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ABSTRACT

The Human Mobility Signature Identification (HuMID) problem

aims at determining whether the incoming trajectories were gener-

ated by a claimed agent from the historical movement trajectories

of a set of individual human agents such as pedestrians and taxi

drivers. The HuMID problem is significant, and its solutions have

a wide range of real-world applications, such as criminal identifi-

cation for police departments, risk assessment for auto insurance

providers, driver verification in ride-sharing services, and so on.

Though Deep neural networks (DNN) based HuMID models on

spatial-temporal mobility fingerprint similarity demonstrate re-

markable performance in effectively identifying human agents’

mobility signatures, it is vulnerable to adversarial attacks as other

DNN-based models. Therefore, in this paper, we propose a Spatial-

Temporal iterative Fast Gradient Sign Method with 𝐿0 regulariza-

tion ś ST-iFGSM ś to detect the vulnerability and enhance the ro-

bustness of HuMID models. Extensive experiments with real-world

taxi trajectory data demonstrate the efficiency and effectiveness

of our ST-iFGSM algorithm. We tested our method on both the

ST-SiameseNet and an LSTM-based HuMID classification model. It

shows that ST-iFGSM can generate successful attacks to fool the

HuMID models with only a few steps of attack in a small portion of

the trajectories. The generated attacks can be used as augmented

data to update and improve the HuMID model accuracy signifi-

cantly from 47.36% to 76.18% on testing samples after the attack

(86.25% on the original testing samples).

CCS CONCEPTS

• Computing methodologies→ Supervised learning by classi-

fication; Neural networks; Anomaly detection; Adversarial learn-

ing.
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1 INTRODUCTION

NEWS

Unauthorized driver

Authorized driver

Not the real insurant

Real insurant

Figure 1: Ride safety on public news.

Advancements in mobile sensing and information technologies

have enabled a massive amount of human mobility data to be col-

lected every day, embedding unique human decision strategies and

preferences. Given a trajectory corpus consisting of historical mobil-

ity data from various human decision-makers (e.g., pedestrians, taxi

drivers, and gig-economy workers), and a set of new trajectories

claimed to be generated by a specific agent, the HuMID problem

aims to determine whether the incoming trajectory was indeed

generated by the claimed agent or not. The HuMID problem is

significant and leads to numerous practical applications, especially

in business and public safety. For example, automatic driver identi-

fication systems for taxi and ride-sharing service providers such

as Uber [46] and Lyft [24] are key applications to prevent unautho-

rized operations of services. The upper figure in Figure 1 shows

companies like Uber have identified several cases of pretended dri-

vers offending passengers and has enabled on-trip report from the

application for passenger’s safety [28, 32, 41]. When authorized and
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unauthorized drivers exhibit different driving habits (e.g., familiar

driving areas, comfortable working time, etc.), HuMID models can

tell the differences and trigger an alarm. HuMID’s role extends

beyond ride-sharing services, playing a critical part in automobile

insurance by verifying the identity of insured individuals through

their historical driving behavior. This ensures that the vehicle was

operated by a driver covered under the policy. For example, in the

lower figure in Figure 1, an unauthorized driver (whose trajectories

are colored blue) has a different driving pattern from the insurant

(whose trajectories are colored green). HuMID models detect and

report such differences to the insurance provider. Hence, HuMID

models offer the potential for early detection of unauthorized driver

substitutions, thereby enhancing passenger safety.

Many previous studies on HuMID are based on DNNs [4, 13, 17,

33, 37]. Though DNN-based models have demonstrated remarkable

performance in classification, regression, and many other tasks,

they are vulnerable to carefully crafted adversarial examples (or

attacks) [12, 18, 30, 31, 44, 45]. HuMID models are no exception.

In reality, HuMID systems are not infallible. One unauthorized

Uber driver can deceive the HuMID model by imitating an autho-

rized driver’s behaviors in terms of his/her seeking and serving

areas. As depicted in the top right figure of Figure 1, an unautho-

rized Uber driver (who is familiar with the grey area) attempts

to mimic the authorized driver (who is familiar with the green

and blue areas) and goes to the blue area to serve. The HuMID

model may incorrectly recognize both trajectories as valid and

from the authorized driver. This poses a concern for automobile

insurance providers who need to ensure that the insured individual

was the one operating the vehicle. However, as demonstrated in the

lower-right figure in Figure 1, if the insured driver (with green tra-

jectories) always goes through a school area in his daily commute,

an uninsured driver can avoid being detected by also going through

the same school area. That is, altering uninsured driver’s driving

route to follow the red arrow instead of the original blue trajectory

can successfully deceive the HuMID model. The vulnerabilities of

HuMID models present a significant threat to public safety.

Several works try to mitigate the vulnerability of DNNs to ad-

versarial attacks by leveraging the attack samples as augmented

data [12, 30, 44, 45]. Goodfellow et al. [12] discovered a simple and

fast way named the fast gradient sign methods (FGSM) to generate

perturbations on images. Moosavi-Dezfooli et al. [30] showed that

the existence of łuniversal perturbationsž can fool a network classi-

fier on image data. Su et al. [44] further focused on non-identifiable

attacks and claimed that altering just one pixel in the image is

able to fool three backbones all convolution network[43], Network

in Network[22] and VGG16 network[42] on 70.97% of evaluated

images. All these studies utilize adversarial training and leverage

attacked samples as augmented data to enhance the robustness

of DNN models. Madry et al. [27] further introduced an adversar-

ial training approach that requires creating adversarial examples

for the entire training data in each iteration. However, this design

has limitations in terms of its effectiveness. Subsequently, Shafahi

et al. [39] proposed free adversarial training to accelerate adversar-

ial training. Wong et al. [48] discovered fast adversarial training,

which combines FGSM adversarial training with random initializa-

tion to further accelerate computation. While many attacks and

training methods have been focused on the image domain, it is

crucial to consider spatial-temporal data mining and address the

HuMID challenges in order to enhance the robustness of HuMID

models against adversarial attacks.

In this paper, our goal is to improve the robustness of the HuMID

model by generating useful adversarial trajectories for further train-

ing the model. To accomplish this, we design a Spatial-Temporal

iterative Fast Gradient Sign Method with 𝐿0 regularization ś ST-

iFGSM ś to generate adversarial attacks on state-of-the-art (SOTA)

HuMID models. ST-iFGSM can produce imperceptible attacks with

minimal editions on original humanmobility data, and the attacking

method is able to improve HuMIDmodel performance via clarifying

decision boundaries as shown in Figure 2. In this figure, the blue

and grey triangles are malicious trajectories, the black line is the

original HuMID model’s decision boundary, and the red line is the

decision boundary of the enhanced HuMID model. This shows that

the enhanced HuMID model can detect the malicious trajectories

(i.e., grey triangles) that try to fool it.

Normal Driver Malicious Driver

Figure 2: Decision boundary before (colored black) and after

(colored red) enhancing the HuMID model with adversarial

attacks (grey triangles).

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to propose to

improve the HuMID model robustness via generating adversar-

ial attacks from human-generated spatial-temporal data. (See

Section 2).

• Wegive definitions of imperceptible attacks in the spatial-temporal

domain, and develop a novel 𝐿0-constrained iterative FGSM tech-

nique, i.e., ST-iFGSM, to generate imperceptible spatial-temporal

attacks with a limited number of trajectory editions. ST-iFGSM

generated attacks can successfully fool SOTA HuMID models

(See Section 3).

• We validate our framework using real-world human-generated

spatial-temporal data and two different SOTAHuMIDmodels, i.e.,

ST-SiameseNet [37] and a multi-class HuMID model using LSTM.

Extensive results show a drastic accuracy drop on ST-iFGSM

generated imperceptible perturbations, and a significant perfor-

mance increase when using ST-iFGSM-generated attacks to do

the adversarial training compared with baselines (See Section 4).

We have released our code and data publicly at our Github page1.

1ST-iFGSM project page: https://github.com/mhu3/ST-Siamese-Attack
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2 OVERVIEW

In this section, we define the spatial-temporal HuMID adversarial

attack problem and highlight the research challenges. For brevity,

we present a table of notations in Table 1.

Table 1: Notations.

Notations Descriptions

𝑝 = ⟨𝑙𝑎𝑡, 𝑙𝑛𝑔, 𝑡⟩ GPS record.

𝜏 = {𝑎, ⟨𝑝1, 𝑝2, ..., 𝑝𝑛⟩} Trajectory.

T = {𝜏},T𝑎𝑑𝑣
= {𝜏 ′} Trajectory set and related adversaries.

𝛿 Perturbations added on the trajectory.

𝑓 , 𝑓 𝑒𝑛ℎ Original and enhanced HuMID model.

𝑦 = 𝑓 (𝜏, 𝜏 ′) HuMID model prediction.

ℓ (𝑓 (𝜏, 𝜏 ′), 𝑦) Loss for prediction on adversaries.

𝜃 Parameters of HuMID model 𝑓 .

2.1 Human-Generated Spatial-Temporal Data
for HuMID Attacks

Thanks to the rapid development of mobile sensing technologies,

GPS devices are everywhere on e.g., vehicles, smartphones, smart

watches, etc. Spatial-temporal data in the form of GPS traces are

easily accessible from these devices.

Definition 1: Human-generated spatial-temporal trajectory

𝜏 . Each GPS record 𝑝 consists of a location in latitude 𝑙𝑎𝑡 , longitude

𝑙𝑛𝑔, and a time stamp 𝑡 , i.e., 𝑝 = ⟨𝑙𝑎𝑡, 𝑙𝑛𝑔, 𝑡⟩. A trajectory 𝜏 is a

sequence of GPS records with a label of the agent 𝑎 who generated

the data denoted as 𝜏 = {𝑎, ⟨𝑝1, 𝑝2, · · · , 𝑝𝑛⟩}. The set of trajecto-

ries is denoted as T containing trajectories from𝑚 human agents

T = {𝜏𝑎1 , · · · , 𝜏𝑎𝑚 } where each agent 𝑎𝑖 might have multiple tra-

jectories. Moreover, we denote T𝑎𝑑𝑣 as the generated adversarial

attacks from T . For each 𝜏 ∈ T , there is its counterpart adversarial

trajectory 𝜏 ′ from the same agent.

Definition 2: Spatial-temporal HuMID model 𝑓 . A spatial-

temporal HuMID model 𝑓 is the target model to be attacked and

enhanced. For brevity, we say HuMIDmodels to indicate the spatial-

temporal ones. Given a set of human-generated spatial-temporal

trajectories T from agents 𝑎1, · · · , 𝑎𝑚 , a HuMID model 𝑓 verifies

if an incoming/test trajectory 𝜏𝑐𝑎𝑖 claimed to be generated by agent

𝑎𝑖 indeed matches agent 𝑎𝑖 ’s behavior. For example, given a pair

of trajectories 𝜏𝑎𝑖 from historical human trajectory dataset T and

𝜏𝑐𝑎𝑖 claimed to be from agent 𝑎𝑖 , the HuMID model 𝑓 evaluates

the similarity between the two input trajectories as 𝑓 (𝜏𝑎𝑖 , 𝜏
𝑐
𝑎𝑖
), and

returns 1 if the claimed trajectory 𝜏𝑐𝑎𝑖 resembles agent 𝑎𝑖 ’s behav-

ior, and returns 0 if otherwise. We use 𝑦 to denote the prediction

from the HuMID model 𝑓 . Further, we denote 𝑓 𝑒𝑛ℎ as the enhanced

HuMID model when training with the adversarial attacks T𝑎𝑑𝑣 .

Therefore, if we write the loss function applied in the HuMIDmodel

as ℓ , the loss between a pair of true trajectory 𝜏 and its adversary

𝜏 ′ is ℓ (𝑓 (𝜏, 𝜏 ′), 𝑦) where 𝑦 is the true label for agent identity. We

denote 𝛿 as the perturbation added on the true trajectory 𝜏 . Here we

list the binary classification case as an example. However, we also

target other HuMID models that involve multi-class classification

or handle trajectory data differently, without loss of generality.

Stage 1: Adversarial Attacks to HuMID ModelsInput

Perturbations 𝛅

Stage 2: Enhancing the Robustness 

of HuMID Model

Original 

HuMID 

Model 

Testing 

Data

Attacked Testing 

Data

Correct Label !Wrong Label !

Attack

Enhanced

HuMID 

Model 

Attacked Training Data

τ’1 τ’2 τ’k
…

τ1 τ2 τk

…

Training Data

Perturbations 𝛅Attack

Figure 3: Enhancing the robustness of Spatial-temporal Hu-

MID model solution framework.

2.2 Spatial-Temporal HuMID Adversarial
Attack Problem

Problem definition. Given a set of human-generated spatial-

temporal trajectories T and a trained HuMID model 𝑓 on this

dataset, we aim to generate a set of adversarial trajectories T𝑎𝑑𝑣

that is able to i.) lower the classification accuracy of the HuMID

model 𝑓 on adversarial trajectories T𝑎𝑑𝑣 , and ii.) increase the en-

hanced HuMID model 𝑓 𝑎𝑑𝑣 accuracy against the attacking strategy

after adversarial training with attacked data T𝑎𝑑𝑣 .

Challenges. The proposed spatial-temporal HuMID adversarial

attack problem is challenging in two aspects: (C1) Considering the

complicated spatial-temporal scenario and human decisions, how to

design and generate an invisible attack that can fool HuMIDmodels

towards making wrong decisions with minimal attacks in terms of

edition range and size? (C2) How to use the generated adversarial

spatial-temporal data to enhance the robustness of the HuMID

model to detect abnormal data and make the correct decisions?

2.3 Solution Framework

To solve the spatial-temporal HuMID adversarial attack problem,

we propose the solution framework in Figure 3. It takes the human

mobility dataset and a target HuMID model as inputs and contains

two processing stages: Stage 1. iteratively generating and selecting

adversarial attack samples which could fool the target HuMID

model (See Section 3.1), and Stage 2. training the HuMID model

with the adversarial attack to improve the model robustness (See

Section 3.2).

3 METHODOLOGY

In this section, we solve the spatial-temporal HuMID adversarial

attack problem by defining spatial-temporal adversarial attacks on

the HuMIDmodels, designing a gradient-based approach to identify

perturbations on the original dataset to fool a target HuMID model

towards wrong predictions, and developing an iterative approach

to eliminate redundant and unnecessary perturbations for imper-

ceptible attacks (i.e., tackling the challenge C1, See Section 3.1).
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We further demonstrate our solutions to enhance the robustness of

HuMID models (i.e., tackling the challenge C2, See Section 3.2).

3.1 Stage 1: Adversarial Attacks to HuMID
Models

In this part, we show how adversarial attacks perform on the spatial-

temporal HuMID data, design and generate imperceptible attacks

that can fool HuMID models towards making wrong decisions. We

first show some SOTA adversarial attack works below.

3.1.1 Limitations of the state-of-the-art works. Most of the adversar-

ial attack approaches focus on the image domain [12, 18, 30, 44, 45].

Among them, FGSM [12] is a one-step algorithm that perturbs im-

ages through a single, large step, increasing the loss of the target

model. In spatial-temporal cases, suppose 𝜏 denotes a trajectory to

be perturbed and 𝜏 ′ is the perturbed trajectory, FGSM was designed

based on the 𝐿∞-norm to maximize the loss function, i.e.,

max
𝜏 ′

ℓ (𝑓 (𝜏 ′), 𝑦)

𝑠 .𝑡 .∥𝜏 − 𝜏 ′∥∞ ≤ 𝜖.

To accelerate the attack generation speed, Goodfellow et al. [12]

computes the sign of the gradient using the 𝑠𝑖𝑔𝑛 function instead

of calculating the gradient values of the loss function, where the

attacks are generated as below:

𝜏 ′ = 𝜏 + 𝜖 · 𝑠𝑖𝑔𝑛 [∇𝜏 ℓ (𝑓 (𝜏), 𝑦)] .

The ℓ (𝑓 (𝜏 ′), 𝑦) is the loss function used to classify 𝜏 ′ with its true

label 𝑦, and 𝜖 denotes the noise/perturbation level. Here, 𝑠𝑖𝑔𝑛 is the

sign function that returns 1 for positive gradients and -1 otherwise.

However, in HuMID problems, directly applying FGSM faces

difficulties, i.e., i). perturbations with the 𝐿∞-norm constraint are

likely to result in perturbed GPS points off the road or inaccessible,

and ii). perturbations on the temporal features likely produce unre-

alistic trajectories with dramatic spatial changes that are obvious

to detect.

3.1.2 HuMID attacks via spatial-temporal perturbations. In FGSM,

there is no constraint for the pixels to be changed. However, to

fit in the spatial-temporal HuMID problem and generate realistic

attacks, we define the objective for a HuMID attack on a trajectory

𝜏 as below:
max
𝜏 ′

ℓ (𝑓 (𝜏 ′), 𝑦)

𝑠 .𝑡 .∥𝜏 − 𝜏 ′∥∞ ≤ 𝜖, ∥𝜏 − 𝜏 ′∥0 ≤ 𝜂.
(1)

Here, each generated adversary 𝜏 ′ aims to mislead the HuMID

model into making incorrect decisions that deviate from the true

label 𝑦. Meanwhile, in an adversary, the number of GPS point edits

is limited by the 𝐿0-norm to be less than or equal to 𝜂. This allows

the adversary to be imperceptible as it follows most of the original

trajectory’s patterns except for the 𝜂 modified steps in the trajec-

tory. In addition, the change distance in terms of the 𝐿∞-norm is

constrained to be at most 𝜖 in order to make reasonable perturba-

tions on the road close to the original GPS points. For example, in

a taxi trajectory, the objective in Eq. (1) says that an attacker tries

to mislead the HuMID model by maximizing the model loss. At the

same time, the attack wants to have a maximum of 𝜂 GPS points to

be edited given the original trajectory, where each edit should be

within 𝜖 km from the original GPS point. However, since the length

Figure 4: An illustration on one attacked trajectory. The green

line with the arrow is the original trajectory, and the blue

arrow demonstrates where the attack happens.

of each trajectory is different, it is difficult to find a fixed 𝜂 to solve

the problem. Therefore, in practice, we determine the minimum

number of steps (i.e., GPS points) in trajectories to be attacked to

promise attack success. The objective function thus becomes:

min
𝜏 ′

∥𝜏 − 𝜏 ′∥0

𝑠 .𝑡 .∥𝜏 − 𝜏 ′∥∞ ≤ 𝜖, 𝑓 (𝜏 ′) ≠ 𝑦.
(2)

Eq. (2) says that we minimize the number of steps to be attacked

when the editions are close to original GPS points and the HuMID

model is successfully fooled towards a random wrong output. 2

An illustrative example. Figure 4 shows how the GPS records

in a trajectory are attacked. The green line with the arrow shows

one real trajectory, where the attack happens following the blue

arrow. At a GPS point (i.e., the green circle), the dashed black circle

demonstrates the edition spatial range constrained by the 𝐿∞-norm

to be below 𝜖 km. Therefore, the blue attack happens within 𝜖 km

from the original GPS point. In this figure, only one GPS point

edition is allowed, i.e., 𝜂 = 1. Note that we do not alter the temporal

information as it would lead to a drastic change in trajectories and

uncommon back-and-forth behaviors in human mobility data.

Based on the spatial-temporal adversarial attacks on HuMID

models, we develop an FGSM-based approach to generate adversar-

ial perturbationswith iterative searching and 𝐿0-guided redundancy

elimination.

3.1.3 ST-iFGSM Attack with 𝐿0 Constraint. Now, we formally in-

troduce our spatial-temporal iterative FGSM, in short, ST-iFGSM,

based on FGSM. ST-iFGSM has two processing steps, i.e., applying

an iterative approach to enforce attack success, and utilizing an

elimination strategy to satisfy the 𝐿0-norm constraint.

Step 1: Iterative FGSM for a successful attack. Though fast in

implementation with a single-step attack, FGSM alone does not

always produce a successful attack that is able to fool a target

model [18]. Therefore, we follow the iterative FGSM (I-FGSM) [18]

to apply an iterative approach, that takes a series of small attack

steps and adjusts the attack directions constantly to fulfill an attack

task. In other words, to generate a successful attack and force the

HuMID model to give a wrong prediction, we repeatedly update

2Note that we do not consider attacking a trajectory by changing its lengths. This is
because changing trajectory length likely leads to a large trajectory mismatch in 𝐿∞-
norm, and we follow adversarial attack works to maintain original data dimension [12,
18, 30, 44, 45].
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Algorithm 1 Adversarial Attack with ST-iFGSM

Require: A target trajectory 𝜏 ; a HuMID model 𝑓 with loss func-

tion ℓ ; a łto-be-attackedž GPS indices vector 𝒗; perturbation

bound 𝜖 and 𝜂, learning rate 𝛼 .

Ensure: An adversarial trajectory 𝜏 ′.

1: Initialize the łto-be-attackedž attack vector 𝒗 = (1, 1, · · · , 1)

of 𝑛 dimension for GPS points in the target trajectory 𝜏 , and

initialize 𝜏 ′ = 𝜏 .

2: repeat

3: for 𝑗 = 0, 1, · · · , 𝑁 − 1 do

4: Calculate the perturbation 𝛿 based on Eq. (3), i.e., 𝛿 =

𝑐𝑙𝑖𝑝 (𝛼 · 𝑠𝑖𝑔𝑛[∇𝜏 ′ ℓ (𝑓 (𝜏
′), 𝑦)],−𝜖, 𝜖).

5: Assign perturbations based on the perturbation 𝛿 and the

perturbation vector 𝑣 , i.e., 𝜏 ′ = 𝜏 ′ + 𝛿 ⊙ 𝒗.

6: end for

7: Record the perturbations after 𝑁 loops of FGSM, i.e., Δ =

𝜏 ′ − 𝜏 .

8: Calculate the gradient for the attack 𝒈 = ∇𝜏 ′ ℓ (𝑓 (𝜏
′), 𝑦).

9: Select the indices 𝑖 = argmin𝑖 |𝑔𝑖 | that contribute least to

the attack, and update the 𝑖th values in the vector 𝒗 as 0.

10: Update the attacked trajectory as 𝜏 ′ = 𝜏 + Δ ⊙ 𝒗.

11: until 𝑓 (𝜏 ′) = 𝑓 (𝜏).

12: Return the previous 𝜏 ′ which satisfies 𝑓 (𝜏 ′) ≠ 𝑓 (𝜏) with mini-

mized attacked steps.

our adversary sample 𝜏 ′ for 𝑁 iterations following:

𝜏 ′0 = 𝜏,

𝜏 ′𝑗+1 = 𝑐𝑙𝑖𝑝
[

𝜏 ′𝑗 + 𝑠𝑖𝑔𝑛[∇𝜏 ′𝑗
ℓ (𝑓 (𝜏 ′𝑗 ), 𝑦)]

]

,

for 𝑗 = 0, 1, · · · , 𝑁 − 1.

(3)

Specially, a one-time attack indicates the case when only one itera-

tion happens, i.e., 𝑁 = 1. In the equation, the 𝑐𝑙𝑖𝑝 term represents

the clipping function to enforce the 𝐿∞-norm constraint. It per-

forms a GPS-level clipping of the trajectory so that all perturbed

GPS points are within 𝜖 distances from the original GPS points.

Step 2: Redundancy elimination for 𝐿0-norm constraint. To

minimize the number of perturbed GPS points in a trajectory, i.e.,

to enforce the 𝐿0-norm constraint, we compute the gradient of

the loss in Eq. (3) evaluated at the adversarial instance 𝜏 ′
𝑁
, i.e.,

𝒈 = ∇ℓ (𝑓 (𝜏 ′
𝑁
), 𝑦) after we get the 𝑁 th update from the previous

iterative FGSM step. Considering that there are 𝑛 GPS points in

an attacked trajectory, i.e., 𝜏 ′
𝑁

= {𝑎, ⟨𝑝′1, 𝑝
′
2, · · · , 𝑝

′
𝑛⟩}, the gradient

𝒈 is a vector of 𝑛 dimensions, i.e., 𝒈 = (𝑔1, 𝑔2, · · · , 𝑔𝑛) with each

dimension evaluated at the 𝑖th GPS point in the trajectory with 𝑖 =

1, 2, · · · , 𝑛. Here each 𝑔𝑖 is a scalar. We then select some perturbed

GPS points that contribute the least to the attack with the smallest

gradient, i.e., argmin𝑖=1,· · · ,𝑛 |𝑔𝑖 | and remove these 𝑖’s from the łto-

be-attackedž GPS set. Therefore, the GPS points that contribute the

least to the attack will be left unchanged. To remove all unnecessary

perturbations, we repeat this process several times until the ST-

iFGSM perturbed trajectory fails to attack the HuMID model 𝑓 .

ST-iFGSM Algorithm.We present our detailed algorithm in Algo-

rithm 1. The input consists of a target trajectory 𝜏 to be attacked

which is a sequence of GPS points, a HuMID model 𝑓 , the pertur-

bation 𝐿∞-norm bound 𝜖 , the perturbation 𝐿0-norm bound 𝜂, and a

learning rate 𝛼 . We also maintain a vector 𝒗 that has 𝑛 dimensions

representing 𝑛 GPS points in the trajectory 𝜏 . The 𝑖th dimension

in the vector 𝒗 corresponds to the 𝑖th GPS point, and it bears a bi-

nary value with 1 indicating a GPS point that should be perturbed,

and 0 otherwise, i.e., 𝒗 ∈ {0, 1}𝑛 . The vector 𝒗 is initialized as

(1, 1, · · · , 1) to allow attacks at all GPS points. The algorithm works

by iteratively updating perturbations 𝛿 to the input trajectory 𝜏

until ST-iFGSM fails to attack the HuMID model, i.e., 𝑓 (𝜏 ′) = 𝑓 (𝜏)

(line 2-11). Specifically, in each iteration, we iterate over 𝑁 loops of

FGSM to generate an accumulated perturbation Δ (line 7). In each

iterative FGSM loop, we first calculate the perturbation specific to

the loop based on Eq. (3) (line 4) and update the attack trajectory

𝜏 ′ accordingly for the next FGSM loop. Note that we enforce the

𝐿∞-norm constraint via clipping (line 4). After the iterative FGSM

stage with the accumulated perturbation Δ, we start selecting GPS

points to remain unchanged (line 8-10). For this, we first calculate

the gradients of loss 𝒈 based on the current attack 𝜏 ′ (line 8). We

calculate the gradients and select the perturbed GPS points that

contribute the least to the attack, i.e., gradient values with the small-

est absolute values, and update their values in the attack vector 𝒗 to

be zero (line 9). We get the perturbation at this step by updating the

attack as 𝜏 ′ = 𝜏 + Δ ⊙ 𝒗 (line 10). Until 𝑓 (𝜏 ′) = 𝑓 (𝜏), we return the

previous 𝜏 ′ which satisfies 𝑓 (𝜏 ′) ≠ 𝑓 (𝜏) with minimized attacked

steps (line 11-12).

3.2 Stage 2: Enhancing the Robustness of
HuMID model

To enhance the HuMID model and protect it against adversarial

attacks, we introduce the ST-FGSM fast adversarial trainingwith the

proposed 𝐿0-constrained ST-iFGSM attack (when iteration number

is 1), based on the fast adversarial training [48].

ST-FGSM fast adversarial training. Unlike projected gradient

descent (PGD) based training [27] and free adversarial training [39]

which need more computational cost, our ST-FGSM fast adversarial

training follows fast adversarial training [48], utilizing random

initialization and performing a one-time HuMID model update on

perturbation. Fast adversarial training [48] has been shown to be as

effective as PGD-based methods but much more efficient. Besides,

we combine fast adversarial training with 𝐿0-norm constraint ST-

FGSM attack (i.e., iteration equals 1). Before finding the sample

with the least 𝐿0-norm, successful adversarial samples would be

generated each timeweminimize the number of steps to be attacked.

We leverage all these samples to update the parameter 𝜃 of the

HuMID model, which improves the robustness of the model.

Algorithm 2 shows how our ST-FGSM fast adversarial training

works, the input includes the training data T , the number of train-

ing epochs 𝐸, the HuMID model 𝑓 parameterized by 𝜃 with loss

function ℓ , and learning rate 𝛼𝜃 and 𝛼𝛿 . In each epoch 𝑒 , we get

|T |/𝐵 batches of data. For each batch 𝐵, trajectories are sampled

from T and are denoted as T𝑒,𝑏 (line 4). For each 𝜏 ∈ T𝑒,𝑏 , we initial-

ize related perturbation from a uniform distribution with maximum

noise level 𝜖 , i.e., 𝛿 = 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(−𝜖, 𝜖) and an attack vector 𝒗 (line

5-6). With these trajectories, we calculate the perturbations based

on Eq. (3) to generate the attacked samples 𝜏 ′ (line 7-9). We then

use the attacked samples to update the model parameter based on

gradient descent by minimizing the loss ET′
𝑒,𝑏

[ℓ (𝑓 (𝜏 ′), 𝑦)] (line 10).
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Algorithm 2 Adversarial Training with ST-iFGSM Attacks

Require: Training data T ; a HuMIDmodel 𝑓𝜃 to be enhanced with

loss function ℓ and parameter 𝜃 ; perturbation bound 𝜖 and 𝜂;

learning rate 𝛼𝛿 , learning rate 𝛼 and batch size 𝐵.

Ensure: An enhanced HuMID model 𝑓 𝑒𝑛ℎ
𝜃 ′ .

1: Initialize the HuMID model’s parameter as 𝜃0,0 = 𝜃 .

2: for 𝑒 = 1, 2, · · · , 𝐸 do

3: for 𝑏 = 1, 2, · · · , |T |/𝐵 do

4: Sample a batch of 𝐵 samples from T and denote as T𝑒,𝑏 .

5: Initialize 𝛿 = 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(−𝜖, 𝜖) and the łto-be-attackedž

attack vector 𝒗 = (1, 1, · · · , 1) of 𝑛 dimension for GPS

points for each sample 𝜏 in T𝑒,𝑏 .

6: Impose perturbation 𝛿 and generate the perturbation 𝜏 ′ =

𝜏 + 𝛿 ⊙ 𝒗 for each 𝜏 ∈ T𝑒,𝑏 .

7: repeat

8: For each 𝜏 ′, update the perturbation 𝛿 based on Eq. (3),

i.e., 𝛿 = 𝑐𝑙𝑖𝑝 (𝛿 + 𝛼𝛿 · 𝑠𝑖𝑔𝑛(∇𝜏 ′ ℓ (𝑓𝜃𝑒,𝑏−1 (𝜏
′), 𝑦),−𝜖, 𝜖).

9: Assign perturbations based on 𝛿 and the perturbation

vector 𝑣 , i.e., 𝜏 ′ = 𝜏 + 𝛿 ⊙ 𝒗.

10: Update the HuMIDmodel’s parameter based on samples

in T ′
𝑒,𝑏

, i.e.,

𝜃𝑒,𝑏 = 𝜃𝑒,𝑏−1 − 𝛼𝜃∇𝜃𝑒,𝑏−1ET′
𝑒,𝑏

[ℓ (𝑓𝜃𝑒,𝑏−1 (𝜏
′), 𝑦)] .

11: For each 𝜏 ′, calculate the corresponding gradient 𝒈 =

∇𝜏 ′ ℓ (𝑓𝜃𝑒,𝑏 (𝜏
′), 𝑦).

12: Select the indices 𝑖 = argmin𝑖 |𝑔𝑖 | that contribute least

to the attack, and update the 𝑖th values in the vector 𝒗

as 0.

13: until All 𝐵 samples are correctly predicted, i.e. satisfy

𝑓 (𝜏 ′) = 𝑓 (𝜏).

14: end for

15: end for

16: Return the enhanced HuMID model 𝑓 𝑒𝑛ℎ
𝜃 ′ with updated param-

eter 𝜃 ′ = 𝜃𝐸, | T |/𝐵 .

The loss function calculates the HuMID model’s loss on the original

label and prediction on attacked data. Then for each sample, we

start selecting GPS points to remain unchanged until all samples in

𝐵 can not be successfully attacked (line 11-12). After 𝐸 epochs, an

enhanced model 𝑓 𝑒𝑛ℎ
𝜃 ′ is obtained.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the performances of ST-iFGSM with

𝐿0 using the taxi GPS dataset collected in Shenzhen, China in July

2016, and one SOTA HuMID model i.e., ST-SiameseNet [37] and a

multi-class classification model to attack against. We compare with

other baselines to demonstrate that i). Our proposed ST-iFGSM

is able to generate useful attacks to fool the HuMID model and

decrease its evaluation accuracy, ii). ST-iFGSM generated attacks

are imperceptible with minimal edits to the original humanmobility

data, and iii). adversarial training enhances the robustness of the

HuMIDmodel and defend against attacks generated from ST-iFGSM.

The experiment setups and results are described in detail below.

4.1 Data Description and Preparation

Our work takes two urban data sources as input, including (1) taxi

GPS trajectory data and (2) road map data. For consistency, both

datasets were collected in Shenzhen, China in July 2016.

Taxi trajectory data includes GPS data collected in Shenzhen,

China during July 2016 from taxis. There are 17,877 unique taxis in

the dataset each equipped with a GPS unit, and each GPS unit pro-

duces one GPS point in roughly every 40 seconds. Each day, around

51 million GPS records are gathered in total, and each record has

five essential data fields: latitude, longitude, unique taxi identifier,

time stamp, as well as a passenger indicator. The passenger indica-

tor demonstrates if a passenger is aboard or not with 1 representing

passenger onboard, and 0 otherwise.

Road map data of Shenzhen covers the area defined between

22.44◦ to 22.87◦ in latitude and 113.75◦ to 114.63◦ in longitude. The

data is from OpenStreetMap [34] and has 21,000 roads with six

levels.

Data preprocessingWe employ the taxi trajectory data and the

road map data to extract the taxi driver passenger seeking and

serving trajectories for training the ST-SiameseNet [37] and LSTM-

based classification model.

Map gridding and time quantization. To mitigate the disclosure of

sensitive information, we employ data anonymization techniques

by discretizing the trajectories, thereby safeguarding the identities

of individuals and minimizing the potential for re-identification.

Specifically, we use a standard quantization trick and partition the

Shenzhen area into grid cells with equal side-length 0.01◦ in latitude

and longitude [20, 21, 37]. Figure 5 shows the gridding result in

Shenzhen, China, where grids colored in dark grey are inaccessible

on the sea.

Figure 5: Map gridding demonstration.

Eliminating cells in the ocean, those unreachable from the city,

and other irrelevant cells give a total of 1,934 valid cells. We further

divide each day into five-minute intervals for a total of 288 intervals

per day, denoted as 𝐼 =
{

𝑡𝑘
}

, with 1 ⩽ 𝑘 ⩽ 288. A spatial-temporal

region 𝑟 is a pair of a grid cell 𝑔 and a time interval 𝑡𝑘 . Each GPS

record is 𝑝 = ⟨𝑙𝑎𝑡, 𝑙𝑛𝑔, 𝑡⟩ and can be represented as an aggregated

state 𝑠 =

〈

𝑔, 𝑡𝑘
〉

. A trajectory of agent 𝑎 then can be mapped to

sequences of spatial-temporal regions, 𝜏 = {𝑎, ⟨𝑟1, 𝑟2, ..., 𝑟𝑛⟩}.

Transit Modes Extraction. Different transit modes can show differ-

ent patterns of driving behavior. Seeking and serving trajectories

in the taxi driving scenario reflect different characteristics of each
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taxi driver. Thus, we split the trajectories into seeking 𝜏𝑠 and driv-

ing/serving trajectories 𝜏𝑑 based on the status of the vehicle and

whether there are passengers on board.

4.2 Experiment Setups

Training preparation. To identify different human agents’ mo-

bility signatures on our dataset, we train ST-SiameseNet [37] and

a multi-class classification HuMID model, which verifies human

mobility identity respectively by implementing ST-SiameseNet and

an LSTM multi-class classification model respectively.

For ST-SiamaseNet, we randomly select 500 drivers from July 4th

to July 15th (10 workdays) and use their 5 seeking and 5 serving

trajectories for training and validation on the first 8 days. We ran-

domly select a pair of seeking and driving trajectories from driver 1

and driver 2, i.e., (𝜏𝑠,1, 𝜏𝑑,1) and (𝜏𝑠,2, 𝜏𝑑,2). We randomly generate

500,000 pairs of trajectories, half of which are from the same driver

and the other half from different drivers. ST-SiameseNet learns

driving behavior from seeking and serving trajectories and shows

if the pair of trajectories are from the same driver or not.

For multi-class classification model, we select 4 drivers from July

to December in 2016 from the same dataset and use their 5 seeking

and 5 serving trajectories i.e., (𝜏𝑠,1, 𝜏𝑑,1) for modeling. There are

111 days of trajectories for these four drivers, which we divided

into 90, 5, and 16 days for the training dataset, validation dataset,

and testing dataset, respectively.

Testing preparation. We apply our model ST-iFGSM with 𝐿0-

norm constraint to attack the trajectories in the testing data and

lead the ST-SiameseNet and multi-class classification model to-

wards wrong predictions. Fig. 6 demonstrates the performance of

ST-SiameseNet [37] to identify if the trajectories come from the

same driver or not. Giving a pair of trajectories from two different

authorized drivers, ST-SiameseNet will give the prediction that the

drivers are different. However, if we attack driver 2’s trajectories

to mimic driver 1’s trajectories, then ST-SiameseNet will give the

prediction that the trajectories are coming from the same driver. It

demonstrates after modification or attack on the original human

trajectory, the ST-SiameseNet could be fooled and give the opposite

prediction.

For ST-SiameseNet, to test how our ST-iFGSM works, we split the

testing data into two parts. Specifically, one part of the data contains

trajectories from seen drivers on their unseen days (the 9th and 10th

days), and another includes trajectories from new drivers who are

previously unseen from the training pool on unseen days (the 9th

and 10th days). In the unseen driver part of the testing data, there

are an extra 197 unique drivers besides those in the training data.

In total in each testing data part, there are 5,000 pairs of trajectories

from the same driver and 5,000 pairs of trajectories from different

drivers.

For multi-class classification model, the testing dataset contains 16

days of trajectories of the same 4 drivers in the training dataset.

Evaluation metrics. We evaluate the performance of ST-iFGSM

based on the prediction accuracy from the ST-SiameseNet [37]

and LSTM multi-class classification model, i.e., the ratio between

the number of correctly predicted samples over the number of all

testing samples.

Same driver !

ST-Siamese Net 

Attack

Similarity > 0.5

Driver 1

Driver 2

LSTM

LSTM

shared

Figure 6: A malicious driver fools the ST-SiameseNet to show

a wrong result.

4.3 Baseline Algorithms

We compare our ST-iFGSM with baselines and analyze the general-

ization of our approach to show that ST-iFGSM is able to generate

constrained and imperceptible attacks faster. To generate imper-

ceptible attacks on trajectories, we constrain that each attacked

unit (i.e., a spatial-temporal grid 𝑔) in the trajectory only changes

to a neighboring grid. Note that we do not add perturbations on

the time stamps 𝑡 in the trajectories. In order to mimic the trajecto-

ries that could happen in real life (e.g., unauthorized service and

identity theft), all approaches only attack the seeking trajectories

of driver 2 (𝜏𝑠,2) in each pair input of for ST-siameseNet. For LSTM

multi-class classification model, we only attack seeking trajectories

of the drivers and allow modification on the original steps to be

two grid cells next to them. Below, we detail the baselines we used:

• Fast Gradient Sign Method (FGSM) [12] performs a one-step

perturbation on images to increase the classifier’s loss with the

𝐿∞-norm. It is a white box attack that has complete access to the

target model.

• Iterative Fast Gradient Sign Method (I-FGSM) [18] is an

extension of FGSM that repeatedly applies FGSM on pixel-level

attacks on an image. The resulting adversaries are clipped to

limit the maximum perturbation for each pixel on an image.

• Iterative Fast Gradient Method (I-FGM) [29] ignores the

𝑠𝑖𝑔𝑛 function in I-FGSM and utilizes the 𝐿2-norm to normalise

gradients to iteratively generate an attack. Despite the fact that

the sign operator can be viewed as a normalization process, it

also changes the most effective direction.

• Carlini & Wagner Attack with 𝐿0-norm constraint (C&W

𝐿0) [2] is a SOTA attack approach. It generates a set of attacks

that compute norm-restricted additive perturbations[35]. C&W

𝐿0 represents the C&W approach with the 𝐿0-norm constraint. To

avoid local optimization, they use multiple starting-point gradi-

ent descents in the ball of the adversarial range. C&W generated

adversarial examples have been shown to have a low distortion

in the 𝐿0-norm, effectively minimizing of changed pixels.

4.4 Evaluation Results

In this section, we first present the evaluation results of ST-iFGSM

with other baselines in terms of the attack performance, i.e., the

ratio between the number of correctly predicted samples of demon-

strations over the number of all testing samples after the attack.

In the second part, we assess the performance of our proposed

ST-FGSM adversarial training in enhancing the robustness of the

HuMID model, i.e. the ratio of correctly predicted samples over all

testing samples after the attack.
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Table 2: Attack methods comparison on ST-SiameseNet. For all evalua-

tion values, the lower the better.

Methods
Acc. on Acc. on Time Time

#Attacks
Adv. Seen Adv. Unseen on Seen(s) on Unseen(s)

ST-iFGSM 𝐿0 (i=2) 46.67% 34.85% 122.68 110.08 35

ST-iFGSM 𝐿0 (i=1) 47.66% 36.25% 107.97 112.97 42

FGSM 57.59% 47.93% 3.85 2.47 118

I-FGSM 45.49% 33.12% 84.04 82.12 118

I-FGM 45.68% 33.56% 84.96 84.40 117

C&W 𝐿0 46.74% 34.74% 198.03 199.60 51

Table 3: Robustness comparison on ST-SiameseNet. All

values above 70% indicate good models.

Methods
Acc. on Acc. on Unseen

Seen Unseen

ST-iFGSM (i=2) 𝐿0 76.15% 70.98%

ST-iFGSM (i=1) 𝐿0 76.18% 71.02%

FGSM 76.39% 71.37%

I-FGSM 76.16% 70.98%

I-FGM 76.43% 71.30%

C&W 𝐿0 80.96% 75.93%

ST-FGSM iteration alpha time seen time unseen time total steps changedseen drivers unseen drivers
1 0.02 117.06 104.35 221.41 42 0.4766 0.3625
2 0.01 132.67 119.5 252.17 35 0.4665 0.3475
3 0.006666666667 150.85 172.48 323.33 33 0.474 0.3587
4 0.005 194.36 193.44 387.8 35 0.4626 0.3421
5 0.004 233.84 262.4 496.24 34 0.4595 0.3401
6 0.003333333333 285.43 286.8 572.23 34 0.4622 0.3412
7 0.002857142857 329.85 338.47 668.32 34 0.4624 0.3405
8 0.0025 366.68 371.56 738.24 34 0.4624 0.3436
9 0.002222222222 414.36 429.27 843.63 34 0.4597 0.3403

10 0.002 446.07 451.73 897.8 34 0.4591 0.3369
11 0.001818181818 475.9 498.8 974.7
12 0.001666666667 537.7 540.67 1078.37
13 0.001538461538 557.89 567.81 1125.7
14 0.001428571429 654.59 660.17 1314.76
15 0.001333333333 676.06 675.89 1351.95

16 0.00125 680.32 678.92 1359.24
17 0.001176470588 742.51 740.01 1482.52
18 0.001111111111

19 0.001052631579

20 0.001 848.23 912.66 1760.89 0.4071 0.4919 0.8625 0.8292

0
0
0
0
0
0
0
0
0
0
0
0

0.4497 0.4911 0.3795 0.8625 0.8292

running time
Iteration

Figure 7: Ablation study on how iteration affects the ST-iFGSM performance.

4.4.1 Results with ST-Siamese Model.

Adversarial Attack Performance. To compare our method with

baseline approaches, wemeasure the accuracy of the ST-SiameseNet

on adversarial samples and the number of edits on test data in

Table 2. A lower accuracywith fewer number attacks (i.e., grid-level)

on both test datasets indicates a stronger attacking method that

generates more powerful attacks. Before the attacks, the prediction

accuracy of ST-SiameseNet on the seen and unseen testing datasets

are 86.85% and 82.92% respectively. The table shows that our ST-

iFGSM with 𝐿0-norm (iteration = 2, learning rate 𝛼 = 0.01) achieves

the best performance since all these methods have similar attacking

accuracy, but our ST-iFGSM with 𝐿0-norm attacks the fewest steps

in the trajectories attacked. Specifically, it attacked only an average

of 35 steps on driver 2’s five seeking trajectories. On the other hand,

while FGSM (iteration = 1, learning rate = 0.02) is the most efficient

approach with the shortest attack time, as it is a one-time attack,

the attack may fail, resulting in the lowest successful attacking rate.

I-FGSM (iteration = 50, learning rate = 0.001) and I-FGM (iteration =

50, learning rate = 0.05) are two efficient methods for attacking our

HuMID model, but they never constrain the steps in the trajectories

being attacked, so the number of steps being attacked is large,

which could not easily happen in the real-life attack. C&Wmethods

with 𝐿0-norm constraint (iteration = 2, learning rate 𝛼 = 0.01)

show a similar attack successful rate as our method. However, its

method for finding the constant in the objective function [2] is more

computationally expensive, furthermore, its method for reducing

the steps to attack is not as powerful as ours, as it attacks 51 steps

in driver 2’s seeking trajectories.

Ablation Studies. We have also learned how iteration affects the

results of our ST-iFGSM results in Figure 7. In our case, increasing

iteration has little effect on attacking accuracy on both seen and

unseen testing datasets (We keep the product of learning rate and

iteration the same). When increasing iterations from 1 to 2, the

steps in the trajectories decrease, but the decrease is not significant

with further iterations. Consequently, adding more iterations leads

to increased running time. In our case, 2 iterations yield the best

results for our ST-iFGSM to attack ST-SiameseNet.

Adversarial Training Performance. To enhance the robustness

of HuMID model and make it immune to ST-iFGSM, we apply fast

adversarial training [48] on the training dataset and use it to do

adversarial training (2 epochs). Table 3 showswe improve themodel

robustness with the ST-FGSM fast adversarial training against the

different attack methods. For instance, the HuMID model improves

prediction accuracy on seen testing data attacked by 𝑙0-constrained

ST-iFGSM (i=2) from 46.67% to 76.15%. However, after adversarial

training, ST-SiameseNet’s prediction accuracy slightly decreases on

the original dataset. It achieves 80.56% accuracy on the seen testing

dataset and 75.93% on the unseen dataset, potentially due to added

noise during adversarial training.

4.4.2 Results with LSTM multi-class classification model.

Adversarial Attack Performance. Table 4 shows the accuracy

on the testing dataset after attacking, the original accuracy on the

testing dataset is 89.06%. After attacking, our ST-iFGSM(iteration

= 2, learning rate = 0.01) attacks the least steps of the seeking

trajectories of driver 2 on average, it only attacks 40 steps. FGSM

(iteration = 1, learning rate = 0.05), I-FGSM (iteration = 20, learning

rate = 0.01), and I-FGM (iteration = 50, learning rate = 0.05) are the

three most efficient methods for the attack, but they attack 145, 143,

and 130 steps. C&W 𝑙0 (iteration = 8, learning rate = 0.01) attacks

57 steps, and it is also slower than our method.
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Table 4: Attack comparison for LSTMmulti-class classifica-

tion model. For all evaluation values, the lower the better.

Methods Acc. on Adv. Time(s) #Attacks

ST-iFGSM 𝐿0 (i=2) 59.38% 10.58 40

ST-iFGSM 𝐿0 (i=1) 59.38% 8.25 41

FGSM 60.94% 0.32 145

I-FGSM 59.38% 8.93 143

I-FGM 65.62% 8.90 130

C&W 𝐿0 60.94% 79.20 57

methods

ac
cu

ra
cy

73.44%73.44% 73.44%

76.56%

75.00% 75.00%

ST-iFGSM L0

(i=2)

ST-iFGSM L0

(i=1)

FGSM I-FGSM I-FGM C&W L0

0.78

0.76

0.74

0.72

0.70

Figure 8: Enhanced LSTM multi-class classification model

performance with different attack methods.

Adversarial Training performance. Fig. 8 shows we improve

the robust performance of the LSTM-based classification model

by ST-FGSM fast adversarial training (2 epochs). The enhanced

HuMID model shows that the accuracy of the attacked testing

data generated by different methods is around 75%, indicating that

the proposed method could improve its robustness against attacks.

Moreover, its prediction accuracy on the original testing dataset

drops only from 89.06% to 85.94%.

5 RELATED WORK

HuMID has been extensively studied in recent years due to the

rise of the ride-sharing business model and urban intelligence[5,

20, 37, 50, 53]. However, our research represents the first attempt

known to us in improving the robustness of the HuMID model

through adversarial attacks on spatial-temporal data. Related work

is summarized below.

Urban computing. Urban computing is a broad research field

that combines urban sensing, data management, and data analytics

on urban data [16, 23, 25, 36, 52]. A group of works focuses on taxi

operation and passenger-seeking problems [10, 11, 26, 38, 51]. They

seek to identify the best actionable solution for improving the per-

formance of taxi drivers. Besides, a group considers the benefits of

passengers. Ren et al. [3, 17, 37] focus on driver identification, they

attempted to match the identities of human agents only from the

observed trajectory data and detect the abnormal driver behaviors

which enhance the safety of passengers. However, We discovered

that the trajectories within the HuMID model are susceptible to

adversarial attacks, implying that if a malicious driver intention-

ally alters the trajectories in real-life scenarios, the trained HuMID

DNN models can be deceived. Therefore, our primary focus lies in

enhancing the robustness of these HuMID DNN models.

Adversarial attack. Many previous studies found that DNN-

based models perform exceptionally well in classification, regres-

sion, and many other tasks, but they are vulnerable to carefully

crafted adversarial examples [12, 18, 30, 31, 44, 45]. Most of the

attacking methods were applied to the image classification problem.

Li et al. found Deep Learning-based Text Understanding (DLTU)

is inherently vulnerable to adversarial text attacks [19]. There is

also some related work that focuses on generating adversarial ex-

amples for text classification problems [1, 6, 9, 49] and video recog-

nition [15, 47]. As far as we know, we are the first to explore minor

perturbations that can easily disrupt human mobility trajectories.

Adversarial training. Adversarial training is one of the most

effective methods for DNN-based models to defend against adver-

sarial attacks. Unlike other defense strategies, it seeks to improve

model robustness on an intrinsic level [12, 14, 27, 40, 45]. However,

it is much slower than vanilla neural network training because it

must construct adversarial examples for the entire training data at

each iteration. So standard adversarial training is impractical on

large-scale problems due to the high computational cost. Shsfahi et

al. [39] proposed free adversarial training to accelerate adversar-

ial training, achieving comparable robustness to PGD adversarial

training[27]. Themain point is that instead of performing individual

gradient computations for each update step, both model parameters

and perturbations are updated in a single backward pass. Wong

et al. [48] discovered fast adversarial training, which combines

FGSM adversarial training with random initialization to further

accelerate computations. While adversarial training models are

typically employed for image classification tasks, we believe we are

the first to use fast adversarial training to improve the robustness

of DNN-based HuMID models.

6 CONCLUSION

In this paper, we propose to enhance the robustness of the HuMID

model against adversarial attacks by training with attacked spatial-

temporal data. Our proposed 𝐿0-constrained ST-iFGSM technique

generates subtle changes to the trajectories that effectively fool

HuMID models. We evaluate the performance of the attack on both

the ST-SiameseNet and our method outperforms the baselines in

terms of efficiency and the number of steps required to deceive

the models. To defend against such attacks, we use ST-FGSM fast

adversarial training which leads to an improvement in the accuracy

of the SOTA HuMID models in predicting the identification of

attacked data, demonstrating that these models can be made more

resilient to adversarial samples.
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A APPENDIX FOR REPRODUCIBILITY

In this section, we provide detailed information to support the repro-

ducibility of the results in this paper. We implement our deep neural

network on Python 3.9.12 with the machine learning library Keras,

version 2.10.0, and Tensorflow version 2.10.1. Our experiments run

on a virtual machine running Linux-ubuntu 20.04 − 𝑥86_64 with 1

GPU, NVIDIA A100-SXM4-80GB.

A.1 Settings of ST-SiameseNet

We train our model on the Shenzhen taxi dataset as a balanced

binary class classification problem, since we randomly select a

pair of trajectories with equal probability in each iteration. To

predict whether the trajectories from two time periods belong to

the same driver, we implement the standard back-propagation on

feed-forward networks by adaptive moment estimation (Adam)

with first momentum (set to 0.9) and second momentum (set to

0.999). Our mini-batch size is 32, and each trajectory has paddings

of 60. The learning rate is 0.0001. We trained the network for 30

epochs. The following is the structure of ST-SiameseNet for human

mobility signature identification:

• LSTMS. The trajectories are embedded in two hidden layers con-

taining 200 and 100 units, respectively.

• LSTMD. The LSTMD has the same components of neurons as

LSTMS

• Similarity-learner. It’s a three-layer fully-connected networkwith

hidden units [64,32,8,1]. We use ReLU activation functions for all

hidden layers and sigmoid activation at the output layer.

For classification implementation, we set the similarity score

threshold to 0.5 which is influenced by the sigmoid activation func-

tion utilized in the output layer. A value below 0.5 indicates a lower

probability of similarity, while a value above 0.5 suggests a higher

probability[7, 8]. Trajectories with similarity scores above 0.5 are

classified as belonging to the same agent while trajectories with

scores below 0.5 are classified as belonging to different agents. If

an attack drives the ST-SiameseNet similarity score from below 0.5

to above 0.5, the classifier predicts the paired trajectories from two

different drivers to be from the same one after the attack, which

demonstrates a successful attack. Note that the similarity threshold

differs based on different HuMID tasks for different datasets.

A.2 Settings of LSTM multi-class classification
model

The dataset preprocessing is the same as ST-SiameseNet. The learn-

ing rate is 0.000015. We trained the network for 100 epochs, with a

batch size equal to 16.

• LSTMS. The trajectories are embedded in two hidden layers con-

taining 200 and 100 units, respectively.

• LSTMD. The LSTMD has the same components of neurons as

LSTMS


	Abstract
	1 Introduction
	2 Overview
	2.1 Human-Generated Spatial-Temporal Data for HuMID Attacks
	2.2 Spatial-Temporal HuMID Adversarial Attack Problem
	2.3 Solution Framework

	3 METHODOLOGY
	3.1 Stage 1: Adversarial Attacks to HuMID Models
	3.2 Stage 2: Enhancing the Robustness of HuMID model

	4 EXPERIMENTAL EVALUATION
	4.1 Data Description and Preparation
	4.2 Experiment Setups
	4.3 Baseline Algorithms
	4.4 Evaluation Results

	5 Related Work
	6 Conclusion
	7 Acknowledgements
	References
	A APPENDIX FOR REPRODUCIBILITY
	A.1 Settings of ST-SiameseNet 
	A.2 Settings of LSTM multi-class classification model 


