides
potential corrupted points to the denoising part.

• We demonstrate the robustness of our proposed method
using different data sets such as MNIST, fashion-MNIST,
and CelebA, where the input images are corrupted by differ-
ent noise types, including Gaussian noise and the salt-and-
pepper noise.

2 OVERVIEW AND RELATEDWORK
In this section, we outline some of the key ideas from RPCA, RDA,
and VAE. RPCA [5, 18] assumes observed instances and features are
linearly correlated, with the exception of noise and outliers. Such
a model offers a framework that can be extended and generalized
from linear feature learning to non-linear, as shown in RDA [28].
VAEs, which recently gained popularity, are generative models that
learn a mapping from a latent variable 𝑧 to the observations 𝑋 .
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And In the next section, we provide technical details of our novel
contribution to the above-mentioned problems, more specifically,
by allowing a VAE to be embedded into the denoising framework
of RPCA and RDA.

2.1 From Robust Principal Component
Analysis to Robust Deep Autoencoders

RPCA is a generalization of Principal Component Analysis (PCA)
[8] that attempts to alleviate the effects of grossly corrupted ob-
servations, which are unavoidable in real-world data. In particular,
RPCA assumes a given data matrix 𝑋 is comprised of an unknown
low-rank matrix 𝐿 and an unknown sparse matrix 𝑆 , with the goal
of discovering both 𝐿 and 𝑆 simultaneously.

In the literature, there exist commonly used approaches in which
RPCA can be treated using a tractable convex optimization as fol-
lows [5, 18]:

min
𝐿,𝑆

∥𝐿∥∗ + 𝜆∥𝑆 ∥1

s.t. ∥𝑋 − 𝐿 − 𝑆 ∥2𝐹 = 0,
(1)

where ∥ · ∥∗ is the nuclear norm which is the sum of non-zero
singular values of a matrix, ∥𝐿∥∗ =

∑𝑛
𝑖=1 𝜎𝑖 , ∥ · ∥1 is ℓ1 norm which

is the sum of absolute values, ∥𝑆 ∥1 =
∑
𝑖, 𝑗 ∥𝑆𝑖, 𝑗 ∥, and 𝜆 > 0 is a

regularization parameter to balance 𝐿 and 𝑆 .
RDA maintains a deep autoencoder’s ability to discover high-

quality non-linear features in data but also uses the principles of
RPCA to remove outliers and noise from data. The key insight of
RDA is that noise and outliers are substantially incompressible and
therefore cannot adequately be projected to a low-dimensional hid-
den layer by an autoencoder. Similar to RPCA, an RDA also splits
the input data 𝑋 into two parts, 𝐿 and 𝑆 . Here 𝐿 represents the
portion of the input data that is well represented by an autoencoder
hidden layer and 𝑆 contains noise and outliers which are difficult
to reconstruct. By removing noise and outliers from 𝑋 , the autoen-
coders can more accurately recover the remaining 𝐿. In particular,
the objective function for RDA is given by the following [28]

min
𝜃,𝑆

∥𝐿 − 𝐷𝜃 (𝐸𝜃 (𝐿))∥ + 𝜆∥𝑆 ∥1

s.t. 𝑋 − 𝐿 − 𝑆 = 0,
(2)

where 𝑆 is the anomalous data, 𝐿 is a low dimension manifold which
can be accurately reconstructed by an encoder map 𝐸 and a decoder
map 𝐷 , and 𝜆 is a parameter that tunes the level of sparsity in 𝑆 .
The first term is the objective function for a standard autoencoder,
where 𝐿 is the input, and 𝐷𝜃 (𝐸𝜃 (𝐿)) is the reconstruction of 𝐿.

2.2 Variational Autoencoders
A VAE assumes all the observed instances 𝑋 are generated from
a latent variable 𝑧 but the distribution of 𝑋 , 𝑝 (𝑋 ), is intractable
to compute with a limited number of observations. 𝑝 (𝑧) is the
prior distribution of the latent variable, 𝑞(𝑧 |𝑥) is the approximate
inference mapping and 𝑝 (𝑥 |𝑧) is the generative mapping. The VAE
parameterizes 𝑞(𝑧 |𝑥) and 𝑝 (𝑥 |𝑧) by neural networks as

𝑞(𝑧 |𝑥) = 𝐸𝜃1 (𝑥)
𝑝 (𝑥 |𝑧) = 𝐷𝜃2 (𝑧),

(3)

where 𝐸𝜃1 and 𝐷𝜃2 are two neural networks parameterized with 𝜃1
and 𝜃2 respectively. In analogy to autoencoders, 𝐸𝜃1 is called the

encoder and 𝐷𝜃2 is called the decoder. Building on ideas from [13],
the commonly used optimization function for VAE training is:

min
𝜃1,𝜃2

∥𝑋 − 𝐷𝜃2 (𝐸𝜃1 (𝑋 ))∥ + 𝐾𝐿(𝐸𝜃1 (𝑋 ) | N (0, 1)), (4)

where KL represents Kullback-Leibler divergence (KL divergence)
and the first term, ∥𝑋 − 𝐷𝜃2 (𝐸𝜃1 (𝑋 ))∥ represents the standard
autoencoder reconstruction error.

3 METHODOLOGY
In this section, we provide details of our model, RVAE, which builds
an anomaly filter into a standard VAE. The key idea of RVAE is that
noisy and clean data essentially arise from different distributions,
and therefore the generation of both noisy and clean data from
the same latent variables is highly unlikely. In particular, a VAE
assumes all instances are generated from simple, low-dimensional
distributions, but noise and anomalies share little information with
clean data. This results in large errors if one tries to infer noise
from generative mappings which are optimal on clean data.

We depict the structure of an RVAE in Figure 1, where denoising
and inferring new instances are implemented at the same time.
The noisy input is split into two parts, 𝐿 and 𝑆 . 𝐿 represents de-
sired clean data, and it is passed to a standard VAE that includes
latent variables 𝑧, inference mapping 𝑝 (𝑧 |𝐿) and generative map-
ping 𝑞(𝐿 |𝑧). Therefore, a VAE uses ℓ1 norm to separate data into
outliers, represented by 𝑆 and nominal data, represented by 𝐿. We
also provide a training algorithm for the splitting of 𝐿 and 𝑆 , which
is a non-differentiable and non-convex problem. The denoising and
generation stages finish simultaneously, as they share the same
parameters from the decoder.

Figure 1: Structure of RVAE

3.1 Robust Variational Autoencoders
Since noisy and clean data essentially arise from different distribu-
tions, the distributions of the clean data and the noise in the latent
space are also different. This key difference allows us to isolate
noise from the clean data by augmenting the VAE with a filter layer.
Similar to RDA in eq.2), an RVAE splits the input data 𝑋 into two
parts 𝑋 = 𝐿 + 𝑆 , where 𝐿 represents the part of normal data that is
well represented by a Gaussian distribution in the latent space, and
𝑆 contains noise and outliers. To achieve this property, we pose the
following RVAE optimization problem:



min
𝜃1,𝜃2,𝐿,𝑆

∥𝐿 − 𝐷𝜃2 (𝐸𝜃1 (𝐿))∥2

+𝐾𝐿(𝐸𝜃1 (𝐿) |N (0, 1)) + 𝜆∥𝑆 ∥1
s.t. 𝑋 − 𝐿 − 𝑆 = 0,

(5)

where 𝐸𝜃1 and 𝐷𝜃2 represent inference mapping 𝑞(𝑧 |𝑥) and gener-
ative mapping 𝑝 (𝑥 |𝑧) respectively, ∥𝐿 − 𝐷𝜃2 (𝐸𝜃1 (𝐿))∥2 represents
a reconstruction error of the VAE part, and 𝐾𝐿(𝐸𝜃1 (𝐿) |N (0, 1))
represents the KL-divergence, measuring differences between the
distribution of the latent variables and a Gaussian distribution. The
∥𝑆 ∥1 represents the ℓ1 norm of 𝑆 and 𝜆 controls the level of penal-
ization on 𝑆 and thus tunes the amount of data to be isolated as
noise. A small 𝜆 encourages more data to be isolated as noise, and
a large 𝜆 discourages data to be filtered into 𝑆 .

3.2 Algorithm Training
In this section, we provide the details of our algorithm for solving
the optimization problem in eq.5). The entire objective in eq.5) can
be split into three parts, ∥𝐿 − 𝐷𝜃2 (𝐸𝜃1 (𝐿))∥2, 𝐾𝐿(𝐸𝜃1 (𝐿) |N (0, 1)),
and 𝜆∥𝑆 ∥1. Each part only relies on either 𝐿 or 𝑆 . As a result, ap-
plying the Alternating Direction Method of Multipliers (ADMM)
[19] to eq.5) is more efficient than directly training it with back-
propagation[22]. In particular, the first two terms in eq.5) rely only
on 𝐿 and taken together are the optimization function for a stan-
dard VAE, which has been well implemented and has off-the-shelf
methods readily available. In addition, back-propagation is a typical
training algorithm for deep learning, and it is the method we use
for optimizing the VAE. In other words, we train the first two terms,
which only rely on 𝐿, together using the standard back-propagation
algorithm. The 𝑆 part is non-differentiable but can be phrased as
a proximal gradient problem, where the solution is offered in [3].
Also, we are inspired by the training algorithm utilized in RDA that
makes use of ADMM. We iteratively optimize the 𝐿 part, which is a
standard VAE, and the 𝑆 part, which is phrased as a proximal gradi-
ent problem. Both 𝐿 and 𝑆 training are interspersed with projections
onto the constraint manifold.

The training algorithm is provided inAlgorithm 1, where𝑚𝑖𝑛 | |𝐿−
𝐷𝜃2 (𝐸𝜃1 (𝐿)) | |2+𝐾𝐿(𝐸𝜃1 (𝐿) |𝑁 (0, 1)) is trained by back-propagation,
𝑆 = 𝑝𝑟𝑜𝑥𝜆,ℓ1 (𝑆) is the proximal methods, and both 𝐿 = 𝑋 − 𝑆 and
𝑆 = 𝑋 − 𝐿 are alternating projection steps. 𝑐1 and 𝑐2 are designed
to check the convergence of the algorithm.

4 EXPERIMENTAL RESULTS
In this section, we demonstrate the effectiveness of our proposed
RVAE on the MNIST [14], Fashion MNIST [25] and CelebA[16] data
sets. We corrupt original images with salt-and-pepper noise [23].
We also justify the robustness of the model by introducing Gaussian
noise. In the following section, we compare the RVAE with other
benchmark models and demonstrate the robustness of RVAE by
applying images with different noise ratio.

To evaluate the denoising and generation abilities of the model
from corrupted images, we compare our model with two well-
known generative models: traditional VAE and GAN. In addition,
we compared our model with three naive approaches which remove
the noise first by some well-known models such as a Low-Pass
Filter (LPF), RPCA and RDA, and then generate images from the
preprocessed images with a traditional VAE.

Figure 2: Comparison between VAE and RVAE

4.1 Results
4.1.1 Evaluation Metrics. To measure the quality of images gener-
ated by the model, we use the "Fréchet Inception Distance" (FID)
score, which is computed by considering the similarity of two dis-
tributions 𝑋1 and 𝑋2 [11]. FID score has been proven as an effective
measure, which correlates well with human’s visual inspection[11].
Mathematically, FID assumes that instances follow a continuous
multivariate Gaussian, and its formula is:

∥𝜇1 − 𝜇2∥2 +𝑇𝑟 (𝜎1 + 𝜎2 − 2
√
𝜎1 ∗ 𝜎2),

where (𝜇1, 𝜎1) and (𝜇2, 𝜎2) are the sample mean and covariance of
𝑋1 and 𝑋2. FID ranges from 0 to∞, where a small FID score indi-
cates a high similarity between 𝑋1 and 𝑋2 [11]. We calculate FID
scores based on generated images and original noise-free images to
measure the closeness between clean images and generated images
where small FID scores indicate successful generations.

4.1.2 MNIST. Figure 2 shows the quantitative comparison of gen-
eration ability between the VAE and the RVAE, where the input
contains the same level of salt-and-pepper noise. In Figure 2, a small
𝜆 indicates a large number of pixels are isolated as noise, while a
large 𝜆 means only a small part of data belongs to 𝑆 . Each cell of
the heatmap represents the difference in the FID score between the
VAE and the RVAE. Since the FID score has a negative correlation
with visual quality check for the generated images [11], a large
difference between the VAE and RVAE FID scores indicates that
the generation of the RVAE is better than the VAE. The blue areas
show that the RVAE can generate higher quality images than the
VAE due to the ℓ1 norm of 𝑆 . On average, our model shows 42.47%
improved image generation when the corruption ratio ranges from
3% to 27%, and 𝜆 value varies from 10 to 100. The best result of our
model shows 74.11% improved image generation when the 33% of
the pixels are corrupted. The generated examples of all the models
when 29% of the pixels of the raw image are corrupted are shown
in the first row at Table 1.

To evaluate the robustness of our model, we also corrupt the
images with Gaussian noise. As can be seen from Figure 3a, the
RVAE achieves a smaller FID score than the VAE when the noise is
not too large and there is a large difference between the VAE and the
RVAE with 60% corruption. Two examples are provided to show the
clear and blurry generation of the RVAE and the VAE respectively.
As the noise increases to 70% and more, both the RVAE and the



Table 1: Generated examples from the salt-and-pepper corrupted inputs of RVAE and other benchmark methods

Corrupted Image RVAE VAE GAN RPCA+VAE LPF+VAE RDA+VAE

(a) Gaussian Noise (b) Running Efficiency Comparison

Figure 3: Results

VAE cannot generate high-quality images since excess corruption
makes the input images unrecognizable.

4.1.3 Fashion MNIST. To evaluate the generative capability of the
RVAE, we test our model with another data set, Fashion MNIST.
Generated examples from 41% corrupted data are shown in the
middle row of Table 1. These pictures show that RVAE has a strong
capability to generate high visual quality images, while genera-
tive models (VAE and GAN) are unable to isolate noise and thus
fail to generate clean and realistic images. Comparing with two-
stage models, the quality of generation from RVAE is better than
RPCA+VAE and LPF+VAE, i.e. the edge of each fashion product is
much sharper and clearer in RVAE’s generation while the generated
images from RPCA+VAE and LPF+VAE are blurry and unrealistic.
Although RVAE and RDA+VAE have similar generative quality,
RVAE requires less training time to reach similar performance as
the RDA+VAE, shown in Figure 3b.

4.1.4 CelebA. In addition, to evaluate our method with non-gray-
scale images, we implement our model on an RGB multi-channel

data set, CelebA. The last row in Table 1 shows the generated
examples of our model and benchmark models when 40% of the
pixels of the raw image are corrupted. Similar to the results of
MNIST and Fashion MNIST, the RVAE shows strong capabilities to
generate better visual-quality images from CelebA data set, even
with highly corrupted inputs. One may notice that the quality of
generation from RVAE and RDA+VAE is about the same. However,
the RDA+VAE requires much longer training time to reach similar
performance as the RVAE, shown in Figure 3b. On average, the
RVAE is 38.11% faster than the RDA+VAE.

5 CONCLUSION
In this paper, we bridge the research gap between denoising and
generation and show that the RVAE can generate high-quality
images in the case where no clean, noise-free data is available. We
introduce 𝑋 = 𝐿 + 𝑆 to split noise and clean data, where 𝐿 is the
input to a standard VAE and 𝑆 is regularized by the ℓ1 norm. Our
training algorithm is inspired by ADMM [19], back-propagation
[22] and proximal methods [3]. We evaluate the effectiveness of
our model with different data sets. The experiments show that the
RVAE is faithful to its name, “robust”, which, with a wide range
of 𝜆 selection, generates reasonable images from corrupted data
with varying amounts and types of corrupting noise. Also, we
show that our integrated denoising-generative model has superior
performance over separated denoising and generation models.

Our future work will include both experimental and theoretical
directions. Testing our robust generation model in areas other than
images, such as voice and text. In our future work we also plan to
extend our work to include other generative models such as GANs.
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Algorithm 1 Training algorithm for RVAE
Input: 𝑋 ∈ 𝑅𝑁×𝑛 , 𝜖

1: Initialize 𝐿 ∈ 𝑅𝑁×𝑛 , 𝑆 ∈ 𝑅𝑁×𝑛 to be zero matrices,
𝐿 + 𝑆 = 𝑋 , and the variational autoencoder 𝐷𝜃2 (𝐸𝜃1 (·))
with randomly initialized parameters.

2: while 𝑐1 > 𝜖 and 𝑐2 > 𝜖 and iter < max_ister do
3: 𝐿 = 𝑋 − 𝑆
4: 𝑚𝑖𝑛 | |𝐿 − 𝐷𝜃2 (𝐸𝜃1 (𝐿)) | |2 + 𝐾𝐿(𝐸𝜃1 (𝐿) |𝑁 (0, 1))
5: 𝐿 = 𝐷𝜃2 (𝐸𝜃1 (𝐿))
6: 𝑆 = 𝑋 − 𝐿
7: 𝑆 = 𝑝𝑟𝑜𝑥𝜆,ℓ1 (𝑆)
8: 𝑐1 = | |𝑋 − 𝐿 − 𝑆 | |2/| |𝑋 | |2
9: 𝑐2 = | |𝐿𝑆 − 𝐿 − 𝑆 | |/| |𝑋 | |2
10: 𝐿𝑆 = 𝐿 + 𝑆
11: end while
12: return 𝐿 and 𝑆
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A ALGORITHM

B EXPERIMENT SETTING AND MORE
RESULTS

B.1 Datasets
MNIST is a standard benchmark dataset with an integer value
between 0 and 9, while Fashion MNIST is comprised of 10-class
fashion products. Both of these data sets consist of 70, 000 instances
with 784 features each. CelebA is a large-scale real-world face image
data set which contains more than 200, 000 celebrity images. Rather
than focusing on generating any specific classes of images, we
instead utilize all training samples without label information.

We corrupt original images with salt-and-pepper noise [23]. We
also justify the robustness of the model by introducing Gaussian
noise. The salt-and-pepper noise corruption works by changing
some random pixels to 0 if the original values are larger than 0.5,
and 1 if the values are smaller than 0.5. As for Gaussian noise, we
add a value drawn from a Gaussian distribution with a scaling factor
to every pixel. Each pixel is then clipped to [0, 1]. In the follow-
ing section, we compare the RVAE with other benchmark models
and demonstrate the robustness of RVAE by applying images with
different noise ratio.

B.2 Implementation Details
All the generative models for the same data set share the same
number of parameters. The layer sizes of the RVAE are 784, 512,
256, 49, 256, 512, and 784. For MNIST and Fashion MNIST, Sigmoid
is used as an activation function and the batch size of each model
is 200. We train the VAE inside the RVAE for 20 epochs, with 30
iterations per epoch, to alternate projecting onto 𝐿 and 𝑆 , thus the
total number of iterations is 600. The benchmark methods are also
trained with 600 iterations. We use Adam optimizer to optimize our
model with 1𝑒-3 as a learning rate. Since CelebA contains real color
images, we add convolutional layers to the VAE model. Specifically,
we use nine hidden layers which project the input data of CelebA
from 64× 64× 3 to 32× 32× 64, 16× 16× 128, 8× 8× 256, 4× 4× 512
and 100 dimensions with convolutional layers and decode it back
to 64 × 64 × 3 dimensions.

As mentioned above, we also include a two-stage pipeline where
we apply some well-known denoising model to remove the noise



Table 2: FID scores for MNIST

Noise RVAE VAE GAN RPCA+ LPF+ RDA+
1% 28.93 111.25 158.10 95.33 127.62 47.05
9% 43.34 141.32 324.35 101.98 142.79 49.96
17% 80.87 203.51 351.79 115.88 168.40 63.37
25% 90.15 186.20 342.96 127.98 178.87 74.57
33% 102.51 413.81 357.46 143.93 187.41 132.90
41% 172.81 313.42 406.24 141.76 335.77 189.35
49% 230.50 335.41 385.01 170.10 413.02 275.38

Table 3: FID scores for Fashion MNIST

Noise RVAE VAE GAN RPCA+ LPF+ RDA+
1% 84.99 93.80 147.98 174.84 172.16 128.13
9% 68.70 122.55 255.34 137.48 146.17 66.08
17% 82.43 144.22 280.94 144.75 164.76 77.20
25% 93.62 159.41 302.00 151.92 182.61 85.61
33% 102.42 170.86 323.75 161.19 193.26 91.60
41% 111.24 189.72 372.97 165.00 208.20 102.12
49% 120.78 213.99 405.98 172.54 216.86 110.02

Table 4: FID scores for CelebA

Noise RVAE VAE GAN RPCA+ LPF+ RDA+
10% 63.11 65.90 372.30 87.79 76.37 63.85
20% 64.46 68.68 300.84 128.64 79.21 62.66
30% 65.71 76.99 338.42 137.59 83.63 64.57
40% 66.55 89.97 416.20 87.70 86.51 64.26
50% 70.41 115.88 341.93 175.97 93.78 65.87

first, then use a standard VAE to generate images from the pre-
processed images. In particular, we pick three representative denois-
ing approaches: LPF, RPCA and RDA. LPF is a standard denoising
method and widely used in image-processing, while RPCA and
RDA are the inspirations of our RVAE model. As we introduced in
Section 2.1, both RPCA and RDA filter noise into the 𝑆 part and the

remaining part 𝐿, therefore contains less noise. In our experiment,
𝐿 is used as the cleaned image to generate new images. Our code is
available on Github at https://github.com/huiminren/RobustVAE.

B.3 Statistical Results
Table 2, 3, 4 show the quantitative comparison results with the
baseline models on all MNIST, Fashion-MNIST and CelebA. RVAE
outperforms in most experiments. One may notice that the FID
scores of the RVAE are slightly larger than RDA+VAE at Fashion-
MNIST and CelebA, the differences are small and not visually per-
ceptible in the generated examples shown in Table 1. In addition,
the RDA+VAE requires much longer training time to reach similar
performance as the RVAE, shown in Figure 3b.

C MORE RELATEDWORK
GenerativeModels andDenoisingModels are hot topics related
to our study in the literature. Though briefly introduced in Section
1, we re-summarize some of the existing works here in an organized
way.

Generative Models. Generative models have achieved attrac-
tive results in multiple areas including image generation [17, 20].
There are two main approaches in generative models, GANs [10]
and VAEs [13], which generate synthetic but realistic samples from
noise-free inputs. Although some works address the “denoising”,
such as Sønderby et. al [24] who introduced noise to the input im-
ages to improve the GANs’ stability and Im et. al [12] who injected
noise both in input and in the stochastic latent layer of VAE to
modify training criterion as an improved objective function, the
noise-free and clean inputs are still critical to their objectives.

Denoising Models. In many real problems, especially in the
area of audio, image or signal processing, the importance of de-
noising methods is never underestimated [26, 27]. In the recent
literature, some deep learning works pay attention to removing
noise from the noisy inputs [26]. Agostinelli et. al [1] proposed
an adaptive multi-column stacked sparse denoising autoencoder,
which is robust to variation in noise types. Fu et. al [9] used a
deep convolutional neural network to remove rain from a single
image. Our work goes one step further than these denoising-only
networks by allowing the generation of new realistic samples from
the cleaned images.

https://github.com/huiminren/RobustVAE
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