
CAC: Enabling Customer-Centered
Passenger-Seeking for Self-Driving Ride Service

with Conservative Actor-Critic
Palawat Busaranuvong

Worcester Polytechnic Institute
pbusaranuvong@wpi.edu

Xin Zhang
San Diego State University

xzhang19@sdsu.edu

Yanhua Li
Worcester Polytechnic Institute

yli15@wpi.edu

Xun Zhou∗
University of Iowa
xun-zhou@uiowa.edu

Jun Luo
Logistics and Supply Chain MultiTech R&D Centre, Hong Kong

jluo@lscm.hk

Abstract—Rapid advances in perception, planning, and
decision-making areas for self-driving vehicles have led to great
improvements in their function and capabilities and enabled
several prototypes to be driving on the roads and streets,
such as Waymo Driver, TuSimple, Nuro, etc. Among various
applications of self-driving vehicles, a promising one is the ride
service as it has the potential to improve service quality and
productivity and to provide service to anyone at any time.
Extensive studies have been conducted on self-driving planning
and safety, but few works focus on self-driving ride service
decision-making and routing. In this work, we take the lead
to study self-driving ride service planning and decision-making
problem leveraging human-generated spatial-temporal data, and
propose the data-driven Conservative Actor-Critic approach –
CAC – based on offline reinforcement learning. Our CAC is able
to make conservative decisions in a complicated environment with
multiple goal states, and avoid dangerous and overly optimistic
behaviors by exploiting human decisions. Extensive experiments
with real-world data demonstrate that our CAC-learned policies
are able to improve taxi service operation efficiency and quality
drastically in terms of shortening passenger waiting time and
improving service revenue.

Index Terms—offline reinforcement learning, spatial-temporal
data mining, actor-critic, conservative Q-learning

I. INTRODUCTION

The advancements in perception, planning, and decision-
making have revolutionized self-driving vehicles or au-
tonomous vehicles [1]. Various prototypes, such as Waymo
Driver [2], TuSimple [3], Nuro [4], etc., have been suc-
cessfully developed and can be observed operating on roads
and streets. Self-driving vehicles have extensive commercial
applications, including freight delivery [3], order fulfillment
and logistics [5], and even farming machinery [6]. However,
the development of self-driving ride services, or robotaxis,
holds significant importance. Robotaxis have the potential to
enhance road safety by reducing the number of accidents,
provide convenient and equal access to transportation for
all passengers at any time, and improve service quality and

*Corresponding author.

Fig. 1: Diverse decision preferences from human agents vs.
self-driving vehicles.

efficiency. Achieving these goals necessitates advancements in
various aspects of vehicle autonomy, especially, efficient and
intelligent passenger-seeking automation strategies.
Differences of self-driving vs. human ride services. Ride
services serve passengers and transport passengers from an
origin to a destination. Traditional ride services operated by
human agents are greatly influenced by personal constraints
for example, working preferences and proficiency. These con-
straints put limits on the ride service quality and efficiency.
Fig. 1(a) shows three human drivers’ familiar working areas
or “comfort zones”, where driver A prefers to work close to
home locations, driver B would like to serve longer trips and
seek passengers around the airport, and driver C tends to serve
around the downtown area close to shopping malls. Due to
the biased service preferences, passengers in the southwestern
location fail to be well-served. None of the three human
agents focus purely on shortening passenger waiting time and
improving the ride service quality. Unlike human agents, ride
service operated by autonomous vehicles has no prejudice,
preferences, or constraints on serving passengers. It has the
capability to provide customer-centered and equal ride services
to all passengers in all areas at any time shown in Fig. 1(b).
Literature on passenger-seeking strategy learning. Due to

a lack of historical passenger-seeking data from autonomous
vehicles, researchers turn to human passenger-seeking data to
learn decision-making strategies [7]–[10]. There has been rich
literature on learning passenger-seeking strategies utilizing
imitation learning (IL) and inverse reinforcement learning
(IRL) techniques [7]–[10]. These works model passenger-
seeking behaviors using the Markov Decision Process (MDP),
and learn human decision-making policies from the trajectories
of experienced drivers with high earning efficiency. However,
these approaches have limitations if applied to self-driving
ride service scenarios. They require significant interactions
with the real-world environment while learning, which can be
expensive and impractical. In addition, human decision prefer-
ences vary greatly among diverse decision-makers, in various
geographical locations, at different time [7]–[9]. Though ex-
perienced, human decision-makers and their objectives can be
influenced by various factors and do not necessarily prioritize
passenger-serving and profit-earning. Consequently, IRL and
IL-learned policies are adversely affected by diverse decision
preferences and fail to target improving service quality and
efficiency. Moreover, IRL or IL-learned policies have a perfor-
mance ceiling where it is unlikely to exceed the performance
of the demonstrated human agents. Therefore, IRL or IL-based
approaches cannot help design passenger-seeking plans and
strategies for self-driving passenger services.

Other approaches based on offline RL [11]–[18] try to avoid
expensive environment interactions from previously collected
data and learn policies with one unique goal. One line of
works [12], [15]–[17] value the importance of exploration
for more robust policies and apply state-independent noises
to boost exploration. Though demonstrate remarkable perfor-
mance, policies learned from them likely lead to reckless
behaviors and impair self-driving passenger service quality and
safety. Therefore, another line of works [13], [14], [18] solve
the extrapolation error problem, i.e., overestimating out-of-
distribution actions, and fully leverage given data to generate
safe and conservative behaviors. However, none of them target
the passenger-seeking problem in the self-driving ride service
setting. Therefore, we plan to leverage offline RL and design a
safe and data-driven passenger-seeking strategy for providing
high-quality self-driving passenger services in near future.

In this work, we are motivated to design a data-driven
automatic passenger-seeking strategy prioritizing improving
service quality in terms of shortening passenger waiting time
and increasing service revenue. We make the first attempt
to learn unique decision-making policies to efficiently find a
passenger leveraging a massive amount of human-generated
spatial-temporal data without interactions with the real-world
environment, and propose the innovative Conservative Actor-
Critic approach, in short CAC, based on offline reinforce-
ment learning (offline RL) [11]. CAC has the capability
to extract useful decision-making knowledge from diverse
human behaviors and demonstrations. It thus allows a robotaxi
to adapt to different environments and service scenarios to
produce optimal behaviors. Our contributions are summarized
as follows:

• To the best of our knowledge, we are the first to bring
up the autonomous vehicle passenger-seeking problem in
a spatial-temporal decision-making environment to improve
self-driving ride service quality and productivity in shorten-
ing passenger waiting time and increasing operation earning
efficiency.

• We propose an innovative data-driven Conservative Actor-
Critic (CAC) approach based on offline RL which leverages
human-generated spatial-temporal data and learns conser-
vative passenger-seeking strategies to avoid dangerous and
reckless behaviors without environment interactions.

• We validate our framework on real-world passenger-seeking
trajectory data, and our CAC shows remarkable performance
in reducing the average passenger waiting time by half,
when compared with baselines and human strategies. We
made our code and unique dataset available to contribute
to the research community Github [19].

II. OVERVIEW

In this section, we define the robotaxi passenger-seeking
problem and highlight the research challenges.

A. Human-Generated Spatial-Temporal Data for Passenger-
seeking

Human-generated spatial-temporal data (HSTD), e.g., taxi
GPS traces, records human mobility from their sequential
decisions. We leverage HSTD to learn how taxi drivers make
decisions when they are seeking passengers. HSTD from taxis
consists of multiple sequences of passenger-seeking trajecto-
ries. Each trajectory is a series of spatial-temporal states by
following a sequence of decisions as actions. We give a formal
definition of the terms we use below.
Definition 1: A state s represents a spatial-temporal location
determined by latitude lat, longitude lng, and time stamp t, i.e.
s = ⟨lat, lng, t⟩. The set of all states is denoted as S, with S =
{s}. Note that each (spatial-temporal) state is associated with
a set of decision-making-related features, e.g., traffic speed
and volume of the nearby area.
Definition 2: An action a is a decision that a human makes
to move from one state s to another state s′ in order to
complete a task. For example, a taxi driver would choose
different directions to go as an action for searching for a
passenger. They may also choose to terminate a passenger-
seeking trajectory as an action to pick up a passenger. The
space of all actions is denoted as A, i.e., A = {a}.
Definition 3: A trajectory tr is a sequence of spatial-temporal
state-action pairs that an agent takes when completing a task
in a geographic region, i.e., tr = (s1, a1, s2, a2, · · · , sT , aT),
where T is the length of trajectory tr. Moreover, Tr =
{tr1, tr2, · · · , trm} denotes a trajectory set with m trajectories
generated by diverse taxi drivers.

Note that we focus on learning from taxi drivers’ “seeking”
trajectories to acquire a good decision-making strategy, i.e.,
policy, to enable shorter passenger-waiting time and higher
income than human agents. Once a passenger is found and
picked up, a passenger-seeking process ends with an immedi-
ate reward based on the revenue from the subsequent service of

the passenger. Hence, the passenger-seeking strategy is closely
related to two functions (formally defined below): (i) reward
function (evaluating the outcome of an action) and (i) policy
function (likelihood of choosing a particular action at a state).
Definition 4: A reward r is assigned at the final state,
or goal state when a passenger is found and picked up.
It is zero along the search trajectories. Since in the self-
driving taxi service setting, service providers prioritize service
quality and efficiency, the reward has two parts: it is inversely
proportional to the time spent on looking for passengers and
is proportional to the service income. The service income is
computed based on the distance from the passenger pickup
state to the passenger drop-off state. Note that the reward r
defined here does not reflect human decision preferences, but
guides a robotaxi towards improving self-driving ride service
quality and efficiency only.
Definition 5: A policy π characterizes the probability distri-
bution to choose an action a given the current state s.

Based on the above definitions, we aim to train a robotaxi
agent with an optimal policy that is able to get the highest
reward via interacting with the environment.

B. Autonomous Vehicle Passenger-seeking Problem

Problem Definition. Given a set of passenger-seeking trajecto-
ries of diverse drivers Tr, we aim to learn a passenger-seeking
policy π achieve the highest reward r in terms of minimizing
passenger-seeking time and maximizing service revenue.
Challenges. The proposed autonomous vehicle passenger-
seeking problem is challenging in two aspects: (C1) Given
a complex passenger-seeking environment with multiple goal
states (i.e., states with passengers), how to effectively learn
a policy that is able to identify an appropriate goal state
that shortens passenger waiting time in general? (C2) How to
leverage HSTD to learn good policies without environmental
interactions while avoiding overly optimistic estimations of
unseen actions at unseen states in the dataset?

To tackle these challenges, we propose our solution in the
following sections as is shown in Fig. 2.

III. METHODOLOGY

A. Stage 1: Passenger Seeking Decision-Making Modeling

We model the taxi-driver passenger-seeking process as
a Markov decision process (MDP) following [7]–[9], [20].
An MDP is a mathematical framework to model stochastic
decision-making processes where outcomes are uncertain. It
is defined as a 5-tuple: ⟨S,A, P, r, γ⟩, where S is the set of
states, A is the set of actions, P is the transition function, r is
the reward function, and γ is the discount factor. The transition
function P (s′|s, a) tells the probability of reaching state s′ by
taking action a at state s. The reward function r : S×A → R
is the reward function that outputs a reward given the current
decision a at a state s. The discount factor γ ranges between
0 and 1, which discounts the future reward exponentially.

Fig. 2: Solution Framework.

Self-driving service reward. To prioritize service quality
and efficiency, we specify the reward as a combination of
passenger-seeking time and service income, i.e.,

r(st, at) =

{
(2− α)f(st, at) if at is terminate;
−α otherwise.

Here, the f function reflects the charging criterion in a service
city. For example, in Boston, MA in the States, a taxi costs
$2.60 basic fee and the per kilometer price for traveling is
$1.75 [21]. The f(st, at) value then evaluates the charge for a
pick up at state st in a specific city 1. In the reward function,
we penalize each time step for seeking passengers by α which
has scalar ranges between 0 and 1 to balance the influence
between passenger-seeking time and service revenue. In this
paper, we use a fixed value of α to 0.8 for training RL models
as experiment demonstrate the best model performance. We
omit the experiment results of different α due to limited space.
Trajectory aggregation. Given the above reward function
r, we aggregate the trajectories tr ∈ Tr from HSTD with
rewards. At a specific state st with action at at time step
t, the reward for such a state-action pair is evaluated with
the reward function r, i.e., rt = r(st, at). Then we ag-
gregate each decision at (st, at) with its reward rt to get
a state-action-reward triple (st, at, rt). A sequence of tra-
jectories tr as a sequence of state-action pairs can thus be
processed as a sequence of state-action-reward triple, i.e.,
τ = (s1, a1, r1, s2, a2, r2, · · · , sT , aT , rT) where T is the
trajectory length. The set of all aggregated trajectories is
denoted as T = {τ}. We further extract the trajectories
into a collection of transitions in a data buffer D, i.e.,
D = {(st, at, rt, st+1)}T−1

t=1 .
Autonomous vehicle passenger seeking problem. Given a set
of HSTD processed as a collection of aggregated trajectories
T and a reward function favoring high service quality, the
autonomous vehicles in a passenger-seeking scenario then
strive to learn a good policy π∗ that is able to attain the highest
reward when interacting with the environment, i.e., searching

1We are aware of the uncertainty in service destination and request, and
view the service distance at a state st as a static value for ease of evaluation.
This approach can also be applied in general settings considering various
service requests and destinations.

for and serving passengers. That is, the optimal policy is able
to maximize the accumulated reward, i.e.,

π∗ = argmax
π

Eτ∼π

[
T∑

t=0

γtr(st, at)

]
. (1)

Note that during training, the learner policy π has no access
to the environment.

B. Stage 2: Conservative Actor-Critic (CAC) for Autonomous
Vehicle Passenger Seeking

Leveraging HSTD and the decision-making model with
the objective in Eq. (1), we target to learn a passenger-
seeking strategy that only focuses on improving self-driving
ride service quality without environmental interactions. For
this, we turn to offline RL for solutions.
Offline RL for Autonomous Vehicle Passenger Seeking.
Various offline RL models [13], [14], [18], [22] have been
proposed to train their decision-making policies from previ-
ously collected data, rather than through trial and error in the
environment. This approach can be helpful when the collected
data is diverse and large, or when the environment is too
dangerous or costly for the agent to explore. Therefore, we
propose to apply offline RL to tackle the autonomous vehicle
passenger seeking problem. Below is a SOTA offline RL model
that can be applied to learn passenger-seeking strategies.
Conservative Q-Learning (CQL) [18] is an offline RL ap-
proach to solve the extrapolation error problem, i.e., learning
overly optimistic policies which leads to dangerous decisions.
It learns a conservative action-value estimation on out-of-
distribution decisions. Unlike traditional Q-learning [23], [24],
CQL uses a modified update rule of the Q-value function by
adding a conservative regularizer into the Bellman equation,

Q∗ ← β Es,a∼D

[
log

∑
a

exp(Q(s, a))−Q(s, a)

]
︸ ︷︷ ︸

Conservative penalty

+

min
Q

Es,a,s′∼D
[
r(s, a) + γEa′∼π(a′|s′)[Q̄(s′, a′)]−Q(s, a)

]2
.

(2)
The conservative regularizer allows it to learn a conservative

lower bound of the true value of a policy, ensuring that Q-
values on unseen actions are not overestimated. Here, β is a
hyperparameter controlling the degree of “conservativeness”,
i.e., how much to stick to offline demonstrations, during Q
function learning. The conservative penalty encourages the
learned action-value function Q to favor observed state-action
pairs (s, a), and discourages reckless trial and error which
likely leads to dangerous and overly optimistic behaviors. Note
that since the CQL is based on DQN [23], [24], it has a target
action value function denoted as Q̄ in the above equation.
Limitation of SOTA works. The CQL approach has limitations
if directly applied to our problem. The CQL solution is based
on the Deep Q-Network (DQN) model [18], which optimizes
the policy solely based on the Q-value maximization, lead-
ing to a deterministic policy. The action for each state is
determined by selecting the action with the highest Q value.

However, we desire a stochastic policy. Since the passenger-
seeking environment is highly dynamic with multiple goal
states having potential passengers, a deterministic policy likely
leads to autonomous passenger service congestion in the same
state neglecting potential services elsewhere.
CAC: Conservative Actor-Critic. Given the above limitations
to our passenger-seeking problem, we propose a new offline
RL framework, called the Conservative Actor-Critic (CAC)
model, to improve passenger service quality and efficiency.

The CAC model is an actor-critic-based approach. It consists
of two functions to be learned, i.e., an actor or policy function
π and a critic or Q function, which are updated iteratively
towards an optimal policy π∗. The offline RL CAC model
seeks to maximize the entropy of the policy, represented by
π, encouraging the exploitation of different actions in different
states observed in the large dataset. This is particularly useful
in passenger-seeking scenarios where there may be more
than one optimal action in a given state as mentioned in
the challenge (C1). Additionally, the CAC model addresses
the challenge (C2) of extrapolation errors by incorporating
a conservative regularization term into the Bellman optimal
equation when updating the critic function Q. Below we detail
our design choices for CAC.
Entropy Maximization to Encourage Exploring the Data. To
attain a stochastic policy catering to the multiple goal-states
scenario, we incorporate an entropy maximization term while
learning a policy π on top of the objective in Eq. (1), i.e.,

π∗ = argmax
π

Eτ∼π

[
T∑

t=0

γtr(st, at) + ζH(π(·|st))

]
.

Here, H(π(·|st)) = Ea∼π(st)[− log π(a|st)] is the entropy of
the policy π at state st, and the scalar ζ controls the level of
entropy maximization. The entropy term plays an important
role, as it is a measure of the randomness or uncertainty of
the policy. By maximizing the entropy of the policy, the agent
is encouraged to explore different actions in different states
observed in the dataset, rather than being overly deterministic
and sticking to a small set of actions. In addition, considering
we do not have an interactive environment, the proposed CAC
solution can only leverage given human decision data D. Thus,
in our CAC approach, the policy is optimized by maximizing
the soft-state value function of the policy following equation
(See Appx for detailed derivation),

π∗ ← max
π

Es∼D [Ea∼π [Q(s, a)− ζ log(π(a|s))]] . (3)

Based on the policy entropy maximization principle, the
state-value function and the action-value function of a policy
π at state s and action a, that is, V (s) and Q(s, a) are changed
to include the entropy term as well. We denote them as V π(s)
and Qπ(s, a) respectively to make this change clear, i.e.,

V π(s) = Ea∼π [Q(s, a)− β log(π(a|s))] ,
Qπ(s, a) = Es′∼D [r(s, a) + γV π(s′)] .

Conservative Regularization to Reduce Extrapolation Errors.
To optimize the action-value function Qπ(s, a), we apply

a temporal-difference (TD) approach. We leverage a target
action-value function of the policy π, i.e., Q̄π(s, a), and try
to minimize the TD error between the target action-value
function and the action-value function at the current state
s with action a, i.e. Qπ(s, a). The TD error TD can be
expressed as,

TD = Es,a,s′∼D
[
(Q̄π(s, a)−Q(s, a))2

]
. (4)

Here, we consider a conservative regularization term when
learning the Q function in CAC to encourage a conservative
learner policy π. Specifically, we apply the TD error in Eq. (4)
and incorporate the conservative penalty term in Eq. (2) to
learn and update the action value function Q. This results in
learning a conservative lower bound of the critic function [18].
Therefore, the action-value function objective becomes,

Q∗ ← min
Q

Es,a,s′∼D
[
(r(s, a) + γV̄ π(s′)−Q(s, a))2

]
+βEs,a∼D

[
log

∑
a

exp(Q(s, a))−Q(s, a)

]
,

(5)

and β is a hyper-parameter controlling how much the conser-
vative term will affect the Q function optimization.
Our CAC Algorithm. We model our policy or actor function
π and action-value or critic function Q as two neural networks
parameterized by ϕ and θ respectively, i.e., πϕ and Qθ. Instead
of using only one critic function, we follow the rich literature
[22], [25] to use two copies of the critic networks Qθ1 and
Qθ2 to avoid overestimating Q-values over actions by selecting
the one that estimates lower Q-values. Additionally, using
two critic networks can improve the stability of the learning
process and accelerate the convergence of the algorithm.
Therefore, our framework adopts this technique and employs
two critic networks to improve the performance. The CAC
training procedure is shown in Alg. 1.

In Alg. 1, there are 5 neural networks to be trained, i.e.,
a policy (π), 2 Q-functions Qθ1 and Qθ2 , and 2 target Q-
functions Q̄θ̄1 and Q̄θ̄2 . During training, we apply batch
gradient descent to update all networks. For each gradient
step, we sample a batch of transitions B = {(s, a, r, s′)}
from our static training buffer D (Line 2). We then compute
target Q functions at states s′ and a′, i.e., Q̄θ̄1(s

′, a′) and
Q̄θ̄2(s

′, a′). Then we select one target Q network that obtains
a lower Q value for computing the soft target Q function of the
policy Q̄π(s, a) at the current state s (Line 3). This network
will be used for updating the conservative Q-functions via
minimizing the TD error and the conservative penalty term
through gradient descent using the Adam [26] optimizer (Lines
4). With two Q-networks, the total loss is the summation of
both Qθ1 and Qθ2 losses. After that, we update the policy πϕ

by maximizing the summation of the expected return and the
expected entropy of the policy at the current state s with action
a ∼ πϕ(a|s) using gradient ascent (Line 5). Adam optimizer
is used for updating this gradient as well. Now, after every
N gradient step, we update the parameters of both target
Q networks θ̄1 and θ̄2 by replacing them with the current
parameters of Q functions θ1 and θ2, respectively (Line 6).

Algorithm 1 Conservative Actor-Critic

Require: Initial policy πϕ, Q-functions Qθ1 , Qθ2 , target Q-
functions Q̄θ̄1 , Q̄θ̄2 , and dataset D. Target parameters are
assigned as θ̄1 = θ1, θ̄2 = θ2.

Ensure: A learned policy πϕ.
1: for t in {1, ...,K} do
2: Sample a transitions batch Bt = {(s, a, r, s′)} from D.
3: Compute soft target Q function following

Q̄π(s, a) = r+γ

[
min
i=1,2

(Q̄θ̄i(s
′, a′))− ζ log(πϕ(a

′|s′))
]
.

4: Update conservative Q-functions by gradient descent as

∇θi

∑
(s,a,r,s′)∈Bt

(Q̄π(s, a)−Qθi(s, a))
2 + regi

for i = 1, 2, where

regi = βEs,a∼Bt

[
log

∑
a

exp(Qθi(s, a))−Qθi(s, a)

]
.

5: Update policy by gradient ascent with

∇ϕ

∑
s∈Bt

([
min
i=1,2

(Qθi(s, a))− ζ log(πϕ(a|s))
])

.

6: Update target parameters every N steps, i.e., θ̄i ← θi
for i = 1, 2.

7: end for
8: Return the learned policy πϕ.

IV. EXPERIMENT

We evaluate our CAC performance using the taxi trajectory
dataset representing the taxi driver’s passenger-seeking deci-
sion process. In this section, we show that our CAC approach
is able to learn passenger-seeking strategies that minimize
the passenger-seeking time (or passenger-waiting time) and
maximize ride service earning efficiency.

A. Data Description and Preparation

Taxi trajectory data were collected in July 2016 in Shen-
zhen, China, which contains GPS records from 8,572 taxis.
Every GPS record includes five attributes: a unique plate ID,
longitude, latitude, time stamp, and passenger indicator. Pas-
senger indicator contains binary values, in which 1 indicates
that a taxi is serving a passenger and 0 otherwise.

1) Map Gridding and Time Quantization.: We follow [7]–
[9] to first process GPS data into spatial-temporal grid cells.
Specifically, we partition the Shenzhen map into equal side-
length grid cells and split the time in a day into five-minute
intervals for a total of 288 intervals per day. Therefore, we
represent a taxi position in the spatial-temporal state as the
spatial-temporal grid cell.

2) State Feature Extraction & Action Specification: We
extract decision-related spatial-temporal features to represent a
state, including distance to points of interests (PoIs) and traffic
information. We specify different directions to go as actions.

Fig. 3: Points of Interests (PoIs) in Shenzhen, China.
State features: Distance to PoIs: We consider 21 important
PoIs in Shenzhen, China, including train stations, airports,
popular shopping malls, ports & checking points, and major
hospitals shown in Fig. 3. We evaluate the distances from a
grid cell s to PoIs as distance to PoIs features. Traffic features:
In the passenger-seeking process, many factors are considered,
for example, the current traffic speed, traffic volume, travel
demand, and waiting time. In addition, the traffic conditions
in the near regions also affect passenger-seeking decision-
making. Given a spatial-temporal grid cell, we consider this
traffic-related information for the current grid cell and its
neighboring 5×5 grid cells. Here, the traffic speed in a state s
is calculated from an average speed of all trajectories passing
the state s, the traffic volume estimates the average number
of taxis in a state s, the travel demand estimates the number
of passengers looking for taxis. Therefore, after performing
state feature extraction, we get the state feature vector of size
[5× 5× 5]. From now on, we call a spatial-temporal grid cell
as well as its related state features as a state for convenience.
Action space: When a taxi is at a state s, the driver can choose
an action a from 10 possible options. Each action, a ∈ A, is
to move from the current grid to one of the eight neighboring
grid cells (i.e., {↑,↗,→,↘, ↓,↙,←,↖}), stay in the current
one (i.e., ⟳), or to pick up a passenger (i.e., pickup).

3) Passenger-seeking simulation.: We created a determin-
istic passenger-seeking environment based on the above taxi
trajectory data for the comparison of approaches requiring
environmental interactions. The simulation is based on the
OpenAI FrozenLake environment [27] except that it has multi-
ple goal states (i.e. passenger-pickup states). In the goal states,
the rewards are calculated based on the passenger-seeking time
and service distance from all taxi-trajectory records. However,
to get the reward from one of the goal states, the agent must
visit that goal state and chooses the action to terminate and
pick up in this state, then the agent will get a reward. If other
actions are selected, the agent will move to the next state and
must continue searching for passengers. We open source this
simulation environment via an anonymous link [19].

B. Experiment Settings

In this section, we detail the experiment settings including
the evaluation metrics and baseline methods. We randomly
split the taxi trajectory dataset into two parts: training set (one
million trajectories), validation set (10,000 trajectories), and

testing set (10,000 trajectories). For testing, we extract and fix
the starting states (i.e., the first states from each validation/test
trajectory), and let the learned policies from each experiment
approach to generate passenger-seeking trajectories using and
starting from the extracted starting states with the simulated
environment. If a learner policy takes longer than 60-time
steps (i.e., 300 minutes) 2 while searching for a passenger, the
seeking process is stopped with zero earning. If an inaccessible
state is reached, the seeking agent will fail whose seeking time
is added with 300 minutes as a penalty. In terms of the reward
function r used during training, we set α to be 1 as we value
shortening passenger-seeking time and serving passengers as
soon as possible.
Evaluation metrics. In order to assess the effectiveness of
our proposed CAC framework in reducing passenger-seeking
times and improving ride service quality and efficiency, we
consider the following three scores:
• Average seeking time (in minutes) measures the time

elapsed from the point at which the agent begins seeking
a passenger at the initial grid cell until the point at which
it chooses to pick up a passenger.

• Earning Efficiency, EE (Yuan/hour) reflects the efficiency
of passenger-seeking processes. It is calculated as the total
income (estimated from historical data in Chinese Yuan)
divided by the total seeking time.

• Success Rate evaluates the portion of generated passenger-
seeking trajectories that successfully finds a passenger. It
is calculated based on the fraction between the number of
successful trajectories over the total number of trajectories.

Baseline Methods To compare our proposed CAC with base-
lines, we consider the IL approaches targeting human behavior
analysis, and offline RL approaches that learn passenger-
seeking strategies without environmental interactions. Note
that IL approaches require learning from demonstrations of
experienced drivers instead of random drivers in our approach,
so we prepared different training data for these approaches
accordingly 3. The details of the baselines are as below:
• Behavior Cloning (BC) [28] is a supervised learning

approach to solving the IL problem. Given human demon-
stration data as a set of state-action pairs, the learner policy
is trained by viewing states as inputs and actions as labels.

• Generative Adversarial Imitation Learning (GAIL) [10]
is an IL method consisting of a policy network mimick-
ing human behaviors, and a reward network distinguishing
between learner and human behaviors. The policy net and
reward net are adversarially and iteratively trained to obtain
an optimal learner policy producing human-like behaviors.

• Conditional Generative Adversarial Imitation Learning
(cGAIL) [8] is an IL approach based on GAIL. Unlike
GAIL which models each human agent’s decision strategy

2We chose 60 steps, i.e., 300 minutes because most of the passenger-seeking
trajectories in our taxi trajectory data end within 300 minutes.

3We follow the experiment settings in cGAIL [8] and TrajGAIL [9] to first
select 50 “expert” taxi drivers’ trajectories and utilize their demonstrations to
train the IL approaches including BC, GAIL, cGAIL, and TrajGAIL for a fair
comparison. Here “expert” taxi drivers have top earnings among all drivers
in the taxi trajectory data.

TABLE I: Performance comparison with baseline models.
Ave. Seek EE Success

Time (min) (Yuan/hour) Rate
Humans 23.69 54.70 1.00

BC 28.14 ±0.42 47.66±1.06 0.98
GAIL 27.01 ±0.53 50.30±0.98 0.99
cGAIL 26.20 ±0.62 60.33±1.03 0.95

TrajGAIL 22.17 ±0.28 62.38±0.48 0.99
CQL 18.22 ±0.30 68.48 ±1.31 0.98
SAC 15.51 ±0.24 79.74 ±1.33 0.97

CAC (Ours) 12.54 ± 0.19 100.75 ± 1.39 0.99

with a pair of policy-reward nets, it unifies and combines
each human agent’s decision strategy in one model (i.e., one
policy-reward nets pair) via a condition latent. It provides
a unifying framework to enable knowledge sharing among
multiple drivers across various geographical locations.

• Trajectory Generative Adversarial Imitation Learning
(TrajGAIL) [9] is also an IL method similar to GAIL;
however, instead of modeling the human decision-making
process as an MDP, TrajGAIL models it as a variable length
MDP. It thus models the policy and reward networks to
consider historical decision sequences as input.

• Conservative Q Learning (CQL) [18] is an offline RL
approach that leverages the Q-value to learn which state-
action pair can maximize Q. The input to the Q network is
a state s and the output is the Q vector of size R|A|.

• Soft Actor-Critic [22] is an actor-critic model in RL that
composes of a policy network and a Q network. These two
networks are iteratively updated during the training process
so that the Q network can help the policy network to better
understand the action probabilities given an input state s.

C. Performances Comparison with Baselines

Tab. I shows the performance comparison, where the mean
values and standard deviations are calculated from 10 trials
with 10 different random seeds. Note that since we only
select successful passenger-seeking trajectories for training
and testing purposes, the human success rate is 100%. For
all approaches, a higher success rate indicates a better model.

In Tab. I, our CAC model outperforms baselines in all eval-
uation aspects. The reason that IL approaches do not compete
is that their performance is upper-bounded by human demon-
strations [8]–[10], and are likely to be influenced by human
constraints in terms of working preferences and proficiency. In
general, offline RL algorithms, including CQL, SAC, and our
CAC, outperform human strategies in both shortening average
seeking time and improving earning efficiency. Specifically,
the SAC model only achieves about 97% success rate with a
longer seeking time and a lower earning efficiency in picking
up a passenger. The reason is that SAC is vulnerable to
extrapolation errors, and tends to choose out-of-distribution
actions and produce reckless behaviors. Due to the reckless
behavior, SAC trajectories are more likely to reach unseen
states during training that are inaccessible in reality (e.g., in
the sea or outside of Shenzhen, China). On the other hand,
the CQL model is able to deal with an extrapolation error
problem resulting in a higher success rate. However, it learns
a deterministic policy and only focuses on going to a specific

goal state overlooking potential passengers in other goal states.
It, therefore, struggles with decreasing the seeking time and
improving the earning efficiency. Unlike them, CAC-learned
strategies are conservative to avoid inaccessible and dangerous
states, and are open to possibilities from various goal states.

The CAC model stands out with its ability to reduce the
passenger-seeking time by half, which in turn leads to a
doubling of the earning efficiency in comparison to human
agents. The great performance of CAC is due to the addition
of a conservative regularizer to the TD error of the Discrete
SAC algorithm. This regularization helps the model to learn
the lower bound of the Q-value functions, leading to more
stabilized action sampling in test time. In addition, the success
rate of the CAC model is about 99% which is very close
to the TrajGAIL model that is allowed to interact with the
environment while learning expert drivers’ strategies.

D. Analysis of Earnings vs. Seeking Time

In this part, we give a detailed analysis of the generated
trajectories from baseline models and ours with Fig. 4 in terms
of earnings (or trip fare) and seeking time (in a log scale).
Fig. 4 shows the distributions of fare (y-axis) and seeking time
(x-axis) for all approaches, where the square plots show the
joint distribution of fare and seeking time, the upper plots show
the distribution of trajectory seeking times, and the right plots
show the distribution of trajectory fares. All the distributions
are estimated using the kernel density estimation [29]. We also
plot the average seeking time and average fare as vertical and
horizontal lines in the plots, where red lines represent average
values from human demonstrations, and the green dashed lines
represent those from baseline models and our CAC model.
In general, a higher average fare with lower seeking time
(i.e., a higher horizontal line and a more left vertical line)
represents a better model. In addition, in the square plots
of Fig. 4b 4f, there are noticeable clusters shown in the
red boxes. These clusters indicate unsuccessful trajectories
where no passengers are found with 0 trip fare. Here, the left
clusters in each image indicate unsuccessful trajectories that
are truncated before a passenger is found. The right cluster
centering around 5.7 in the x-axis (i.e., seeking time reaches
300 minutes with log(300) ≈ 5.7) in each image represents
unsuccessful trajectories that reach an inaccessible state.
Earnings vs. seeking time for offline RL models. Fig. 4
demonstrates that the passenger-seeking time for offline RL
models is lower compared to that from human-generated
trajectories. However, it is observed that the fare distributions,
shown on the right side of Fig. 4a- 4d, are almost identical,
with an average fare of approximately 21 Yuan. This is
consistent with the objective function in Eq. (1) which seeks
to maximize the cumulative discounted reward defined by
prioritizing shortening passenger-seeking time.

The seeking-time distributions for SAC, CQL, and our
CAC, models show two peaks, with the left peak of the
SAC distribution slightly higher than that of the CAC and
CQL algorithms. This suggests that the SAC policy is capable
of finding passengers slightly faster than the other policies.

(a) Human Agent (b) CAC Agent (c) SAC Agent

(d) CQL Agent (e) cGAIL Agent (f) TrajGAIL Agent
Fig. 4: Distribution plots of seeking time (in log scale, upper plots), trip fare (right plots), and seeking time (in log scale) vs.
trip fare for human agents, baseline models, and our CAC model. The red solid lines represent human agents’ average seeking
time and trip fare while the green dashed lines represent those of each algorithm. All distributions are estimated based on
Kernel Density Estimation (KDE) [29].

However, the right cluster (centering around 5.7 in log seeking
time) for the SAC model is denser than others. This highlights
the inability of the SAC model to handle the extrapolation
error problem which leads to reckless behaviors in inaccessible
regions. This leads to a higher average seeking time and lower
earning efficiency compared to the CAC policy.

We further analyze the results of CQL in Fig. 4d. Unlike
the SAC model, which learns the Q-value function from the
critic networks, the CQL model learns a conservative lower
bound of Q-values for actions. As a result, we observe that in
its unsuccessful box, the left cluster is much smaller than the
one of SAC in Fig. 4c. This means that the CQL model could
avoid unsafe or dangerous states and stay in the Shenzhen area.
Moreover, the CQL model has a higher chance of waiting for
a passenger in a grid cell similar to the human agent. That
is, both the CQL and the human agent have a similar second
peak in their seeking time distribution if Fig. 4b and 4a. This
indicates that CQL learns and picks up the human trick to
stay around the same location over time, e.g., driving around
a landmark like a park, shopping mall, or a transportation
hub so that they are likely to pick up passengers and save fuel

consumption at the same time. Therefore, the results in Fig. 4b
indicate that the CAC model is successful in balancing seeking
time and safety. By incorporating a conservative regularizer in
the TD error minimization process, the CAC model is able
to avoid visiting unsafe and inaccessible states while also
reducing passenger-seeking time.

Earnings vs. seeking time for IL models. In terms of IL-
based approaches, we only show the joint distribution plots
of the cGAIL and TrajGAIL frameworks in Fig. 4e and 4f
as other IL-based approaches demonstrate similar distribution
patterns. Overall, IL-based approaches mimic human demon-
strations and are able to pick up passengers with higher trip
fares, i.e., having higher average trip fares than offline RL
approaches and average human agents. The reason is that IL
models learn from selected human agents with high earnings
(i.e., top 50 among over 8,000 driers), and they are more likely
to go to goal states with higher income. However, considering
various human constraints in terms of decision preferences and
proficiency, the passenger-seeking time does not necessarily be
the shortest. Therefore, cGAIL and TrajGAIL learned policies
have similar or even longer passenger-seeking time.

Fig. 5: Decision-making strategies by a human agent vs. offline
RL policies.
E. Understanding CAC Passenger-seeking Trajectories

To better understand the learned passenger-seeking strate-
gies from CAC, we present two example cases below.
Decisions around a random location. Fig. 5 shows the
decision-making trajectories of a human agent and offline RL
models. It can be observed that the human agent in Fig. 5(a)
demonstrates a time-consuming back-and-forth movement,
while the policies in Fig. 5(b)-(d) exhibit more direct and
efficient strategies to reach a pickup state. The comparative
analysis between offline RL models (i.e., Fig. 5(b)-(d)) reveals
that the CAC and SAC agents exhibit similar behavior for
the initial three steps, with SAC subsequently selecting an
additional action that results in reaching the other pickup
state and longer seeking time than the CAC model that
could successfully pick up a passenger within 5 minutes.
Additionally, the results indicate that the CQL agent takes a
comparable amount of time (i.e., 30 minutes) as the human
agent in seeking a passenger. Furthermore, the initial grid
representation highlights that none of the policies choose to
move towards the gray grid cell, which is inaccessible in the
woods, and instead opt to head to the shopping mall.
Decisions around a POI. At another starting state close to
a large area of inaccessible regions (specifically, sea-colored
grey) and a harbor in Fig. 6, the SAC model struggles to
locate a passenger and strays from the Shenzhen region due to
extrapolation errors. Conversely, the CQL policy avoids this
issue, but it moves to a terminal grid in 25 minutes. This
implies that the CQL strategy favors remaining at the starting
location until the state features change, which is a good and
commercial strategy, considering its proximity to a harbor
(as shown in Fig. 6). However, faster passenger acquisition
could be achieved if the CQL moves to other states. Our CAC
model successfully picks up a passenger in the same spatial-
temporal grid as a human agent, while only making different
intermediate actions.

V. RELATED WORK

Urban computing studies urban problems, such as traffic con-
gestion, energy consumption, and pollution through data and
analytics [30]. In taxi management, research works focus on

Fig. 6: Exploring the limitations of offline RL through exam-
ples of decision-making strategies
dispatching and passenger-seeking strategies to improve driver
performance and revenue [31]–[35]. A study [36] addresses
passenger-seeking with direction recommendations. Multiple
works [37]–[39] focus on reasonable order-dispatching strate-
gies from the business platform level. All existing research
focuses on optimal deterministic strategies, while our work
focuses on practical, adaptive stochastic strategies.
Human decision learning is the process of understanding in-
dividual drivers’ unique decision-making preferences. Studies
like cGAIL [8] and TrajGAIL [7] leverage these preferences
to learn about human strategies, leading to the characterization
of good driver behaviors and improved strategies over time.
TrajGAIL [9] also models the human decision-making process,
but as variable-length Markov decision processes without
directly learning individual preferences. In our framework, we
also do not learn about human preferences, but instead, use
diverse strategies from human drivers to inform actions based
on spatial-temporal information.
Offline reinforcement learning is to train RL agents using
historical data without interactions with the environment [11]–
[18]. A challenge in offline RL is to prevent extrapolation er-
rors while training on static data. The Conservative Q-Learning
(CQL) algorithm [18] addresses this by using a conservative
penalty term to avoid overestimating Q values. However, CQL
uses a deterministic policy while our framework deals with
a more complex environment with multiple goal states and
multi-modal actions by integrating the conservative term with
a discrete SAC model for optimizing multi-modal policy.

VI. CONCLUSION

Our work presents the Conservative Actor-Critic (CAC)
framework to improve the efficiency and quality of taxi
service operations in self-driving vehicles. CAC utilizes static
passenger-seeking data from diverse taxis to reduce passenger
wait time and increase service revenue. It addresses the extrap-
olaration error problem by adding a conservative regularizer to
the action-value function objective and incorporating entropy
maximization into the policy objective. CAC reduces average
passenger waiting time by half and doubles earning efficiency
compared to human drivers, outperforming other offline RL
baselines with a higher success rate.

VII. ACKNOWLEDGEMENT

Palawat Busaranuvong and Yanhua Li were supported in
part by NSF grants IIS-1942680 (CAREER), CNS-1952085,
and DGE-2021871.

REFERENCES

[1] S. Vougioukas, “Annual review of control, robotics, and autonomous
systems,” Agricultural robotics, vol. 2, no. 1, pp. 365–392, 2019.

[2] Waymo, “Waymo driver services.” https://waymo.com/waymo-driver/,
2023.

[3] TuSimple, “Tusimple services.” https://www.tusimple.com, 2023.
[4] Nuro, “Nuro services.” https://www.nuro.ai/vehicle, 2023.
[5] L. Robotics, “Locus robotics.” https://locusrobotics.com, 2023.
[6] I. Technologies, “Innoviz technologies.” https://innoviz.tech, 2023.
[7] M. Pan, Y. Li, X. Zhou, Z. Liu, R. Song, H. Lu, and J. Luo, “Dissecting

the learning curve of taxi drivers: A data-driven approach,” in Pro-
ceedings of the 2019 SIAM International Conference on Data Mining,
pp. 783–791, SIAM, 2019.

[8] X. Zhang, Y. Li, X. Zhou, and J. Luo, “Cgail: Conditional generative
adversarial imitation learning—an application in taxi drivers’ strategy
learning,” IEEE Transactions on Big Data, vol. 8, no. 5, pp. 1288–1300,
2020.

[9] X. Zhang, Y. Li, X. Zhou, Z. Zhang, and J. Luo, “Trajgail: Trajectory
generative adversarial imitation learning for long-term decision analy-
sis,” in 2020 IEEE International Conference on Data Mining (ICDM),
pp. 801–810, IEEE, 2020.

[10] J. Ho and S. Ermon, “Generative adversarial imitation learning,” Ad-
vances in neural information processing systems, vol. 29, 2016.

[11] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” arXiv
preprint arXiv:2005.01643, 2020.

[12] T. Shi, D. Chen, K. Chen, and Z. Li, “Offline reinforcement learning
for autonomous driving with safety and exploration enhancement,” arXiv
preprint arXiv:2110.07067, 2021.

[13] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International conference on machine
learning, pp. 2052–2062, PMLR, 2019.

[14] Y. Wu, G. Tucker, and O. Nachum, “Behavior regularized offline
reinforcement learning,” arXiv preprint arXiv:1911.11361, 2019.

[15] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[16] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen,
T. Asfour, P. Abbeel, and M. Andrychowicz, “Parameter space noise for
exploration,” arXiv preprint arXiv:1706.01905, 2017.

[17] T. Xu, Q. Liu, L. Zhao, and J. Peng, “Learning to explore via meta-policy
gradient,” in International Conference on Machine Learning, pp. 5463–
5472, PMLR, 2018.

[18] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning
for offline reinforcement learning,” Advances in Neural Information
Processing Systems, vol. 33, pp. 1179–1191, 2020.

[19] Anonymous, “Cac code.” https://github.com/XinZhang525/CAC, 2023.
[20] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

MIT press, 2018.
[21] T. Calculator, “Taxi calculator.” https://www.taxi-calculator.com/taxi-

fare-boston/280, 2023.
[22] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-

policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning, pp. 1861–1870,
PMLR, 2018.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[24] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, 2016.

[25] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing Function Approx-
imation Error in Actor-Critic Methods,” Oct. 2018. arXiv:1802.09477
[cs, stat].

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[27] OpenAI, “Openai frozenlake environment.” https://gym.openai.com/
envs/FrozenLake-v0/, 2021.

[28] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” Advances in neural information processing systems, vol. 1,
1988.

[29] S. J. Sheather and M. C. Jones, “A reliable data-based bandwidth
selection method for kernel density estimation,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 53, no. 3, pp. 683–
690, 1991.

[30] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
concepts, methodologies, and applications,” ACM Transactions on In-
telligent Systems and Technology (TIST), vol. 5, no. 3, pp. 1–55, 2014.

[31] S. Ma, Y. Zheng, and O. Wolfson, “T-share: A large-scale dynamic taxi
ridesharing service,” in 2013 IEEE 29th International Conference on
Data Engineering (ICDE), pp. 410–421, IEEE, 2013.

[32] N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie, “T-finder: A recommender
system for finding passengers and vacant taxis,” IEEE Transactions on
knowledge and data engineering, vol. 25, no. 10, pp. 2390–2403, 2012.

[33] J. Yuan, Y. Zheng, L. Zhang, X. Xie, and G. Sun, “Where to find my
next passenger,” in Proceedings of the 13th international conference on
Ubiquitous computing, pp. 109–118, 2011.

[34] Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. Pazzani,
“An energy-efficient mobile recommender system,” in Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 899–908, 2010.

[35] Y. Ge, C. Liu, H. Xiong, and J. Chen, “A taxi business intelligence sys-
tem,” in Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 735–738, 2011.

[36] H. Rong, X. Zhou, C. Yang, Z. Shafiq, and A. Liu, “The rich and the
poor: A markov decision process approach to optimizing taxi driver
revenue efficiency,” in Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, pp. 2329–
2334, 2016.

[37] X. Tang, F. Zhang, Z. Qin, Y. Wang, D. Shi, B. Song, Y. Tong, H. Zhu,
and J. Ye, “Value function is all you need: A unified learning framework
for ride hailing platforms,” in Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp. 3605–3615,
2021.

[38] X. Tang, Z. Qin, F. Zhang, Z. Wang, Z. Xu, Y. Ma, H. Zhu, and J. Ye, “A
deep value-network based approach for multi-driver order dispatching,”
in Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 1780–1790, 2019.

[39] Z. Xu, Z. Li, Q. Guan, D. Zhang, Q. Li, J. Nan, C. Liu, W. Bian, and
J. Ye, “Large-scale order dispatch in on-demand ride-hailing platforms:
A learning and planning approach,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 905–913, 2018.

APPENDIX
Maximizing Eq. (3) is equivalent to the objective below,

π∗ = argmax
π

Eτ∼π

[
T∑

t=0

γtr(st, at) + ζH(π(·|st))

]
. (6)

Derivation: Since H(π(·|st)) = −Ea∼π [log(π(a|st))], we can
substitute the expanded entropy term back into Eq. (6):

π∗ = argmax
π

Eτ∼π

[
T∑

t=0

γtr(st, at)− ζEa∼π [log(π(a|st))]

]

= argmax
π

Eτ∼π

[
T∑

t=0

γtr(st, at)− ζEs∼D,a∼π [log(π(a|s))]

]
.

Defining the state-value function V (s), and the action-value
function Q(s, a) as V (s) = Eτ∼π

[∑T
t=0 γ

tr(st, at)
]
, and

Q(s, a) = Eτ∼π

[∑T
t=0 γ

tr(st, at)
∣∣s0 = s, a0 = a

]
, we can

rewrite the above expression of π∗ as,

π∗ = argmax
π

Es∼D [Ea∼π [Q(s, a)− ζ log(π(a|s))]] .

