
Self-supervised Pre-training for Robust and Generic
Spatial-Temporal Representations

Mingzhi Hu1, Zhuoyun Zhong1, Xin Zhang2, Yanhua Li1, Yiqun Xie3, Xiaowei Jia4,
Xun Zhou5, Jun Luo6

Worcester Polytechnic Institute1, San Diego State University2, University of Maryland3,
University of Pittsburgh4, University of Iowa5,

Logistics and Supply Chain MultiTech R&D Centre, Hong Kong6

mhu3@wpi.edu, zzhong3@wpi.edu, xzhang19@sdsu.edu, yli15@wpi.edu, xie@umd.edu,
xiaowei@pitt.edu, xun-zhou@uiowa.edu, jluo@lscm.hk

Abstract—Advancements in mobile sensing, data mining, and
artificial intelligence have revolutionized the collection and anal-
ysis of Human-generated Spatial-Temporal Data (HSTD), paving
the way for diverse applications across multiple domains. How-
ever, previous works have primarily focused on designing task-
specific models for different problems, which lack transferability
and generalizability when confronted with diverse HSTD. Addi-
tionally, these models often require a large amount of labeled data
for optimal performance. While pre-trained models in Natural
Language Processing (NLP) and Computer Vision (CV) domains
have showcased impressive transferability and generalizability,
similar efforts in the spatial-temporal data domain have been
limited. In this paper, we take the lead and introduce the Spatial-
Temporal Pre-Training model, i.e., STPT, which is connected
with a self-supervised learning task, to address these limitations.
STPT enables the creation of robust and versatile representations
of HSTD. We validate our framework using real-world data
and demonstrate its efficacy through two downstream tasks, i.e.,
trajectory classification and driving activity identification (e.g.,
identifying seeking vs. serving behaviors in taxi trajectories).
Our results achieve an accuracy of 83.125% (16.2% higher than
the average baseline) for human mobility identification and an
accuracy of 77.88% (13.0% higher than the average baseline) for
the human activity identification task. These outcomes underscore
the potential of our pre-trained model for diverse downstream
applications within the spatial-temporal data domain.

Index Terms—pre-training, self-supervised learning, spatial-
temporal data mining, driver identification, human decision
analysis

I. INTRODUCTION

Advancements in mobile sensing and information tech-
nologies, coupled with the proliferation of data mining and
artificial intelligence, have brought about a revolutionary shift
in the collection and analysis of Human-generated spatial-
temporal data (HSTD). This transformation has paved the way
for various applications and benefits. One notable application
is the human mobility identification models, which utilize
human trajectory data, such as GPS traces from pedestrians,
taxi drivers, and gig-workers, to identify individual users [1]–
[5]. Prominent companies like Uber [6] and Lyft [7] have
implemented these models to automatically identify drivers,
ensuring authorized operations and enhancing service safety.

GPS

Traces

Transportation

Data

Mobile

Phone Data

Pre-training

Large

HSTD

T
ra

in
in

g
 Model 2:

Human

Identification

Model 1 :

Human

Verification

Model 4:

Human

Mobility

Analysis

Seek?

Serve?

Model 3:

Traffic

Forecast

Data

Data

Data

Data

S
T

-r
ep

re
se

n
ta

ti
o
n

Downstream
Tasks

Fine-tuning

Fig. 1: Solving spatial-temporal tasks with pre-trained model.

Furthermore, numerous research works [8]–[15] rely on HSTD
to investigate, monitor and forecast the dynamic urban status
(e.g., the traffic speed and volume). By leveraging HSTD,
researchers can gain valuable insights into urban transit
planning, resource allocation, traffic management, and public
safety. Moreover, researchers delve into the study of human
mobility patterns and decision-making based on mobility
data [16]–[18]. By unveiling and analyzing the knowledge
acquired from these datasets, valuable information can be
derived to contribute to not only individual decision-makers
but also public transportation efficiency and service quality.

While the aforementioned works have demonstrated effec-
tiveness in addressing specific problems and applications, they
typically rely on disparate models and datasets tailored to each
scenario. These approaches introduce limitations concerning
model generalizability and transferability. For example, a
model designed for human identification might encounter
challenges when repurposed for predicting traffic patterns. As
a result, extra time and computation resources are needed
to deal with various problems with diverse data sources.
Moreover, task-specific models often necessitate a substantial
labeled training dataset to ensure the reliability and robustness
of the resulting model. For example, when designing an
accident alarm model, it is often challenging to obtain a
sufficient amount of traffic accident data, which can limit

the effectiveness of the model in accurately detecting and
predicting accidents.
State-of-the-art pre-trained models. The emergent pre-
trained models such as PaLM [19], LLAMA [20], GPT-
3 [21], and ChatGPT [22], have shown superb generalizability
and model transferability when pre-trained on a large dataset
equipped with billions of parameters. During training, they
leverage vast corpora and employ a self-supervised objective
(e.g., next token prediction in a sequence [23]) without human
labeling to train the large model and empower the model with
significant language understanding and generation capabilities.
They have shown great performances in various tasks like
natural language inference and paraphrasing [24]–[26], entity
recognition, and question answering [21], [27]–[29], and etc.
However, there is limited prior work [30] in designing a self-
supervised pre-trained model for spatial-temporal tasks.
Our approach. To fill this gap, we are inspired by the
success of the pre-trained language models to train a spatial-
temporal pre-trained model using self-supervised learning.
Such a model extracts knowledge from diverse HSTD (e.g.,
GPS traces, transportation data, mobile phone data), and can
be fine-tuned and applied to various downstream applications
(e.g., human verification and identification, traffic forecast, and
human mobility analysis) given a small number of training data
(for fine-tuning) as is shown in Fig. 1. We thus introduce the
Spatial-Temporal Pre-Training model, i.e., STPT, to generate
robust and generic representations from HSTD using our
novel self-supervised learning approach. Our contributions are
summarized as follows:
• We present our STPT model which captures the dis-

tinct characteristics of HSTD through our innovative self-
supervised learning training scheme. It effectively differen-
tiates among various human decision-makers and identifies
the interconnectedness within trajectories. By exploiting
the inherent complex spatial and temporal patterns in the
data, our STSP model offers comprehensive representation
learning for HSTD. (See Section III-B).

• The spatial-temporal representations from our pre-trained
model are robust and generic to support diverse spatial-
temporal downstream tasks, such as trajectory classification,
driving activity identification, etc. We design a spatial-
temporal fine-tuning algorithm to transform the spatial-
temporal pre-trained model for various downstream tasks
(See Section III-C).

• We validate our framework using real-world HSTD on
two downstream tasks, i.e., trajectory classification and
driving activity identification (i.e., identifying taxi seeking
vs. serving activities). Our result surpasses the average
baseline accuracy by 16.2% and 13.0%, highlighting the
effectiveness of our pre-trained STPT model in these tasks
(See Section IV). We made our code, unique dataset, and
implementation appendix available to contribute to the
research community via Github link.1.

1STPT page: https://github.com/mhu3/STPT

TABLE I: Notations.

Notations Descriptions
p = ⟨lat, lng, t, sta⟩ GPS record with status.
q = ⟨lat, lng, t⟩ GPS record without status.
τ = {a, (p1, p2, · · · , pn)} Trajectory.
T Trajectory set.
fpre Self-supervised pre-training model.
g, G GPS record embedding, and projection.
Epos = ⟨e1, e2, ..., en⟩ Positional embedding
L Transformer block layer number.
H The hidden size.
A Attention weights matrix.
W q ,Wk,W v Query, key and value matrices.
qi, ki, vi Query, key and value of input.
nhead Self-attention head number.

II. OVERVIEW

In this section, we introduce the spatial-temporal pre-
training problem and outline associated challenges in research.
To facilitate understanding and clarity, we provide a summary
of the notations used in this paper in Table I.

A. Human-Generated Spatial-Temporal Data

HSTD encapsulates sequential human decisions during mo-
bility. For instance, freight tracking (as GPS traces) and
automatic fare collection data (as transaction records) reveal
choices made in delivery routes or daily commutes. Hence,
HSTD can be interpreted as a series of trajectories, with hu-
mans navigating through spatial-temporal states. We formally
define these concepts subsequently.
Definition 1. (A trajectory τ). With the wide use of GPS
devices on vehicles, smartphones, smartwatches, etc., people
can generate massive spatial-temporal data anywhere anytime.
Each GPS point q consists of a location in latitude lat and
longitude lng, and a time stamp t, i.e., q = ⟨lat, lng, t⟩. A
trajectory τ is a sequence of GPS points generated by the
human agent a, denoted as τ = {a, (q1, q2, ..., qn)} and we
denote the set of trajectories as T .
Definition 2. (A driving status sta). Driving status catego-
rizes the mobility pattern of a trajectory. For instance, taxi
trajectories can be classified into two status, i.e., driving with
a passenger on board and without. Private car trajectories can
also be grouped based on purpose as commute or recreation.
Given different transit modes (e.g., private vehicles, taxis,
trains, buses, etc.), the driving status sta varies. In this paper,
we use the driving status sta to represent broad driving
conditions and scenarios. Therefore, we denote p as the GPS
record that carries the driving status information sta, i.e.,
p = ⟨lat, lng, t, sta⟩. In some downstream tasks, the driving
status sta serves as the label to be predicted.

B. Spatial-Temporal Pre-training

The spatial-temporal pre-training model, denoted as fpre,
leverages the spatial-temporal information in HSTD to enable
downstream applications including but not limited to human
behavior analysis, trajectory classification, and human activity
identification.

Input Trajectories

E
m

b
ed

d
in

g

P
ai

rs

…

Similarity

Score

STPT

GPS Records

STPT

L×

Multi-Head

Attention

𝑔1 𝑔𝑁𝞽𝑐𝑙𝑠

Input Trajectories

Fine-tuned
Head

Sub-trajectory Similarity Learning Multi–class trajectory classification

STPT

STPTShared

c

Adapter

𝑦1 𝑦𝑁c

Adapter

(a) Pre-training (b) Fine-tuning

…

Norm

Norm

MLP

…

Adapter

Fully Connected Layer

Fig. 2: STPT implementation framework which includes pre-training and fine-tuning. Utilizing identical architectural structures,
except for the output layers, the model undergoes fine-tuning on all parameters to adapt to specific tasks. Adapters enable
selective fine-tuning of a few top layers based on task requirements. Each input trajectory is marked with a unique identifier
[cls] (i.e., “classification”) at the beginning.

Definition 3. (A spatial-temporal pre-training model fpre).
A spatial-temporal pre-training model fpre is designed to
understand and internalize the spatial-temporal dependencies
inherent in HSTD. By sequentially ingesting sequences of GPS
records, it learns to map these records to outputs that carry
meaningful and task-related information. A spatial-temporal
pre-training model fpre, undergoes pre-training on a large-
scale corpus of HSTD, encompassing diverse spatial-temporal
patterns observed across various contexts and individuals.

The input to a spatial-temporal pre-training model fpre,
is a trajectory τ consisting of a sequence of GPS points,
each associated with a driving status mode sta, i.e., τ =
a, (p1, p2, ..., pn). To adapt to various downstream tasks, fpre

generates a comprehensive and generic representation y that
effectively captures the fundamental features and essential
characteristics inherent in the input trajectory.

C. Spatial-Temporal Pre-training Problem

Problem Definition. Given a set of trajectories T , the ob-
jective is to learn a spatial-temporal pre-training model fpre

that captures the spatial-temporal patterns and human decision-
making strategies reflected in the trajectories. The model
fpre should be capable of enhancing performance on various
downstream tasks when fine-tuned on task-specific data.
Challenges. The proposed self-supervised pre-training for
robust and generic spatial-temporal representations presents
two unique research challenges: (C1) How to design a self-
supervised learning scheme to train a spatial-temporal pre-
training model fpre that is able to effectively capture the
intricate details embedded in a trajectory, and take into account
the complex spatial-temporal scenarios and human decision-
making patterns? (See Section III-B) (C2) How to effectively
leverage the spatial-temporal pre-training model to enhance
performance on various downstream tasks, such as the human

mobility identification problem and the human activity distinc-
tion problem? (See Section III-C)

III. METHODOLOGY

To tackle the above challenges, we introduce our Spatial-
Temporal Pre-Training model, i.e., STPT, and illustrate its
implementation in this section. The STPT training framework
contains two steps, i.e., model pre-training and task fine-
tuning. During pre-training, the STPT model is trained via
self-supervised learning to learn the representations of the
trajectories and the dependency of the sub-trajectories to
handle the challenge C1. For fine-tuning, the STPT model
is first initialized with the pre-trained parameters and fine-
tuned using labeled data for downstream tasks to handle
the challenge C2. STPT’s overall pre-training and fine-tuning
framework are shown in Fig. 2.

A. STPT Architecture & Input Design.

To efficiently capture the local and global information em-
bedded in HSTD, our STPT employs a multi-layer transformer
encoder based on the BERT model [23] and the Vision
Transformer (ViT) [31].

The input of the model is a 1D sequence of GPS record
embedding, and the encoder extracts the latent vector zl in
each layer l. We denote the number of layers (i.e., transformer
blocks) as L, and the hidden size as H through all the layers.
We train on two model sizes: STPTBASE (H = 128, nheads =
8, L = 1) and STPTLARGE (H = 128, nheads = 16, L = 8) to
compare the impact of the parameter number in the pre-trained
model.

To create the input layer to the STPT (i.e., z0), we first
embed the sequence of GPS records in a trajectory τ through
a linear projection G to get embedding g1, g2, . . . , gN . Then,
we add position embedding to the GPS record embedding
to retain positional information, denoted as Epos. Here, a

𝒑𝟏 𝒑𝟐 𝒑𝟑 𝒑𝟒 𝒑𝟓 𝒑𝟔 𝒑𝟕 𝒑𝟖 𝒑𝟗

Output:

GPS records

embedding

+

Positional embedding

Linear Projection of Each GPS Record

𝑒0

Input: GPS

Records

Extra learnable [class] embedding

𝑒1 𝑒2 𝑒3 𝑒4 𝑒6𝑒5 𝑒9𝑒8𝑒7

Fig. 3: STPT input embedding as the sum of the GPS records
embedding and the position embedding.

standard learnable 1D position embedding is used. We append
a learnable embedding to the sequence of embedded GPS
records (z00 = ϵclass), where the state at the output of STPT
(z0L) serves as the trajectory representation y (described later
in Eq. 1). Formally, the input layer z0 can be represented as:

z0 = [ϵclass; g1; g2; . . . ; gN] + Epos,

G ∈ RN×H , Epos ∈ R(N+1)×H .

The transformer encoder, as described in [32], uses alternat-
ing layers of multi-head self-attention (MSA) and multilayer
perceptron (MLP) blocks (Eq. 1). The MSA operation involves
running nhead parallel self-attention heads and concatenating
their outputs. Each self-attention head applies the self-attention
(SA) mechanism with its own learned projection matrices
W q,W k,W v . The input sequence z ∈ RN×H is transformed
into query (q), key (k), and value (v) representations as:

[qi, ki, vi] = z ·W q
i , z ·W

k
i , z ·W v

i .

For each self-attention head, the attention weights Ai ∈ RN×N

are computed by applying the softmax function to the pairwise
dot product of the query (qi) and key (ki) representations,
divided by

√
H , i.e.,

Ai = softmax
(
qi · kTi√

H

)
.

The self-attention output SAi(z) for each head is calculated by
multiplying the attention weights Ai with the corresponding
value representation vi, i.e.,

SAi(z) = Ai · vi.

Finally, the outputs of all nhead attention heads are con-
catenated and projected using a learnable matrix WMSA ∈
RnheadH×H :

MSA(z) = Concat(SA1(z), SA2(z), · · · , SAnhead
(z))·WMSA.

Layer normalization (LN) [33] is applied before every
block, and residual connections are applied after every block
as in [34], [35]. The MLP contains two layers with a GELU
non-linearity [36]. During both pre-training and fine-tuning, a
classification head is attached to the embedding of the first

element in the last layer, i.e., z0L. The computation process of
the transformer encoder can be expressed as,

z′l = MSA(LN(zl−1)) + zl−1, for l = 1, . . . , L,

zl = MLP(LN(z′l)) + z′l, for l = 1, . . . , L,

y = LN(z0L).

(1)

B. STPT Pre-training

In this part, we pre-train our STPT model using self-
supervised learning as is shown in Fig. 2(a). To accom-
plish this, we propose a novel self-supervised sub-trajectory
similarity learning task. This task aims to unravel hidden
relationships and commonalities among sub-trajectories nested
within an entire trajectory. To accomplish this, we utilize the
STPT model, which embeds sequences of trajectories. Post-
STPT processing involves fragmenting trajectories into sub-
trajectories, facilitating their comparison and analysis, thus
enabling the learning and quantification of their similarity. In
the pre-training phase, our objective is to enhance the model’s
ability to predict the source of sub-trajectories. To this end,
given two distinct trajectories τi and τj from different sources
i and j, we extract sub-trajectories from each of them and get
their representations denoted as γi and γj respectively. We
then pair the extracted sub-trajectories and generate a label
yreal based on whether they are from the same source or not.
Specifically, if a pair of sub-trajectory representations (γi, γ

′
i)

(or (γj , γ′
j)) are from the same source i (or j), the label yreal

is 1; if otherwise (i.e., (γi, γj)), the label yreal is 0. We thus
introduce the objective function to pre-train our STPT as:

min
θ

ℓ(fpre(γs, γs′ , θ), yreal), (2)

where γs and γs′ represent pairs of sub-trajectory represen-
tations obtained from either distinct whole-day trajectories or
consistent whole-day trajectories. With this training objective,
our STPT model is able to learn representations that capture
the characteristics and patterns of specific sub-trajectories
within a full day’s trajectory.

To achieve the pre-training objective, we introduce our
STPT pre-training algorithm in Algorithm 1, where we iterate
over the training data T for E training epochs and a batch size
B. Within each epoch e and batch b, we select pairs of distinct
trajectories τi and τj from T (line 3). These trajectories are
fed into the STPT model to generate embeddings gik and gjk
for each GPS record pk in τi and τj , respectively (line 4). We
then flatten the embeddings g and order them based on sub-
trajectory length, resulting in the creation of sub-trajectory
representation sets {γi} and {γj} (line 5). Pairs of sub-
trajectory representations, including both from distinct sources
and from the same sources, i.e., (γs, γs′), are constructed
(line 6). By optimizing the pre-training loss function in Eq. 2
concerning the model parameters θeb , we refine the model’s
ability to predict whether two sub-trajectories originate from
the same source or not (line 7). Essentially, the model is
trained to determine whether the second sub-trajectory in a pair
originates from the same source as the first or if it belongs to a
different source. By training on this task, our model becomes

Algorithm 1 STPT Pre-training

Require: Training data T = {τ}; training epochs E; batch
size B.

Ensure: Pre-trained fpre
θ′ model parameters θ.

1: for e = 1, 2, . . . , E do
2: for b = 1, 2, . . . , /B do
3: Sample a pair of distinct trajectories τi and τj of

length N from T .
4: Feed τi and τj into STPT, to obtain the embedding

gik = G(pik) and gjk = G(pjk) for each GPS record
pk in τi and τj , respectively, where k = 1, 2, · · · , N .

5: Flatten the embedding gk of each GPS record and
order the set of the embeddings based on the sub-
trajectory length to generate sub-trajectory represen-
tation sets {γi} and {γj}.

6: Construct pairs of sub-trajectory representations
(γs, γs′), where γs ∈ {γi} ∪ {γj} and γs′ ∈ {γi} ∪
{γj}.

7: Update the model parameters θeb by optimizing Eq. 2
where γs and γs′ are pairs of sub-trajectory.

8: end for
9: end for

10: Return the pre-trained model fpre
θ with updated parameter

θ′ = θE,|T |/B .

adept at capturing the dependency and similarity between sub-
trajectories within an entire day’s trajectory. This enables us
to gain deeper insights into the spatial-temporal patterns and
relationships present in the trajectory data, leading to enhanced
trajectory analysis and understanding.

C. STPT Fine-tuning

After pre-training our STPT model on HSTD, we extend
its functionality by appending task-specific layers to adapt
to various downstream tasks. STPT fine-tuning enables an
effective transfer of knowledge from the STPT model, thereby
enhancing the performance of subsequent spatial-temporal
tasks. To fine-tune the models, we optimize a task-specific
loss function in the general form as,

min
θ,ϕ

Ey,d∈D[ℓ(f(d, θ, ϕ), y)]. (3)

Here, θ and ϕ are parameters of our pre-trained STPT model
and task-specific layers respectively. We use f(·, θ, ϕ) to
denote the task-specific model with both the pre-trained STPT
part and task-specific layers. d ∈ D is a training data instance
from the fine-tuning training data set D, and y is the label.

The generic fine-tuning algorithm, applicable across diverse
tasks, is detailed in Algorithm 2. The algorithm iterates over
the training data D for E epochs given a batch size B. Within
each epoch, it samples a batch of B data samples as De

b from
D (line 4). The sampled batch De

b is then fed into the STPT
model to generate spatial-temporal representations. These rep-
resentations then go through the task-specific layers to produce
predictions (line 5). The parameters θeb and ϕe

b , representing

Algorithm 2 STPT Fine-tuning

Require: Training data D = {d}; training epochs E; batch
size B.

Ensure: Task-specific fine-tuned θ and ϕ.
1: Initialize the STPT model in fine-tuning with pre-trained

parameters θ and task-specific classifier parameters ϕ.
2: for e = 1, 2, . . . , E do
3: for b = 1, 2, . . . , |D|/B do
4: Sample a batch of B training data De

b from D.
5: Feed the sampled batch De

b to STPT and the task-
specific layers.

6: Update θeb and ϕe
b based on the objective in Eq. 3.

7: end for
8: end for

the pre-trained and task-specific parameters, respectively, are
updated by minimizing the task-specific loss function in Eq 3
(line 6). The algorithm iterates through all the instances in
the training data for E epochs, updating the parameters to
optimize the task-specific prediction.

Next, we take two tasks, i.e., trajectory classification and
driving activity identification, as examples and illustrate how
STPT adapts to downstream tasks.
Trajectory Classification. Trajectory classification refers to
the task of categorizing trajectories into different predefined
classes or categories based on their underlying characteristics
or patterns. In our approach, we leverage the robust capabilities
of the STPT model to effectively handle the task of trajectory
classification. More specifically, a multi-class classifier is
attached to the top of the STPT model’s output embedding
r. Given a trajectory τ , we calculate the probability of it
belonging to class c following:

P (c|τ) = softmax(U c · r + bc).

In this equation, U c and bc represent the parameters of the
classifier for class c. During fine-tuning, we borrow the param-
eters from the pre-trained spatial-temporal model as is shown
in Fig. 2 (b). This approach allows us to effectively classify
trajectories and gain insights into the underlying patterns and
behaviors present in the trajectory data.
Driving Activity Identification. Another downstream task we
consider is the distinction between ‘seeking’ and ‘serving’
segments within a taxi driver’s trajectory. ‘Seeking’ segments
correspond to the portions of the trajectory where a taxi driver
is looking for a customer or heading towards a customer’s
location; whereas ‘serving’ segments correspond to when the
driver is transporting a customer. This task is critical for ride-
hailing services as it directly impacts the efficiency of taxi
operations. To adapt the STPT model to this task, we attach
a binary classifier to the STPT’s output embedding r. Given
a trajectory segment s, the probability of it being a ‘serving’
segment or a ‘seeking’ segment is calculated as,

P (‘serving’|s) = σ(Us · r + bs),

P (‘seeking’|s) = 1− P (‘serving’|s).

where Us and bs are the parameters of the classifier, and σ(·)
denotes the sigmoid function. During fine-tuning, we optimize
the binary cross-entropy loss between the predicted and true
labels (‘seeking’ or ‘serving’). Utilizing STPT as the backbone
model, we add a task-specific binary classifier during fine-
tuning, designed to address the seeking or serving task and
customized for the task requirements.

IV. EXPERIMENTS

In this section, we evaluate the performances of the pre-
trained model STPT using the taxi GPS dataset collected in
Shenzhen, China in July 2016, and two downstream tasks
i.e., multi-class classification task and seeking vs. serving
trajectory distinction task. We compare with other baselines to
demonstrate that (i) our proposed pre-trained model STPT is
able to improve the prediction accuracy of downstream tasks,
and (ii) it is able to enhance efficiency in fine-tuning tasks,
resulting in accelerated processing speed.

A. Data Description and Preparation

Our work takes two urban data sources as input, including
(1) taxi GPS trajectory data and (2) road map data. Both
datasets were collected in Shenzhen, China in 2016.
Taxi trajectory data is generated from 20,000 unique taxis in
Shenzhen, China, from July to December, half-year 2016. Each
taxi is equipped with a GPS unit that records one GPS point
approximately every 40 seconds. The dataset collects about
51 million GPS records each day, with each record consisting
of five primary data fields: latitude, longitude, a unique taxi
identifier, a timestamp, and a driving status mode. The driving
status mode is to signify whether a passenger is aboard, with 1
representing a passenger on board and 0 indicating otherwise.
Road map data provides the layout of Shenzhen, covering the
area between 22.44◦ to 22.87◦ latitude and 113.75◦ to 114.63◦

longitude. The data is sourced from OpenStreetMap [37],
comprising approximately 21,000 roads across six levels.
Map gridding and time quantization. To ensure the anonymity
of the data and mitigate the potential for re-identification, we
discretize the trajectories using data anonymization techniques.
Specially, we adopt a standard quantization method, partition-
ing the Shenzhen area into grid cells with equal side-lengths
of 0.01◦ in both latitude and longitude [5], [38], [39]. This
approach safeguards individual identities while maintaining
the usefulness of the data. Fig. 4 shows the gridding result
in Shenzhen, China, where grids colored in dark grey are
inaccessible as they are on the sea.

After filtering out cells located in the ocean, unreachable
from the city, and other irrelevant cells, we have a total of
1,934 valid cells. We further divide each day into five-minute
intervals for a total of 288 intervals per day. These intervals are
denoted as I =

{
t̃k
}

, with 1 ⩽ k ⩽ 288. A spatial-temporal
region r is a pair of a grid cell g and a time interval t̃k with the
status sta, which is set to 0 if there is no passenger onboard,
and to 1 if the driver is serving a passenger. Each GPS
record denoted as p = ⟨lat, lng, t, sta⟩, can be mapped to an
aggregated state S =

〈
g, t̃k, sta

〉
. Consequently, a trajectory of

2.1 DYNAMIC HUMAN PREFERENCE ANALYTICS FRAMEWORK

Figure 2.5: Shenzhen road map Figure 2.6: Map gridding

Problem Definition. In a time interval T0 i.e., 1 month, given a taxi driver’s trajec-

tory data T̃, and k environmental features [f0, f1, ..., fk], that influence drivers’ decision-

making process over time, we aim to learn the driver’s preference θ = [θ0, θ1, ..., θk],

i.e., weights to features when the driver makes decisions. Secondly, for a long time hori-

zon, with multiple time intervals [T0, T1, ..., Tm], we analyze the evolution pattern of the

driver’s preferences over time.

2.1.1.3 Data Description

Our analytical framework takes two urban data sources as input, including (1) taxi trajec-

tory data and (2) road map data. For consistency, both datasets are collected in Shenzhen,

China in 2014 and 2016.

The taxi trajectory data contain GPS records collected from taxis in Shenzhen,

China during March and November in 2014, and July to December in 2016. There were

in total 17, 877 taxis equipped with GPS sets, where each GPS set generates a GPS point

every 40 seconds on average. Overall, a total of 51,485,760 GPS records are collected on

each day, and each record contains five key data fields, including taxi ID, time stamp, pas-

senger indicator, latitude and longitude. The passenger indicator field is a binary value,

indicating if a passenger is aboard or not.

The Road map data of Shenzhen covers the area defined between 22.44◦ to 22.87◦ in

latitude and 113.75◦ to 114.63◦ in longitude. The data is from OpenStreetMap [14] and

11

Fig. 4: Map gridding demonstration.

agent a can be transformed into sequences of spatial-temporal
regions, represented as τ = {a, ⟨r1, r2, ..., rn⟩}.

B. Experiment Setups

We implement our deep neural network on Python 3.10.9
with Pytorch version 1.13.1. Our experiments run on a virtual
machine running Linux-ubuntu 20.04−x86 64 with 3 GPUs,
NVIDIA A100-SXM4-80GB. We implement standard back-
propagation on feed-forward networks using the adaptive mo-
ment estimation (Adam) method with β1 = 0.9, β2 = 0.999.
Our mini-batch size is 16, learning rate is 0.0001 for both
pre-traing task and fine-tuning tasks.

1) Pre-training: In the pre-training phase, we focus on a
sub-trajectory similarity learning task using the STPT model.
We randomly sample 500 drivers from the dataset, which
spanned a period of half a year from July 1st to December
31st. Each driver’s full-day trajectories are employed for pre-
training. More specifically, we randomly pair the entire day’s
trajectories of two different drivers, denoted as τ1 and τ2,
culminating in the generation of 100,000 pairs of trajectories
from the selected 500 drivers.

2) Fine-tuning: Following the pre-training phase, we em-
ploy the learned representations for fine-tuning on labeled data.
We supplement the STPT model with a randomly initialized
output layer to facilitate character predictions. It’s important
to note that the dataset utilized for this fine-tuning process
remains distinct and unseen during the pre-training phase of
the STPT model. For the multi-classification trajectory classi-
fication model where the input is identical to that of the pre-
trained model (i.e., whole-day trajectories), we incorporate the
transformer layers and the positional embedding representa-
tion. However, for the seek-and-serve distinction model, given
the typically shorter span of seeking-and-serving trajectories
(between 10 to 60 steps), we decide against utilizing the
positional embedding from the pre-trained model.
For multi-class trajectory classification model, we select 8
distinct drivers from the dataset and employed their full-day
trajectories, τ1, in our model. In total, we gather 90 days of
trajectories for these drivers. To facilitate model development,
we split the trajectory dataset into three sets: 60 days for
training, 10 days for validation, and 20 days for testing.
For seeking vs. serving activity identification model, we fo-
cus on a specific sub-dataset by selecting 20 drivers from July

2016. We extract their seeking and serving trajectories, de-
noted as τs and τd respectively, Each of them is a sequence of
GPS records without status, τs, τd = {a, ⟨r1, r2, ..., rn⟩}. The
dataset includes 2,787 seeking and 2,787 serving trajectories,
split into three subsets: 40% for training, 30% for validation,
and 30% for testing. The aim is to train the model for effective
seeking vs. serving behavior differentiation.

C. Baseline Methods

In this section, we describe the baselines for comparison.
These baselines are configured with comparable parameters
for a fair evaluation.
• Transformer Encoder [32] is a powerful deep-learning

model commonly used for a wide range of tasks, mirrors the
architecture described in Section III. The Transformer intro-
duces an architecture leveraging self-attention mechanisms.
By efficiently capturing dependencies among elements of
input sequences, Transformers excel at modeling long-range
dependencies and have consistently achieved state-of-the-art
performance in various NLP and CV tasks.

• Convolutional Neural Network (CNN) [40] is a highly
effective deep learning model extensively utilized in various
tasks. In our approach, we employ a CNN to process the
trajectories. By applying convolutional layers, CNN captures
local patterns and relationships within the trajectory data.
This enables the model to leverage spatial and temporal
information for accurate predictions.

• Long short-term memory networks (LSTM) [41] are a
type of recurrent neural network (RNN) architecture com-
monly used as baselines in various sequential data analysis
tasks. They can handle context and dependencies crucial for
accurate predictions by preserving and selectively updating
information over extended periods, offering enhanced capa-
bilities in understanding sequential data.

D. Evaluation Results

In this section, we present the evaluation results for our two
downstream tasks. We compare the performance of STPTBASE
and STPTLARGE models with other comparable baseline mod-
els using average F1-score, recall, precision, and accuracy met-
rics of each class, ensuring a fair comparison. The results are
presented in two separate tables, one for the STPTBASE model
and the other one for the STPTLARGE model, considering their
respective parameter sizes.
For multi-class trajectory classification models, we conduct
an evaluation of the performance of both STPTBASE and
STPTLARGE models, comparing them to baselines with com-
parable parameters. The evaluation results, presented in Table
IIa and Table IIb, demonstrate the superior performance of
our models across multiple metrics, including average F1-
score, recall, precision, and accuracy. In the base model
configuration, STPTBASE attains an accuracy, precision, re-
call, and F1-score of 0.8125, 0.8148, 0.8125, and 0.7971
respectively, significantly outpacing other base models such as
TransformerBASE, CNNBASE, and LSTMBASE. The large model
STPTLARGE consistently outperforms others with an accuracy

TABLE II: Comparison of Multi-class Classification Results

(a) Average F1, recall, precision, and accuracy on the real-
world dataset and comparison of STPTBASE with baselines with
comparable parameters for trajectory classification

Methods Accuracy Precision Recall F1 Score

STPTBASE 0.8125 0.8148 0.8125 0.7971
TransformerBASE 0.7375 0.6979 0.7375 0.7091

CNNBASE 0.74375 0.7696 0.7437 0.7102
LSTMBASE 0.63125 0.5592 0.6312 0.5675

(b) Average F1, recall, precision, and accuracy on the real-
world dataset and comparison of STPTLARGE with baselines with
comparable parameters for trajectory classification

Methods Accuracy Precision Recall F1 Score

STPTLARGE 0.83125 0.8326 0.8312 0.8298
TransformerLARGE 0.78125 0.8564 0.7812 0.7519

CNNLARGE 0.78125 0.8861 0.7812 0.7726
LSTMLARGE 0.44375 0.2994 0.4437 0.3355

of 0.83125, recall of 0.8312, and an F1-score of 0.8298. While
CNNLARGE had the highest precision of 0.8861, STPTLARGE
held its ground with a competitive 0.8326. Conversely, both
large and base LSTM models fell short across all metrics,
indicating their limitations in this specific task. Notably, their
increased complexity does not enhance but instead seemed to
diminish predictive performance. In terms of efficiency, LSTM
models trailed behind, taking longer to train than all other
methods, further highlighting the superior effectiveness and
efficiency of our STPT models.
For seeking vs. serving activity identification model, same as
the multi-class classification task, we evaluate the performance
of our models across multiple metrics. Based on the results
presented in Tables IIIa and IIIb, it can be concluded that the
STPTBASE and STPTLARGE models outperform the baselines
in the seek and serve distinction task. The STPTBASE model
achieves an accuracy of 0.7711, precision of 0.7849, recall
of 0.7464, and an F1 score of 0.7652, while the STPTLARGE
model achieves an accuracy of 0.7788, precision of 0.7920,
recall of 0.7560, and an F1 score of 0.7736. Comparing these
results with the baselines, both STPTBASE and STPTLARGE
consistently demonstrate superior performance in terms of ac-
curacy, precision, and F1 score. Although the LSTM baseline
achieves a higher recall, its accuracy precision and F1 score
are all lower than 0.7, indicating poor overall performance, so
the overall performance of the STPT models showcases their
effectiveness in distinguishing between seeking and serving
actions. Therefore, it can be concluded that the utilization
of pre-trained STPTBASE and STPTLARGE models prove to
be highly beneficial for the downstream task of seeking vs.
serving activity identification model.

E. Ablation Study

In the ensuing section, we delineate an ablation study
centered around three significant components. To begin, we
train our model utilizing random subsets of trajectory pairs
extracted from authentic data to compare if the dataset size

No-pretrain 20k 100K 400k
Number of Training Samples

0.74

0.76

0.78

0.80

0.82

0.84
A

cc
ur

ac
y

(a) Accuracy comparison of different pre-training dataset

Base
Large

0 10 20 30 40 50 60
Epochs

1.2

1.4

1.6

1.8

2.0

Lo
ss

(b) Validation loss during training process

No-pretrain
20K
100K
400K

0 10 20 30 40 50 60
Epochs

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y

(c) Validation accuracy during training process

No-pretrain
20K
100K
400K

Fig. 5: Comparison of multi-class trajectory classification performance: without Pre-training vs. different pre-training sizes.

No-pretrain 20k 100K 400k
Number of Training Samples

0.66

0.68

0.70

0.72

0.74

0.76

0.78

A
cc

ur
ac

y

(a) Accuracy comparison of different pre-training dataset

Base
Large

0 50 100 150 200 250 300
Epochs

0.50

0.55

0.60

0.65

0.70

Lo
ss

(b) Validation loss during training process

No-pretrain
20K
100K
400K

0 50 100 150 200 250 300
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
cc

ur
ac

y

(c) Validation accuracy during training process

No-pretrain
20K
100K
400K

Fig. 6: Comparison of seeking vs. serving identification model without pre-training vs. with different pre-training sizes.

TABLE III: Comparison of Seek and Serve Distinction Results

(a) Average F1, recall, precision, and accuracy on the real-
world dataset and comparison of STPTBASE with baselines with
comparable parameters for seek and serve distinction model

Methods Accuracy Precision Recall F1 Score

STPTBASE 0.7711 0.7849 0.7464 0.7652
TransformerBASE 0.6970 0.7018 0.6842 0.6929

CNNBASE 0.7436 0.7375 0.7560 0.7466
LSTMBASE 0.5852 0.5590 0.8050 0.6598

(b) Average F1, recall, precision, and accuracy on the real-
world dataset and comparison of STPTLARGE with baselines with
comparable parameters for seek and serve distinction model

Methods Accuracy Precision Recall F1 Score

STPTLARGE 0.7788 0.7920 0.7560 0.7736
TransformerLARGE 0.6593 0.6377 0.7368 0.6837

CNNLARGE 0.7029 0.7070 0.6926 0.6997
LSTMLARGE 0.5852 0.5511 0.9163 0.6882

of the pre-trained model impacts the performance results. In
particular, we employ three diverse dataset sizes: 20,000 pairs
of comprehensive daily trajectories from 100 unique drivers,
100,000 pairs from 500 drivers, and a comprehensive set of
400,000 pairs from 1,000 drivers, which allow us to scrutinize
the impact of successively increasing the dataset size during
the pre-training phase. Moving to another aspect, we undertake
a comparative study of the influence of model parameters on
the results. Our final focus is on determining whether pre-
training could accelerate the convergence in downstream tasks,
thereby diminishing the computational overhead. Our results
are shown in Fig. 5 and Fig. 6.

1) Influence of Varying Pre-training Dataset Sizes on Model
Performance and Training Efficiency.: In this part, we conduct
an ablation study to examine the impact of pre-training dataset
sizes on the prediction accuracy and training efficiency of both
tasks. For the multi-class classification model, we evaluate the
impact of varying pre-training dataset sizes, and the results are
presented in Fig. 5 (a). Surprisingly, increasing the size of the
pre-training dataset does not show a significant impact on the
prediction performance of both the STPTBASE and STPTLARGE
models. However, it is worth noting that pre-trained models
outperform the results obtained without any pre-training. Fig. 5
(b) shows that pre-training does not necessarily accelerate the
convergence of the downstream task training. For the seeking
vs. serving identification model, as illustrated in Figure 6
(a), we observe that increasing the size of the pre-training
dataset has a minimal impact on the prediction performance
of both STPTBASE and STPTLARGE models. When examining
training speed in Figures 6 (b) and (c), we note that the pre-
trained model converges more rapidly, exhibiting lower loss
and higher accuracy compared to the non-pre-trained model.
This finding underscores the computational efficiency gained
through pre-training. Analyzing the training and validation loss
patterns reveals that the effect of pre-training on convergence
speed varies depending on the specific downstream task. While
pre-training may not expedite convergence in all cases, it
consistently improves the validation accuracy.

2) Comparison of Different Parameters in the Model:
As described in Section III, we conduct pre-training using
STPTBASE and STPTLARGE models, which correspond to dif-
ferent sizes of the pre-trained model. Fig. 5 (a) presents the
results for the multi-class classification model, we observe that
models with a greater number of layers of transformer blocks
(i.e., more parameters) outperform models with fewer param-

eters. However, for the seek vs. serve depreciation model, as
depicted in Fig. 6, we obtain similar results regardless of
the parameter size. Evaluating these results, the impact of
parameter size varies across the two models. In the multi-
class classification model, increased parameters improved
performance, indicating the benefits of added complexity.
However, in the seek vs. serve model, parameter size does
not significantly affect performance, suggesting a robustness
to parameter variations.

V. RELATED WORK

Large pre-trained models. Large pre-trained models, in-
cluding transformer-based large language models, have had a
significant impact on the field of NLP problems [23], [25].
Models like GPT-3 [21] and PaLM [19] have demonstrated
remarkable performance on NLP benchmarks and natural lan-
guage generation tasks, leading to their widespread adoption
across various industries. Similarly, in automatic speech recog-
nition (ASR) and speech synthesis, large-scale pre-trained
models such as DeepSpeech2 [42] and wav2vec 2.0 [43]
have pushed the boundaries of speech recognition, enabling
applications in transcription services, voice assistants, and
voice-controlled systems. Moreover, large pre-trained vision
models like the VIT [31], DeiT [44], BEiT [45], and MAE
[46] have revolutionized CV, achieving impressive results in
image recognition and demonstrating innovative capabilities.
The availability of these large-scale pre-trained models has
opened up new possibilities for enhancing human-computer
interaction, and various applications in speech and vision
domains. However, the availability of comprehensive research
specifically focused on spatial-temporal data is limited. [30]
puts forth a pre-training model specifically designed to learn
representations for individual locations, focusing on location-
related tasks like next location prediction. However, this
location-centered approach falls short in capturing the intrinsic
information of mobility patterns and, thus is inadequate to
address trajectory-level downstream tasks, e.g., trajectory clas-
sification, driving activity identification, and more. Therefore,
we introduce the STPT model, a novel approach that leverages
a distinctive self-supervised pre-training task aimed at captur-
ing both the similarities and distinctions within HSTD. Our
objective is to acquire comprehensive generic spatial-temporal
representations in HSTD.

Urban computing. Urban computing is a broad research
field that combines urban sensing, data management, and data
analysis on urban data [10], [47]–[49]. A group of works
focus on human decision analysis using human behavior
data. Especially in taxi operation management, there has
been significant research on two main areas: dispatching and
passenger seeking. Several studies have focused on optimizing
taxi dispatching strategies [50], [51], aiming to improve the
efficiency of matching taxis with passenger requests. Addi-
tionally, research has been conducted on understanding taxi-
seeking behavior [16], [18], [52], they seek to identify the
best actionable solution for improving the performance of taxi
drivers. Besides, a group considers the benefits of passengers.

They [3], [5], [53], [54] focus on driver identification, they
attempted to match the identities of human agents only from
the observed trajectory data and detect the abnormal driver
behaviors that enhance the safety of passengers. A group of
works that focuses on estimating urban traffic to help reduce
traffic congestion and provide insights for urban planning [8],
[9], [55]. In this paper, our main focus is to develop a self-
supervised pre-training for robust and generic spatial-temporal
representations model that can be fine-tuned and applied to
diverse downstream applications in urban computing.

VI. CONCLUSION

In this study, we address HSTD challenges by introducing
a pre-training framework (STPT) that incorporates a novel
self-supervised learning task. This task plays a crucial role
in capturing the complex spatial and temporal patterns present
in HSTD. By leveraging a spatial-temporal pre-trained model
trained on HSTD, we demonstrate significant improvements
in two fine-tuning tasks: trajectory classification and seeking
vs. serving trajectory identification. The evaluation results
on real-world datasets highlight the effectiveness of the pre-
trained model in accurately representing HSTD and enhanc-
ing downstream tasks. Our proposed STPT, with its unique
self-supervised learning task, offers a promising approach to
overcoming the limitations of disparate models and datasets
and providing a robust and generic representation of HSTD
for diverse applications in urban computing and beyond.

VII. ACKNOWLEDGEMENTS

Mingzhi Hu and Yanhua Li were supported in part by
NSF grants IIS-1942680 (CAREER), CNS-1952085 and DGE-
2021871. Yiqun Xie was supported in part by NSF awards
2105133, 2126474, and 2147195. Xiaowei Jia was supported
by NSF award IIS-2147195. We would also like to thank
Andrew Chen for his valuable contributions to the experiments
and for composing the initial draft of this paper.

REFERENCES

[1] D. Hallac, A. Sharang, R. Stahlmann, A. Lamprecht, M. Huber, M. Roe-
hder, J. Leskovec, et al., “Driver identification using automobile sensor
data from a single turn,” in ITSC, IEEE, 2016.

[2] A. Chowdhury, T. Chakravarty, A. Ghose, T. Banerjee, and P. Bala-
muralidhar, “Investigations on driver unique identification from smart-
phone’s gps data alone,” Journal of Advanced Transportation, 2018.

[3] T. Kieu, B. Yang, C. Guo, and C. S. Jensen, “Distinguishing trajectories
from different drivers using incompletely labeled trajectories,” in CIKM,
2018.

[4] M.-h. Oh and G. Iyengar, “Sequential anomaly detection using inverse
reinforcement learning,” in SIGKDD, 2019.

[5] H. Ren, M. Pan, Y. Li, X. Zhou, and J. Luo, “St-siamesenet: Spatio-
temporal siamese networks for human mobility signature identification,”
in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1306–1315, 2020.

[6] Uber, “Uber services,” 2023.
[7] Lyft, “Lyft services,” 2023.
[8] Y. Zhang, Y. Li, X. Zhou, X. Kong, and J. Luo, “Strans-gan: Spatially-

transferable generative adversarial networks for urban traffic estimation,”
in 2022 IEEE International Conference on Data Mining (ICDM),
pp. 743–752, IEEE, 2022.

[9] Y. Zhang, Y. Li, X. Zhou, and J. Luo, “Mest-gan: Cross-city urban
traffic estimation with me ta s patial-t emporal g enerative a dversarial
n etworks,” in 2022 IEEE International Conference on Data Mining
(ICDM), pp. 733–742, IEEE, 2022.

[10] Z. Yuan, X. Zhou, and T. Yang, “Hetero-convlstm: A deep learning
approach to traffic accident prediction on heterogeneous spatio-temporal
data,” in Proceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pp. 984–992, 2018.

[11] A. Zonoozi, J.-j. Kim, X.-L. Li, and G. Cong, “Periodic-crn: A con-
volutional recurrent model for crowd density prediction with recurring
periodic patterns.,” in IJCAI, pp. 3732–3738, 2018.

[12] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c.
Woo, “Convolutional lstm network: A machine learning approach for
precipitation nowcasting,” arXiv preprint arXiv:1506.04214, 2015.

[13] Z. Cui, R. Ke, Z. Pu, and Y. Wang, “Deep bidirectional and unidi-
rectional lstm recurrent neural network for network-wide traffic speed
prediction,” arXiv preprint arXiv:1801.02143, 2018.

[14] H. Yu, Z. Wu, S. Wang, Y. Wang, and X. Ma, “Spatiotemporal recurrent
convolutional networks for traffic prediction in transportation networks,”
Sensors, vol. 17, no. 7, p. 1501, 2017.

[15] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow
prediction with big data: a deep learning approach,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, 2014.

[16] X. Zhang, Y. Li, X. Zhou, and J. Luo, “Unveiling taxi drivers’ strategies
via cgail: Conditional generative adversarial imitation learning,” in 2019
IEEE International Conference on Data Mining (ICDM), pp. 1480–
1485, IEEE, 2019.

[17] X. Zhang, Y. Li, X. Zhou, Z. Zhang, and J. Luo, “Trajgail: Trajectory
generative adversarial imitation learning for long-term decision analy-
sis,” in 2020 IEEE International Conference on Data Mining (ICDM),
pp. 801–810, IEEE, 2020.

[18] M. Pan, Y. Li, X. Zhou, Z. Liu, R. Song, H. Lu, and J. Luo, “Dissecting
the learning curve of taxi drivers: A data-driven approach,” in Pro-
ceedings of the 2019 SIAM International Conference on Data Mining,
pp. 783–791, SIAM, 2019.

[19] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, et al., “Palm: Scaling
language modeling with pathways,” arXiv preprint arXiv:2204.02311,
2022.

[20] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[21] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[22] OpenAI, “ChatGPT: Large-scale Language Model for Conversational
AI.” https://openai.com, 2021. Version GPT-3.5.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[24] A. M. Dai and Q. V. Le, “Semi-supervised sequence learning,” Advances
in neural information processing systems, vol. 28, 2015.

[25] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding with unsupervised learning,” 2018.

[26] J. Howard and S. Ruder, “Universal language model fine-tuning for text
classification,” arXiv preprint arXiv:1801.06146, 2018.

[27] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+
questions for machine comprehension of text,” arXiv preprint
arXiv:1606.05250, 2016.

[28] M. E. Peters, W. Ammar, C. Bhagavatula, and R. Power, “Semi-
supervised sequence tagging with bidirectional language models,” arXiv
preprint arXiv:1705.00108, 2017.

[29] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[30] Y. Lin, H. Wan, S. Guo, and Y. Lin, “Pre-training context and time
aware location embeddings from spatial-temporal trajectories for user
next location prediction,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, pp. 4241–4248, 2021.

[31] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[33] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[34] Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. F. Wong, and L. S. Chao,
“Learning deep transformer models for machine translation,” arXiv
preprint arXiv:1906.01787, 2019.

[35] A. Baevski and M. Auli, “Adaptive input representations for neural
language modeling,” arXiv preprint arXiv:1809.10853, 2018.

[36] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv
preprint arXiv:1606.08415, 2016.

[37] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org .” https://www.openstreetmap.org, 2017.

[38] Y. Li, J. Luo, C.-Y. Chow, K.-L. Chan, Y. Ding, and F. Zhang, “Grow-
ing the charging station network for electric vehicles with trajectory
data analytics,” in 2015 IEEE 31st international conference on data
engineering, pp. 1376–1387, IEEE, 2015.

[39] Y. Li, M. Steiner, J. Bao, L. Wang, and T. Zhu, “Region sampling and
estimation of geosocial data with dynamic range calibration,” in 2014
IEEE 30th International Conference on Data Engineering, pp. 1096–
1107, IEEE, 2014.

[40] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[41] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[42] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,
C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen, et al., “Deep
speech 2: End-to-end speech recognition in english and mandarin,” in
International conference on machine learning, PMLR, 2016.

[43] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representations,”
Advances in neural information processing systems, vol. 33, pp. 12449–
12460, 2020.

[44] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International conference on machine learning,
pp. 10347–10357, PMLR, 2021.

[45] H. Bao, L. Dong, S. Piao, and F. Wei, “Beit: Bert pre-training of image
transformers,” arXiv preprint arXiv:2106.08254, 2021.

[46] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked au-
toencoders are scalable vision learners,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022.

[47] A. V. Khezerlou, X. Zhou, L. Li, Z. Shafiq, A. X. Liu, and F. Zhang, “A
traffic flow approach to early detection of gathering events: Comprehen-
sive results,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 8, no. 6, pp. 1–24, 2017.

[48] C. Liu, K. Deng, C. Li, J. Li, Y. Li, and J. Luo, “The optimal
distribution of electric-vehicle chargers across a city,” in 2016 IEEE
16th International Conference on Data Mining (ICDM), 2016.

[49] M. Qu, H. Zhu, J. Liu, G. Liu, and H. Xiong, “A cost-effective
recommender system for taxi drivers,” in SIGKDD, 2014.

[50] S. Ma, Y. Zheng, and O. Wolfson, “T-share: A large-scale dynamic taxi
ridesharing service,” in 2013 IEEE 29th International Conference on
Data Engineering (ICDE), pp. 410–421, IEEE, 2013.

[51] N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie, “T-finder: A recommender
system for finding passengers and vacant taxis,” IEEE Transactions on
knowledge and data engineering, vol. 25, no. 10, pp. 2390–2403, 2012.

[52] Y. Zhang, Y. Li, X. Zhou, Z. Zhang, and J. Luo, “Stm-gail: Spatial-
temporal meta-gail for learning diverse human driving strategies,” in
Proceedings of the 2023 SIAM International Conference on Data Mining
(SDM), pp. 208–216, SIAM, 2023.

[53] E. Cheung, A. Bera, E. Kubin, K. Gray, and D. Manocha, “Identifying
driver behaviors using trajectory features for vehicle navigation,” in 2018
IEEE/RSJ IROS, IEEE, 2018.

[54] M. Hu, X. Zhang, Y. Li, X. Zhou, and J. Luo, “St-ifgsm: Enhancing
robustness of human mobility signature identification model via spatial-
temporal iterative fgsm,” in the 29th SIGKDD conference on Knowledge
Discovery and Data Mining (KDD 2023), 2023.

[55] E. Toto, E. A. Rundensteiner, Y. Li, R. Jordan, M. Ishutkina, K. Clay-
pool, J. Luo, and F. Zhang, “Pulse: A real time system for crowd flow
prediction at metropolitan subway stations,” in ECML PKDD, pp. 112–
128, Springer, 2016.

