
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Predicting Urban Dispersal Events: A Two-Stage
Framework through Deep Survival Analysis on Mobility Data

Amin Vahedian, Xun Zhou, Ling Tong, W. Nick Street
The University of Iowa

{amin-vahediankhezerlou,xun-zhou,ling-tong,nick-street}@uiowa.edu
And

Yanhua Li
Worcester Polytechnic Institute

yli15@wpi.edu

Abstract
Urban dispersal events are processes where an unusually
large number of people leave the same area in a short period.
Early prediction of dispersal events is important in mitigating
congestion and safety risks and making better dispatching de-
cisions for taxi and ride-sharing fleets. Existing work mostly
focuses on predicting taxi demand in the near future by learn-
ing patterns from historical data. However, they fail in case of
abnormality because dispersal events with abnormally high
demand are non-repetitive and violate common assumptions
such as smoothness in demand change over time. Instead, in
this paper we argue that dispersal events follow a complex
pattern of trips and other related features in the past, which
can be used to predict such events. Therefore, we formulate
the dispersal event prediction problem as a survival analy-
sis problem. We propose a two-stage framework (DILSA),
where a deep learning model combined with survival analy-
sis is developed to predict the probability of a dispersal event
and its demand volume. We conduct extensive case studies
and experiments on the NYC Yellow taxi dataset from 2014-
2016. Results show that DILSA can predict events in the next
5 hours with F1-score of 0.7 and with average time error of
18 minutes. It is orders of magnitude better than the state-of-
the-art deep learning approaches for taxi demand prediction.

Introduction
An urban dispersal event is the process where an abnor-
mally large crowd leaves the same area within a short pe-
riod. Dispersal events can be observed after large gathering
events, such as concerts, sporting events, or protests. Un-
expected dispersal events often cause public safety risks,
congestion, and high demands of public transportation re-
sources (e.g., taxis) within a short period. Therefore, early
prediction of large dispersal events as well as the crowd size
are of great importance to a number of different parties. (1)
Public safety officials and traffic administrators can benefit
from such a technique since they could allocate resources
and make plans to mitigate potential risks or congestion.
(2) Transportation stakeholders such as taxi drivers and fleet
managers are enabled to improve profit by dispatching more
taxis to such events if they can be predicted in advance.

Thus, dispersal event prediction is non-trivial and nec-
essary. While most of the large events have schedules,

Copyright c� 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the time of dispersion often has a high level of uncer-
tainty due to varying occasions, attendees, and other fac-
tors such as weather. Moreover, many events are not planned
or have much higher attendance than expected, such as so-
cial protests and gatherings. In addition, many events are not
public and only known to special interest groups and it is not
possible for the public to collect schedules of such events.
For example, large groups of Pokemon Go game players
gather for special events in the game. Social activities or-
ganized through instant messaging tools are not public, ei-
ther. Finally, collecting and verifying schedule information
from various sources often requires costly human labor and
cannot be done in a fully automated manner.

In recent years many big mobility datasets such as taxi
trip data and For-Hire Vehicle (FHV) requests (e.g., Uber),
have become available. Automatic dispersal event predic-
tion, therefore, has become feasible. A typical solution is to
build models to predict taxi demand using the above datasets
and identify high-demand locations as dispersal events. Re-
lated research shows taxi demand has a highly predictable
pattern, when predicting near future (Zhao et al. 2016;
Xu et al. 2017; Zhang et al. 2016; Zhao et al. 2016;
Moreira-Matias et al. 2013; Davis, Raina, and Jagannathan
2016). However, that is often true only for regular demand
prediction rather than abnormally high demand. In such a
case, the assumptions of pattern repetitiveness are violated
and the methods will fail to provide a timely and accurate
prediction. In particular, their ability to make long-term fore-
cast of abnormally high demand is weak due to assumptions
that demand changes smoothly (auto-correlated) over time.

In this paper, we focus on predicting such non-periodic
and unexpected large dispersal events with abnormally high
taxi demand. Specifically, given the historical taxi trip
records and other relevant features (e.g., weather, POI), we
predict (1) when and where abnormally high taxi demand
will occur, and (2) the volume of demand in the predicted
time span of the dispersal event.

To address the limitations of related work, we propose
an alternative solution. Firstly, we treat dispersal event pre-
diction as a “Survival Analysis” problem, where we learn a
model to predict the probability of “death” (event occurs) at
each location in the future. Secondly, we argue that there
is evidence of demand abnormality during the time lead-
ing to it, which can be used to train the survival analysis

5199

(a) An anomalously high
pick-up, preceded by an
anomalously high number
of arrivals.

(b) An anomalously high
pick-up, not preceded by a
drop event.

Figure 1: Examples of abnormally large number of pick-ups.

model. The intuition is that dispersal events are often caused
by some forms of gatherings, which can indicate future ab-
normally high demand. Figure 1 (a) shows an example of
abnormally high pick-ups for a concert event at Madison
Square Garden in New York City. The dashed and solid lines
represent the anomaly scores (Neill 2009) of the drops and
the pick-ups, respectively. The large anomaly in pick-ups to-
wards the end of the event follows an anomaly in the drops
earlier. However, such patterns are not always as explicit.
Fig. 1 (b) shows such a case around McKittrick Hotel in
Manhattan, where there are no abnormal drops preceding
the dispersal event. In such cases, finding the right signals
for predicting dispersal events is more challenging.

In this paper, we make the following novel contributions:
(1) We propose a two-stage framework, using deep neural
networks to predict dispersal events. We incorporate vari-
ous features including spatial, temporal, weather, and Point
of Interest (POI) features, in addition to recent taxi pick-
up and drop observations. (2) We formulate the dispersal
event prediction problem as a survival analysis problem
(Miller Jr 2011).In the two-stage prediction framework, we
predict the time of abnormal demand using survival analysis
and then predict the demand volume. We call our method
DILSA, DIspersaL event prediction using Survival Anal-
ysis. We evaluate our methods using real-world data from
New York City. Our evaluations show our method identi-
fies dispersal events with F1-score of 0.7, while the error
for predicting the time of the dispersal event is 18 minutes
for a 5-hour prediction period. Also, our method predicts the
pick-up demand in case of anomaly with superior accuracy
compared to a baseline.

The rest of the paper is organized as follows: In the next
section we discuss the related work, followed by problem
formulation and our proposed computational solution. Then,
we present the evaluations and conclude the paper.

Related Work
Prior related work include (1) event detection and forecast-
ing, (2) taxi demand prediction, and (3) survival analysis.

Event Detection and Forecasting: Event detection has
been widely studied in various domains, including public
health, urban computing, and social network analysis. The
works (Kulldorff 1997; Kulldorff et al. 2005; Neill 2009)

and other recent works on event detection (Li, Xiong, and
Liu 2012; Hong et al. 2015) use already observed counts.
An event is defined as a region with significantly higher
counts, such as disease reports or number of taxi drops.
Social media posts and geo-tagged tweets have been used
as well to detect and forecast events such as social unrests
and protests (Zhou and Chen 2014; Chen and Neill 2014;
Liu et al. 2016; Zhang et al. 2017). Regions and time win-
dows where the frequency of certain keywords exhibit ab-
normal changes are identified as events. These works do not
use mobility data. The dynamic patterns of the events such
as gathering or dispersing are not captured.

Works (Zhou et al. 2016; Khezerlou et al. 2017; Hoang,
Zheng, and Singh 2016) use traffic flow data to detect gather-
ing events. Vahedian et al. use destination prediction to pre-
dict gathering events (Vahedian et al. 2017). However, such
methods are not applicable to dispersal events, as trajecto-
ries and traffic flow are observed only after such events.

Taxi demand prediction has been studied closely in re-
cent years, due to access to public taxi datasets (Zhao et
al. 2016). To the best of our knowledge none of the pro-
posed methods directly address the prediction problem in
case of anomaly. State-of-the-art methods for predicting taxi
demand use historical data and time series analysis. (Yao
et al. 2018) propose a deep learning framework which cap-
tures the spatial and temporal dependencies to predict taxi
demand. (Xu et al. 2017) formulate an LSTM Network to
learn the regular pattern of taxi demand. (Zhao et al. 2016)
show the regular taxi demand is highly predictable and test
different algorithms to approach the maximum accuracy.
(Zhang et al. 2016) used spatial clustering to predict demand
hotspots. They predict areas with high density of demand us-
ing DBSCAN. Such areas, despite having high demand, are
part of the regular pattern. (Moreira-Matias et al. 2013) used
streams of taxi data as time series to predict taxi demand in
the next 30-minute period. (Davis, Raina, and Jagannathan
2016) used time series analysis to solve the demand pre-
diction problem, giving recommendations to drivers. (Mukai
and Yoden 2012) used a simple multi-output ANN to predict
demand, using features created from recent demand, time
and weather information.

The above-mentioned research aims at learning the regu-
lar pattern of taxi demand in absence of anomaly. Consid-
ering the regular demand is highly predictable, in this paper,
we take on the harder challenge of predicting anomalous
taxi demand, which we believe is of greater importance.

Survival analysis is the analysis of duration of time un-
til an event. It has been applied in engineering as well as
health practices (Street 1998), for which it was originally
developed (Miller Jr 2011). To the best of our knowledge,
this is the first time survival analysis is used in the context
of urban event prediction. In this paper, we propose to use
a deep Artificial Neural Network to predict the probabilities
of survival. Predicting the probabilities of survival at differ-
ent time points using a common internal representation (the
hidden nodes of a deep ANN) allows the learned model to
share information across the time points, resulting in better
predictive results.

5200

Problem Formulation
Concepts and Definitions
We define a spatio-temporal field Z = (S, T) as a two-
dimensional geographical region S paired with a period of
time T . S is partitioned by a grid. Each grid cell l1, l2, ..., l|S|
represents a distinct location in the geographical region. T
is partitioned into fixed-length time-steps. Given Z, the lo-
cation of any moving object, can be mapped into a grid
cell in S and a time-step in T . For instance, pick-up and
drop location and time of a taxi trip can be represented by
(ls, ts, ld, td), where (ls, ts) are source location and time
and (ld, td) correspond to the destination. Pick-up count�
Cp

l,t

�
of grid cell l at time t is the number of trips with

source (l, t). Similarly, drop count
�
Cd

l,t

�
, is the number

of trips with destination (l, t). Since the drop and pick-up
counts demonstrate a periodic pattern, we define baseline
counts to represent the expected counts. Pick-up baseline�
Bp

l,t

�
of grid cell l at time t is the average of pick-up counts

at l at the same time of day. Drop baseline
�
Bd

l,t

�
is de-

fined similarly. A spatio-temporal region R = (S
R

, T
R

) is
a rectangular sub-field of S paired with a continuous sub-
set of T . The counts and baselines can be obtained for any
spatio-temporal region, defined bellow. To study the abnor-
mally high taxi demands, in this paper, we are interested in
regions, where there are significantly higher counts than ex-
pected, i.e., when Cp

R

is significantly higher than Bp

R

. We
assume Cp

R

follows a Poisson distribution and test the fol-
lowing hypotheses: H0: Cp

R

is from a Poisson distribution
of parameter Bp

R

, H1: Cp

R

is from a Poisson distribution of
a parameter larger than Bp

R

. We use the Expectation-based
Likelihood Ratio Test of (Neill 2009):

LLR(R) =

(
Cp

R

log

C

p
R

B

p
R
+ (Bp

R

� Cp

R

) if Cp

R

� Bp

R

0 otherwise
(1)

(Zhou et al. 2016) showed that LLR(R) is at ↵-level signifi-
cance if 1�Pr(X Cp

R

) ↵, where X ⇠ Poisson(Bp

R

).
Therefore, we define dispersal events:
Definition 1 There is a dispersal event at spatio-temporal

region R, if LLR(R) is significant at ↵-level.

Locations have specific attributes other than the pick-up
and drop counts. We consider two of them: weather and
Point of Interest (POI) vector. Locations have a daily max-
imum and minimum temperature, average wind speed and
total precipitation, which impact the traffic and people’s
movement. In addition, locations consists of several POIs
that can be categorized into functions. For instance, one
grid cell in S might contain many hotels and few shopping
centers, while another grid cell might contain many shop-
ping centers. The distribution of categories of POIs over the
space impacts people’s movement. Therefore, we define a
POI vector V l

= (vl1, v
l

2, ..., v
l

n

), where vl
i

is the number of
places in category i at l.

Problem Statement
Given: Spatio-temporal field Z = (S, T), historical trip
records and weather information in Z, POI vectors of S,

Figure 2: Dispersal event prediction framework.

significance threshold ↵, current time t
c

and target period
(t

c

, t
g

], Find: All the dispersal events and their (1) Start time
t
e

 t
g

of the dispersal event and (2) Demand volume Cp

Tg
,

in case of a predicted dispersal event, where T
g

= [t
e

, t
g

].
Our objective is to improve accuracy of t

e

and Cp

Tg
.

Computational Solution
Overview
Per problem statement, we predict (1) start time of dispersal
events, (2) demand during dispersal events. We propose the
framework in Fig. 2. In the learning phase, we extract fea-
tures from historical data and use them to train an event pre-
dictor based on Survival Analysis and a demand predictor. In
the prediction phase, we follow two steps. First, we use the
event predictor to predict the start time of the event. Then,
we predict the pick-up count for the period of the event.

Survival Analysis
Survival analysis analyzes the expected time until an event
happens (Miller Jr 2011). The event could be death or fail-
ure, or in this paper, a dispersal event. The analysis is pri-
marily done using the survival function defined as follows:

S(t) = Pr(E > t). (2)

In Eq. 2, S(t) is the probability of the event not happen-
ing until t (subject has survived at t). Another commonly
used function is the hazard function h(t), which is the rate
of event at time t, given that it has not occurred by then.
Hazard function is defined as follows:

h(t) =
�S0

(t)

S(t)
. (3)

�S0
(t) is the rate with which S(.) decreases at t. It is divided

by S(t), the remaining mass of survival probability, because
it is conditional to the survival of the subject at t. We use this
analysis to calculate the remaining time to dispersal events.

Feature Extraction
To do supervised learning, we need to have a training set
with instances of inputs and outputs. In this section, we de-
fine the input variables, or the building blocks of the feature
vector of the supervised learning framework. Let (l, t

c

) be

5201

the current location and time. We build the variables through
following definitions:
Definition 2 Time profile of (l, t

c

) is Ql

tc
= hd

y

, d
w

, t
c

�
t
d

i, where d
y

and d
w

are the day of the year and day of week

for t
c

, and t
d

is the first time-step of current day.

Definition 3 Weather profile of (l, t
c

) is W l

tc
=

h!, ⌘, ⇣, ✓
max

, ✓
min

i, where ! is average daily wind

speed, ⌘ is total rain fall of the day, ⇣ is total snowfall of

the day and ✓
max

and ✓
min

are the maximum and minimum

temperatures of l at t
c

.

Definition 4 Daily profile of (l, t
c

) is defined as:

M l

tc
=

*
X

t2[td,tc)

Cp

l,t

,
X

t2[td,tc)

Bp

l,t

,
X

t2[td,tc)

Cd

l,t

,
X

t2[td,tc)

Bd

l,t

+
.

(4)
The daily profile is a vector containing the sum of pick-up
and drop counts and baselines since the start of current day.
It is important, because a gradual gathering during the day
can result in an accumulation of people in l at t

c

, which
might not be obvious in individual time-steps. Next, we de-
fine the recent profile of x.
Definition 5 Recent profile of (l, t

c

) is defined as:

N l

tc
=

⌦
Cp

l,tc�⌧

, Cd

l,tc�⌧

, ..., Cp

l,tc
, Cd

l,tc

↵
(5)

where ⌧ is a parameter.

The recent profile contains all the pick-up and drop counts
of the recent ⌧ time-steps at current location. We define the
target profile as follows:
Definition 6 Target profile of (l, t

c

) is defined as:

Gl

tg
=

⌦
Bp

l,tc+1, ..., B
p

l,tg

↵
. (6)

where (t
c

, t
g

] is the target period, i.e. the time period for

which we are going to make predictions.

The target profile is the expected pick-up counts of the
prediction target time period in the future. We define the
anomaly profile as follows:
Definition 7 Anomaly profile of (l, t

c

) is defined as:

F l

tg
=

⌦
LLR(l, t

c

+ 1), ..., LLR(l, t
g

)

↵
. (7)

where (t
g

� 1, t
g

] is the target period, same as Definition 6.

The anomaly profile is consisted of the anomaly scores of
l during the target period based on Eq. 1. These values are
available during training, but not during testing. We will use
predicted anomaly scores instead, while testing.

Building the Training Sets
As in Fig. 2, we train three estimators: survival function
estimator (f

s

), anomaly profile estimator (f
a

) and disper-
sal event pick-up predictor (f

e

). In this section, we describe
how their training sets are obtained. We propose to use esti-
mators that are maintain an internal state, such as recurrent
neural networks. Thus, the order of instances in the train-
ing set matters. This order must match the order of real-time
data. Ensuring this requirement is straightforward for f

a

and

Figure 3: An example of the values of the survival function
S(.) in case of a dispersal event.

f
s

, since they are trained using all the instances. However,
it is not straightforward for f

e

, because it is not trained on
all instances. Later in this section, we will demonstrate how
this requirement is satisfied.

As mentioned earlier, we treat the dispersal event predic-
tion problem as a survival problem. Therefore, the output
vector for f

s

is the survival probabilities. In this case, the
dispersal event is the death event in the survival problem. To
this end, the survival function is defined as follows:

S(t) = Pr(Ep > t) (8)

where Ep is the time of dispersal event. In our proposed
framework, we train a model to predict S(t). For location l
and time t

c

, we use the following input vector for f
s

:

x
s

=

⌦
Ql

tc
,W l

tc
,M l

tc
, Gl

tg
, F l

tg
, V l, N i

tc
, S(t

c

)

↵
, i 2 l⇤.

(9)
We call l⇤ the surrounding area of l = (a, b) defined as the
rectangular area bounded by grid cells (a � �, b � �) and
(a+�, b+�), where � is a parameter. Input vector x

s

consists
of time, weather, daily, target and anomaly profiles and the
POI vector of (l, t

c

) and the recent profile of (l⇤, t
c

). x
s

plus
the current value of the survival function S(t

c

).
For each input vector x

s

at location l and time t
c

, we use
the following output vector:

y
s

=

⌦
S(t

c

+ 1), ..., S(t
g

)

↵
. (10)

Ideally, we would like to have a labeled event list for our
training phase. However, such lists are not available. There-
fore, we use an algorithm to obtain S(.) for a given time and
location (l, t

c

) by determining if any dispersal event has oc-
curred, or is underway in the future of t

c

. This procedure is
presented in Alg. 1. We put a limit on the length of a dis-
persal event, assuming the events that are shorter than e

min

or longer than e
max

are not interesting. Then, we test ev-
ery sub-period between t

c

� e
max

and t
g

that are longer
than e

min

, using Def. 1. The survival value will be set to
one before and zero after the start of the dispersal event.
For example, consider Fig. 3, which shows the dispersal
event of Fig. 1 (b). The first vertical line is the current time,
the second vertical line is the starting time of the dispersal
event. The survival function is set to 1 before the start of
the event and is set to zero afterwards. Alg. 1 calculates the
survival function. (t

c

� e
max

, t
c

+ t
g

) has exponential num-
ber of sub-periods. However, we are only interested in the
earliest dispersal event, because the survival function will

5202

be zero afterwards. Alg. 1 takes advantage of this fact and
runs in O(nm), where n is the length of time being searched
(end� start) and m is the number of different lengths sub-
periods can have (e

max

� e
min

).
x
s

and y
s

are obtained for every spatio-temporal grid cell
in Z. They constitute the training set for y

s

= f
s

(x
s

) for
estimating the survival function. We will discuss how we
use f

s

to predict the start time of dispersal events.

Algorithm 1: Calculate survival function (get St)

Input: Baselines and counts, current location l, current time
t
c

, target time t
g

Output: Survival function S(t) where t 2 (t
c

, t
g

]

1 S(.) {1}; start t
c

� e
max

; end t
g

2 for k from e
max

to e
min

do
3 for t0 2 [start, end� k] do
4 t1 t0 + k
5 if LLR(l, [t0, t1]) is significant and t1 > t

c

then
6 for t 2 [max(t0, tc), tg] do
7 S(t) 0

8 return S(.)

9 return S(.)

Although anomaly profile (F l

tg
) values are available dur-

ing training, they are not available during testing, because
we do not have the true pick-up counts in the future. While,
we train f

s

using the true anomaly profile, we have to use
predicted anomaly profile in the prediction phase. We use
f
a

to predict the anomaly profile. The input vector of f
a

is
denoted as x

a

and is shown as follows:

x
a

=

⌦
Ql

tc
,W l

tc
,M l

tc
, Gl

tg
, F l

(tc�⌧,tc]
, V l, N i

tc

↵
, i 2 l⇤.

(11)
Where F l

(tc�⌧,tc]
is the anomaly profile in the recent time

period. Eq. 11 means that we use the time, weather, daily,
recent profiles and the POI vector, in addition to recent
anomaly values to predict the future anomaly profile.

Next, we predict the pick-up counts in case of dispersal
events, using estimator f

e

. We use an input vector with the
same elements as x

s

. The output vector of f
e

is as follows:

y
e

=

⌦
Cp

l,tc+1, ..., C
p

l,tg

↵
(12)

Although f
s

and f
e

have the same feature vectors, they are
not trained with the same sets. This is a key point in our
proposed approach. In the training set of f

e

we only include
the data instances which correspond to a dispersal event. The
reason is we will only use f

e

to predict the pick-up counts
in case of abnormally high pick-up counts. Thus, we train it
with just those instances. Alg. 2 builds the training set for
f
e

. To make sure f
e

learns a full cycle of a dispersal event in
its internal state, for each event, we include all the instances
starting from the time when the event is first observed in the
target period (line 5). For example, let t be current time and
the target period be 4 time-steps long. If the survival function
is h1, 1, 1, 0i, then the instances of time-steps [t, t+ 4) will
be included in the training set (lines 6-9).

Algorithm 2: Build dataset for f
e

(get Xe)

Input: Baselines and counts, time, weather, daily, recent,
target and anomaly profiles, POI vectors, Z = (S, T)

Output: Training set X
e

and Y
e

for f
e

1 Y
e

= An empty list; X
e

= An empty list
2 for l 2 S do
3 for t 2 T do
4 S(t) = get St(l,t)
5 if S(t

g

) = 0 AND S(t
g

� 1) = 1 then
6 for t

c

2 [t, t
g

] do
7 x

e

=
(Ql

tc ,W
l

tc ,M
l

tc , G
l

tg , F
l

tg , V
l, N i

tc), i 2
l⇤

8 y
e

= (Cp

l,tc+1, ..., C
p

l,tg
)

9 X.push back(x
e

); Y.push back(y
e

)
10 t = t

g

11 return X
e

, Y
e

Figure 4: Deep Learning structure used to learn spatial and
temporal dependencies.

DILSA: Dispersal Event Prediction using Survival
Analysis
The training sets built in the previous section contain tempo-
ral and spatial dependencies. Thus, we use a Deep Artificial
Neural Network that uses Convolutional layers to capture
spatial dependencies and LSTM layers to capture temporal
dependencies. Fig. 4 shows the employed structure.

First step in our framework is to obtain the anomaly pro-
file of the target period using f

a

, to be used in the input
vector of f

s

. Then, 1 � S(.) is the estimated cumulative
probabilities of event. Assuming S(0) = 1, we calculate the
probability of event at future time using the hazard function:

H(t) =
S(t� 1)� S(t)

S(t)
. (13)

Eq. 13 calculates the cumulative hazard of event happen-
ing between t � 1 and t given that it has not happened as
of t � 1. This value is calculated by dividing the amount of
drop in the survival function from time t�1 to t, by the total
remaining amount, which is S(t), given that S(.) monoton-
ically decreases. We predict an event, when value of H(.)
exceeds a threshold �, which is tuned using a tuning set.

Once a dispersal event is predicted, we predict the pick-up
count for the event using f

e

. Since our estimators maintain

5203

an internal state, we must make predictions in the same or-
der as training. This is not a problem for estimators f

a

and
f
s

, because they were trained using all the instances, which
is the same order of real-time data. To train f

e

, Alg. 2 estab-
lishes a specific order that must also be followed in the pre-
diction phase. In the training phase, we included instances
when the start of the event first appears in the target period,
i.e. the survival function turns to 0 in the last time-step of the
target period (S(t

g

) = 0 and S(t
g

� 1) = 1). Therefore, we
must start predicting the pick-ups using f

e

once Eq. 13 pre-
dicts the last time-step of the target period to be 0. However,
Eq. 13 might not predict the occurrence of the event until the
start time gets closer. In such a case, f

e

will not have correct
internal state. Therefore, to bring f

e

to its correct internal
state, we feed the input vectors of previous time-steps to f

e

before the input vector of current time. For example, sup-
pose we are at time t

c

and target time period is 4 time-steps
long. Then we predict a dispersal event at time t

c

+ 2. For
f
e

to make predictions for t
c

+ 2 and t
c

+ 3, we feed the
input vectors of time t

c

� 2, then t
c

� 1 to f
e

. Now f
e

has
the correct internal state to make predictions.

Alg. 3 shows the proposed dispersal event demand predic-
tor. First, the anomaly profile is obtained and used to predict
the survival function (lines 1-2). Then H(.) is calculated for
future periods and compared with threshold � to predict the
dispersal events (lines 4-9). A value of 1 in ˆy

s

[t] = 1 means
a dispersal event is predicted for t time-steps after current
time. In case of a predicted event, the internal state of f

e

is
corrected and pick-up counts are predicted (line 10-13).

Algorithm 3: Dispersal event predictor (DILSA)

Input: Estimators f
s

(.), f
a

and f
e

(.), current time t
c

, target
time t

g

, threshold �
Output: Predicted dispersal events ŷ

s

, predicted counts of the
predicted events ŷ

e

1 for l 2 S do
2 ŷ

s

[l] = {0}; ŷ
e

[l] = {�1}; x
a

=construct x
a

(l,t
c

)
3 F̂=f

a

(X
a

); x
s

=construct x
s

(l,t
c

,F̂); St = f
s

(x
s

)
4 is event=False
5 for i 2 [1, t

g

� t
c

) do
6 H = (S(i� 1)� S(i))/S(i)
7 if H � � then
8 for j 2 [i, t

g

) do
9 ŷs

j

[l] = 1

10 is event=True; event time=i; break

11 if is event then
12 Correct the internal state of f

e

13 x
e

=construct x
e

(l,t
c

,F̂)
14 ŷ

e

[l] = f
e

(x
e

)

15 Return (ŷs, ŷe)

Evaluations
Settings and Baseline Solutions
We use the trip records of Yellow Taxis in New York City
from years 2014, 2015 and 2016. This dataset contains the

Table 1: Parameter settings.

� ↵ t
g

� t
c

⌧ e
min

e
max

4 0.001 5 hrs 5 hrs 30 min 5 hrs

pick-up and drop locations and is released by New York City
Mayor’s Office 1. The weather data is obtained from the Na-
tional Centers for Environmental Information 2 from two
weather stations, Central Park and the La Guardia Airport.
The Point of Interest data is obtained from Google Maps
Places API 3, which assigns POIs into one or more of 129
categories. We partition the New York City area into a grid of
32⇥32 with cell size of 400⇥400 meters. We use 30-minute
time-steps. Every record is mapped into the grid to obtain
counts and baselines. The values of weather profile for each
spatio-temporal grid cell is an average of the measurements
reported by the two stations, weighted inversely by their dis-
tance. We train the models using year 2014 and evaluate on
2015 and 2016. All datasets are standardized by subtracting
the minimum and dividing by the maximum value of each
feature. The test sets are standardized using parameters from
the training set. Table 1 shows our parameter settings.

In table 1, t
g

� t
c

is the duration of the target period. Our
Deep Learning Network uses 4 convolutional layers with
window size of 9⇥9, 2 LSTM layers of 69 memory cells and
10 output nodes. We compare f

e

with state-of-the-art deep
learning method for taxi pick-up prediction, DMVST-Net
(Yao et al. 2018). Moreover, we use three additional base-
lines for comparison. First baseline is simple thresholding
of the survival function instead of Eq. 13, i.e. if the survival
function drops below a threshold (�), the event is predicted.
We call this baseline DIL. We tune both � and �, using a
week’s data in 2015 (� = 2.95 and � = 0.1). We also com-
pare with Multi-Layer Perceptron (MLP) and Logistic Re-
gression (LgR) models.

The estimators were trained using the stochastic gradient
descent method proposed by (Kingma and Ba 2014), with
20 epochs for f

a

and f
s

and 40 epochs for f
e

.

Case Studies
We apply the proposed method to a full dataset from 2016.
Here, we present two of the predicted events.

On March 19

th, 2016, we predicted a dispersal event at
1:00 PM around an exhibition center in Pier 92/94 in Man-
hattan. We predict the event 2.5 hours before (at 11:30 AM).
Public records show a home design exhibition at the time 4.
Fig. 5 (b) shows the predicted survival curve at 11:30 AM.
The red vertical line is the predicted time of the dispersal
event, which is inferred by Alg. 3. Fig. 5 (c) shows the pre-
dicted counts by the baseline and the proposed method. The
proposed method successfully predicts the increase, while
DMVST-Net stays close to the historical average.

1
https://opendata.cityofnewyork.us/overview/

2
https://www.ncei.noaa.gov/

3
https://developers.google.com/places/

4
https://architecturaldigest.com/story/architectural-digest-design-show-video

5204

(a) Event loca-
tion.

(b) Case 1 survival
curve.

(c) Predicted pick-up
counts vs. true counts.

Figure 5: First case study (best viewed in color).

(a) Event loca-
tion.

(b) Case 2 survival
curve.

(c) Predicted pick-up
counts vs. true counts.

Figure 6: Second case study (best viewed in color).

We also predicted a dispersal event around 12:30 PM on
June 26

th, 2016, at Jacob K. Javis Convention Center, 2.5
hours before. Public records show there was a food show at
the convention center 5. Fig. 6 (b) shows the predicted sur-
vival curve and the event prediction time, indicated by the
vertical red line. Fig. 6 (c) shows the proposed method out-
performs DMVST-Net in predicting the pick-up counts in
this case. Fig. 5 (a) and 6 (a) show heatmaps of LLR scores
based on the true counts in the predicted periods. The black
arrows show the verified locations. The figures show a clear
hotspot of pick-ups. Overall, these two case studies demon-
strate examples of DILSA successfully predicting dispersal
events and their corresponding demand.

Experiments
In this section, we first evaluate the prediction perfor-
mance of DILSA, i.e. the performance of Alg. 3 to predict
events. We compare our results with four baselines. Base-
line DMVST-Net predicts taxi demand. We apply Def. 1 to
the predicted value to determine if there is a dispersal event.
Table 2 shows that DILSA out-performs all the baselines in
terms of F1-score (0.7) and time error (18 minutes). Time er-
ror is the average difference between the true start time and
predicted start time of the correctly predicted events. A pre-
diction is considered a true positive if the predicted event pe-
riod overlaps with the true event period. The results show the
proposed survival analysis method predicts dispersal events
with high accuracy. Although DMVST-Net demonstrates
high precision, its recall is extremely low, meaning the reg-
ular patterns fail to predict accurately in case of abnormally
high demand. Moreover, the results show using the cumula-
tive hazard function of Eq. 13 in Alg. 3 has a considerable
impact on model’s performance.

5
https://specialtyfood.com/news/article/2016-summer-fancy-food-show-largest-ever/

(a) MAE. (b) MAPE.

Figure 7: Performance of the proposed pick-up counts pre-
dictor vs. baselines, on events.

Second, we compare the demand predictor f
e

to DMVST-
Net in case of dispersal events. The baseline was trained on
the same period as the previous experiment. f

e

was trained
on the dataset obtained using Alg. 2 on the same period of
time in 2014. Fig. 7 shows Mean Absolute Error (MAE) and
Mean Absolute Percentage Error (MAPE) in future time-
steps. Fig. 7 shows our proposed method out-performs the
baseline in case of a dispersal event. This experiment shows
methods proposed to capture the regular pattern of taxi de-
mand are not reliable in case of dispersal events.

Table 2: Performance comparison, DILSA vs. baselines.

DILSA DIL DMVST-Net MLP LgR

Precision 0.6 0.6 0.9 0.5 0.3
Recall 0.9 0.8 0.04 0.6 0.3

F1-score 0.7 0.7 0.08 0.5 0.3
Time error

(min.) 18.6 29.1 60 59.6 80.9

Lastly, we evaluate the impact of different features on the
performance of the models. We use Root Mean Squared Er-
ror (RMSE) as the measure. The x-axis represents future
time-steps. The letters R, D and P represent the Recent and
Daily profiles and the POI vector. The results show including
the POI vector reduces the error. Including the daily profile
does not have a significant effect on f

e

while improves the
performance of survival function predictor f

s

.

Conclusions
In this paper we solved the problem of predicting dispersal
events where a large number of people leave the same area
in a short period. Predicting such events has managerial and
business value for various stakeholders. We solved the prob-
lem as an abnormally high demand prediction problem. The

(a) Survival function predic-
tor.

(b) Abnormal demand pre-
dictor.

Figure 8: Impact of choice of features on accuracy.

5205

taxi demands in unexpected dispersal events deviate from
regular patterns and violate assumptions made by previous
techniques (e.g., auto-correlation, periodic). In this paper we
argued that dispersal events follow a complex pattern of trips
and other related features. We formulated and learned such
patterns to predict dispersal events. We formulated the dis-
persal event prediction as a survival analysis problem and
proposed a two-stage framework (DILSA), where a super-
vised model predicted the probability of “death”, i.e., the
dispersal event. The demand was then predicted in case of
a predicted event. We conducted extensive case studies and
experiments on a real dataset from 2014-2016. Our method
out-performed the baselines and predicted dispersal events
with F1-score of 0.7 and time error of 18 minutes.

Acknowledgments
This work is partially supported by the NSF under Grant
Number IIS-1566386. We gratefully acknowledge the sup-
port of NVIDIA Corporation with the donation of the Titan
Xp GPU used for this research. Yanhua Li is partly sup-
ported by NSF grant CNS-1657350, CMMI-1831140, and
an industrial grant from DiDiChuxing Research.

References
Chen, F., and Neill, D. B. 2014. Non-parametric scan statis-
tics for event detection and forecasting in heterogeneous so-
cial media graphs. In Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data

mining, 1166–1175. ACM.
Davis, N.; Raina, G.; and Jagannathan, K. 2016. A multi-
level clustering approach for forecasting taxi travel demand.
In Intelligent Transportation Systems (ITSC), 2016 IEEE

19th International Conference on, 223–228. IEEE.
Hoang, M. X.; Zheng, Y.; and Singh, A. K. 2016. Fccf:
forecasting citywide crowd flows based on big data. In Pro-

ceedings of the 24th ACM SIGSPATIAL International Con-

ference on Advances in Geographic Information Systems, 6.
ACM.
Hong, L.; Zheng, Y.; Yung, D.; Shang, J.; and Zou, L. 2015.
Detecting urban black holes based on human mobility data.
In Proceedings of the 23rd SIGSPATIAL International Con-

ference on Advances in Geographic Information Systems,
35. ACM.
Khezerlou, A. V.; Zhou, X.; Li, L.; Shafiq, Z.; Liu, A. X.; and
Zhang, F. 2017. A traffic flow approach to early detection of
gathering events: Comprehensive results. ACM Transactions

on Intelligent Systems and Technology (TIST) 8(6):74.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Kulldorff, M.; Heffernan, R.; Hartman, J.; Assunçao, R.; and
Mostashari, F. 2005. A space-time permutation scan statistic
for disease outbreak detection. PLoS medicine 2(3):216.
Kulldorff, M. 1997. A spatial scan statistic. Communica-

tions in Statistics-Theory and methods 26(6):1481–1496.
Li, Z.; Xiong, H.; and Liu, Y. 2012. Mining blackhole
and volcano patterns in directed graphs: a general approach.
Data Mining and Knowledge Discovery 25(3):577–602.

Liu, Y.; Zhou, B.; Chen, F.; and Cheung, D. W. 2016. Graph
topic scan statistic for spatial event detection. In Proceed-

ings of the 25th ACM International on Conference on Infor-

mation and Knowledge Management, 489–498. ACM.
Miller Jr, R. G. 2011. Survival analysis, volume 66. John
Wiley & Sons.
Moreira-Matias, L.; Gama, J.; Ferreira, M.; Mendes-
Moreira, J.; and Damas, L. 2013. Predicting taxi–passenger
demand using streaming data. IEEE Transactions on Intel-

ligent Transportation Systems 14(3):1393–1402.
Mukai, N., and Yoden, N. 2012. Taxi demand forecasting
based on taxi probe data by neural network. In Intelligent In-

teractive Multimedia: Systems and Services. Springer. 589–
597.
Neill, D. B. 2009. Expectation-based scan statistics for
monitoring spatial time series data. International Journal

of Forecasting 25(3):498–517.
Street, W. N. 1998. A neural network model for prognostic
prediction. In ICML, 540–546.
Vahedian, A.; Zhou, X.; Tong, L.; Li, Y.; and Luo, J. 2017.
Forecasting gathering events through continuous destination
prediction on big trajectory data. In Proceedings of the 25th

ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems, SIGSPATIAL’17, 34:1–
34:10. New York, NY, USA: ACM.
Xu, J.; Rahmatizadeh, R.; Bölöni, L.; and Turgut, D. 2017.
Real-time prediction of taxi demand using recurrent neural
networks. IEEE Transactions on Intelligent Transportation

Systems.
Yao, H.; Wu, F.; Ke, J.; Tang, X.; Jia, Y.; Lu, S.; Gong, P.;
Ye, J.; and Li, Z. 2018. Deep multi-view spatial-temporal
network for taxi demand prediction. In 2018 AAAI Confer-

ence on Artificial Intelligence (AAAI’18).
Zhang, K.; Feng, Z.; Chen, S.; Huang, K.; and Wang, G.
2016. A framework for passengers demand prediction and
recommendation. In Services Computing (SCC), 2016 IEEE

International Conference on, 340–347. IEEE.
Zhang, C.; Liu, L.; Lei, D.; Yuan, Q.; Zhuang, H.; Hanratty,
T.; and Han, J. 2017. Triovecevent: Embedding-based online
local event detection in geo-tagged tweet streams. In Pro-

ceedings of the 23rd ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, 595–604.
ACM.
Zhao, K.; Khryashchev, D.; Freire, J.; Silva, C.; and Vo, H.
2016. Predicting taxi demand at high spatial resolution: Ap-
proaching the limit of predictability. In Big Data (Big Data),

2016 IEEE International Conference on, 833–842. IEEE.
Zhou, X., and Chen, L. 2014. Event detection over twitter
social media streams. The VLDB journal 23(3):381–400.
Zhou, X.; Khezerlou, A. V.; Liu, A.; Shafiq, Z.; and Zhang,
F. 2016. A traffic flow approach to early detection of gath-
ering events. In Proceedings of the 24th ACM SIGSPATIAL

International Conference on Advances in Geographic Infor-

mation Systems, 4. ACM.

5206

