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Abstract

Traffic accident forecasting is a significant problem for trans-

portation management and public safety. However, this

problem is challenging due to the spatial heterogeneity of the

environment and the sparsity of accidents in space and time.

The occurrence of traffic accidents is affected by complex

dependencies among spatial and temporal features. Recent

traffic accident prediction methods have attempted to use

deep learning models to improve accuracy. However, most

of these methods either focus on small-scale and homoge-

neous areas such as populous cities or simply use sliding-

window-based ensemble methods, which are inadequate to

handle heterogeneity in large regions. To address these limi-

tations, this paper proposes a novel Hierarchical Knowledge

Transfer Network (HintNet) model to better capture irreg-

ular heterogeneity patterns. HintNet performs a multi-level

spatial partitioning to separate sub-regions with different

risks and learns a deep network model for each level using

spatio-temporal and graph convolutions. Through knowl-

edge transfer across levels, HintNet archives both higher

accuracy and higher training efficiency. Extensive experi-

ments on a real-world accident dataset from the state of Iowa

demonstrate that HintNet outperforms the state-of-the-art

methods on spatially heterogeneous and large-scale areas.

1 Introduction

Traffic accident is a major safety concern in modern so-
ciety. In the United States, it is estimated that nearly
40 thousand people died in traffic accidents in 2020, ac-
cording to the National Highway Traffic Safety Admin-
istration (NHTSA) [20]. This number shows an increase
of around 7% compared to 2019, despite the effects of
the coronavirus pandemic on mobility. Moreover, the
US Census Bureau found that the average commuting
time of Americans has increased by 10% between 2006
and 2019 [9]. With nearly 85% of Americans driving for
their commute [10] and the increased average commute
time, the number of fatalities can continue to grow in
the coming years. Therefore, the ability to forecast ac-
cidents is of significant importance to the members of
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society, as it can help trigger public safety prepared-
ness as well as alert drivers to the potential risk of acci-
dents at certain locations at certain times in the future.
The availability of large-scale data on accidents, climate,
road dynamics, and other spatial and temporal charac-
teristics has enabled the researchers to propose machine
learning approaches to traffic accidents.

Accidents are a relatively rare phenomenon. Of all
the location-time instances, very few of them contain
a traffic accident. As a result, it is challenging for a
machine learning method to learn the complex patterns
leading up to an accident, with the presence of an
overwhelming majority of times and locations that
have zero accidents. Moreover, such patterns are not
likely to be homogeneous over space and time. The
patterns that predict traffic accidents in a crowded
urban area likely differ from such patterns in rural areas.
In other words, the patterns that may predict traffic
accidents are heterogeneous. Given how challenging
it is to learn such patterns in the first place (due
to the overwhelming imbalance between accident, no-
accident), it is even more challenging to learn all these
spatially heterogeneous patterns in the same model.

Researchers have tackled the accident prediction
problem with a variety of approaches. A large body
of literature has explored solutions with non-machine
learning methods, or has proposed straightforward ap-
plications of data mining techniques to predict acci-
dents [1–5,8]. Such techniques do not address the chal-
lenges of sparsity and heterogeneity. More recently, re-
searchers have proposed deep learning techniques [6,12]
and have taken advantage of LSTM methods and atten-
tion mechanisms to learn temporal patterns, and have
used convolutional methods to learn local spatial pat-
terns [21]. Wang et al. [15] proposed GSNet to capture
multi-scale spatial-temporal dependencies by applying
a geographical module and a semantic module. Zhou et
al. [18] handled the sparsity issue using a transformation
strategy to discriminate the risk values, dominated by
zero or near-zero values. None of these methods directly
address the spatial heterogeneity with mixed urban and
rural areas, and only rely on the model to learn such
patterns from spatial features. Notably, Yuan et al. [16]
proposed a Hetero-ConvLSTM model to predict traffic
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accidents in a grid setting. Their method addresses the
heterogeneity challenge by an ensemble of predictions
from 21 pre-selected sub-regions in a sliding-window
manner. However, the pre-selected windows could not
fully capture heterogeneity as they ignore the underly-
ing spatial patterns. Moreover, it does not utilize the
shared knowledge across windows and has a high com-
putational cost due to the ensembles.

In this paper, we propose HintNet, a Hierarchical
KNowledge Transfer Network model to address the
spatial heterogeneity problem. HintNet first employs
a hierarchical spatial partitioning method to systemat-
ically group regions with potentially similar risk pat-
terns together without needing prior knowledge of the
regions. Then, separate models for each level of the
hierarchy are trained, allowing the unique patterns of
each level to be learned separately. Moreover, we ar-
gue that despite heterogeneity, there is also a pattern of
traffic accidents that is common among all levels. We
develop a knowledge transfer method to allow the mod-
els to share knowledge across the different levels of the
hierarchy. We take advantage of the expansive set of
measured and derived features from numerous datasets
from the state of Iowa to train HintNet. Our extensive
evaluations show that HintNet is successful in outper-
forming the state-of-the-art baselines. Moreover, our
evaluations show that our proposed knowledge trans-
fer mechanism can improve the prediction accuracy and
shorten the training process of the models significantly.
Our contributions are as follows:

• We propose a hierarchical space partitioning frame-
work to automatically group regions with poten-
tially different accident patterns.

• We propose a deep neural network to predict the
traffic accidents of a region based on spatial, tem-
poral and spatio-temporal features with jointly-
trained graph convolution and LSTM modules.

• We propose a knowledge transfer mechanism to
share the common pattern of accidents across re-
gions among all the models to expedite the training
and improve accuracy.

The rest of the paper is organized as follows: In
the next section, we discuss the related work. Next,
we present an overview of the dataset and extracted
features as well as preliminary concepts and a problem
formulation. Then, we present our solution, HintNet,
followed by the experiments and the conclusion.

2 Related Work

A large body of work has taken a straightforward ap-
proach of simply applying existing prediction models to
the accident prediction problem including ANNs and de-
cision trees [4,5], random forest ensemble [13], or Prob-

abilistic Neural Networks [1]. Caliendo et al. developed
multiple regression models based on Poisson, Negative
Binomial, and Multinomial analyses to predict the num-
ber of accidents in given roads [3]. Many other works
used regression and correlation methods to predict the
number of accidents in general and special cases [2, 8].
However, these works only applied existing methods to
the problem, and do not offer methodological contribu-
tions that address the challenges specific to the traffic
accident prediction problem.

The use of deep learning [6, 21] to predict traffic
accidents is relatively recent. However, most of these
early attempts only use data from a single view (e.g.,
spatial or temporal) for prediction, therefore unable to
fully capture the spatiotemporal patterns. Wang et
al. [15] proposed GSNet with a geographical module and
a semantic module to capture a diverse set of features to
learn the patterns. The geographic features aim to allow
the model to learn the heterogeneity in space. However,
their method does not fully address the heterogeneity
issue, as they are still relying on the model to capture
it through learning patterns in the features. Zhou et
al. [18] offers a novel transformation of zero-accident
instances to handle the sparsity issue. However, they
also do not fully address the heterogeneity problem and
rely on a single model to learn the spatial heterogeneity
directly from features, even though the number of
samples with accidents is limited due to sparsity. Yuan
et al. proposed Hetero-ConvLSTM [16], which explicitly
addresses spatial heterogeneity in accident prediction.
This deep learning method divides the spatial field
into 21 distinct regions. They then build an ensemble
method to predict the number of accidents. This
method addresses the temporal patterns and spatial
heterogeneity. However, the manually-selected regions
do not necessarily reflect different prediction patterns.

Distinct from all the above methods, our HintNet
method fully addresses the spatial heterogeneity prob-
lem using an automatically generated hierarchical par-
titioning of the space, a deep learning network with spa-
tial, temporal, and spatio-temporal features and using
a knowledge transfer framework to train a diverse set
of models to capture the heterogeneous patterns of ac-
cidents in space and time.

3 Preliminary Concepts and Overview

In this section, we introduce the data sources, extracted
features, and our problem formulation. Our data covers
the entire state of Iowa, which is a suitable place to
study traffic accident forecasting problem due to the
heterogeneous environment with both rural and urban
areas.
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(a) traffic accidents in Iowa (b) COOP Stations

Figure 1: Visualization of traffic accidents and COOP data

3.1 Data Sources The data we collected are all
within the range of Iowa from the year 2016 to 2018.
We collect data from the following sources: (1) Vehi-
cle Crash data is collected by the Iowa Department of
Transportation(DOT)1. The data contains the 168,964
crash records from the year 2016 to 2018. The records
include the time and location of each crash. Figure 1 (a)
shows the mapping of the traffic accident records in the
state of Iowa. (2) RWIS (Roadway Weather Infor-
mation System)2 is an atmosphere monitoring system
with 86 observation stations located at the state pri-
mary roads. (3) COOP (National Weather Service
Cooperative Observer Program)3 is maintained by
National Weather Service to monitor weather informa-
tion. Unlike RWIS, COOP concentrates on weather
data such as precipitation, snowfall, and snow depth.
Figure 1 (b) demonstrates the locations of the obser-
vation stations. (4) POI. The Point-of-Interest data
are collected from HERE MAP API4. We collected the
13 categories of POI with their latitude and longitude.
(5) Iowa Road Networks. From Iowa DOT OPEN
DATA5, we obtained Iowa road network data with basic
road information. It consists of the speed limit, esti-
mated Annual Average Daily Traffic volume for the pri-
mary roads and secondary roads. (6) Traffic Camera
Data. The real-time traffic condition data were col-
lected from 128 camera stations along state highways.

3.2 Definitions and Feature Extraction Next, we
define concepts needed to formulate our problem and
then explain the features extracted for the prediction
task. Finally, we present our problem definition.

Definition 3.1. A spatio-temporal field L × T , where
L = {l1, l2, ..., lm} is a grid, where each grid cell li is a
d × d square area. T = {t1, t2, ..., tn} is a study period
partitioned into equal time intervals (e.g., hours, days).

We map all the features and the accidents onto
the grid L and over time T . We use C(l, t) to denote

1
https://icat.iowadot.gov/#

2
https://mesonet.agron.iastate.edu/RWIS/

3
https://mesonet.agron.iastate.edu/request/coop/obs-fe.phtml

4
https://developer.here.com/documentation/places/dev_guide/topics/categories.html

5
https://data.iowadot.gov/datasets/f07494c9bc6048d8a34c50af400f2264l

the total accident count in location l during time t.
Depending on the dimensions of the features, we have
spatial, temporal, and spatio-temporal (ST) features, as
defined later in this section.

Definition 3.2. Road Network Mask Map H is a
binary mask layer created by mapping the road network
with primary and secondary roads onto the grids. We
use a spatial mask to indicate if a grid cell contains any
road segments (1) or not (0).

Definition 3.3. Temporal Features Temporal fea-
tures FT include the day of the week, day of the year,
and the month of the year, whether this is a weekend,
and whether this is a holiday. F i

T
(l, t) represents the i-

th temporal feature at time interval t at location l. Note
all cell locations l in the study area share the same tem-
poral features in each time interval t.

Definition 3.4. Spatial Features Spatial features FS

include static features that do not change over time,
where F i

S
(l, t) represents the i-th spatial features for

location l at time interval t. These features include the
point of interest (POI), basic road network information,
and spectral features [16]. Specifically, every POI
feature is represented by the frequency of each POI
category in a grid cell l. Road network features
include basic road conditions such as Annual Average
Daily Traffic (AADT), average traffic speed, etc. To
better address the spatial heterogeneity problem, we
use an idea proposed by Yuan et al. [16] and apply the
spectral analysis on the road networks to generate 10
spectral features for each grid cell, which contain spatial
connectivity relationships between different locations
through the road network.

Definition 3.5. Spatio-Temporal (ST) Features
Spatio-Temporal features FST are those, which vary
both in space and time, where F i

ST
(l, t) represents the

i-th ST feature for location l at time interval t. FST

includes daily weather and traffic conditions in each
location l and each time slot t. Weather features consist
of precipitation, snowfall, snow depth, etc. The weather
features are continuously distributed over the entire
space. The traffic condition features include average
traffic speed, normal vehicle traffic volume, and truck
traffic volume for each location and time interval.
Missing value imputation: Many ST features are
only collected at sampling sites or stations. There
are also missing values due to data quality issues. To
utilize the data for the entire study area, we use spatial
interpolation methods to impute the missing values.
Specifically, we use Ordinary Kriging [7] to estimate
the weather-related attributes for locations without
a station and a Universal Kriging [7] with network
distance to estimate traffic-related features.
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Figure 2: The HintNet Solution Overview.

In total, we extracted 47 features, including 29
spatial features, 5 temporal features, and 13 ST features
for each grid cell l and time interval t.

3.3 Problem Definition
Now we are ready to define the problem formally.
• Given:
– A spatial-temporal field L× T

– A road network mask map H

– Traffic accident count tensor C for a time window
[t− n, t− 1] for all l ∈ L, n < t

– A set of feature tensors F = {FT , FS , FST } for the
same time window for all the locations l ∈ L

• Find:
– Predicted accident count in every l ∈ L for t: Ĉ(l, t)
• Objective:
– Minimize the prediction error
• Constraints:
– All traffic accidents occur along road system.
– Spatial heterogeneity exist in the data.

Here n is the time length of the input features for
each prediction. In this paper, we choose t as a single
day and use seven consecutive days of data to predict
for the eighth day (n = 7).

4 Proposed Solution

In this section, we present our solution HintNet. Figure
2 shows the overview of the proposed framework. In the
learning phase, we first perform the Multi-level spatial
partitioning to obtain levels of regions with different
risks. Meanwhile, the sub-regions are extracted and
used to train models on each risk level. Lastly, the
knowledge learned from previous models is transferred
to the next level by initializing model parameters. In
predicting phase, the real-time data is extracted and
mapped into grids, then we use partitioned results from
the training phase to classify grids into the same levels.
Finally, features are fed into corresponding well-trained
models to make final predictions.

4.1 Multi-level Risk-Based Spatial Partitioning
To address the limitations of related work in capturing
irregular spatial heterogeneity patterns, we propose a
spatial partitioning method, namely, Multi-level Risk-
Based Spatial Partitioning (M-RSP) to partition the
grids into irregular-shaped regions based on the accident
risk in a hierarchical manner. Specifically, M-RSP
applies binary-partitioning iteratively. In each step,
the study area is split into a risky region and less-
risky region. In the next iteration, M-RSP repeats this
binary-partitioning process on the previous risky region.
By doing this iteratively, we obtain multiple levels of
partitioned less-risk regions. Each level of less-risk
regions represents a hierarchy of the risk distribution.
To distinguish risk levels, we use a threshold η to
compare with the total number of accidents in each
partitioned region. If the accident count is greater than
η, this region is risky. Otherwise, the region is less-risky.

The partitioning procedure for every single level,
which we refer to as RSP (Risk-Based Spatial Parti-
tioning), is inspired by DBSCAN [11], and designed for
binary-partitioning on grids with similar risk. Given a
cell location l, its neighbors are defined as cells within
a range ǫ both horizontally and vertically in Manhattan
distance. Min points γ is a threshold used to identify
grid cell as high-risk, if its accidents count is greater
than γ. Min Risk λ is used for filtering out noise
cells within fewer accidents than this limit. A criti-
cal cell is defined as a cell with the number of high-
risk neighbors including itself greater than a threshold
min neighbors β. A border cell is a non-critical cell
with at least one critical cell in the neighbors. An out-
lier is not a critical cell and has no critical cells among
its neighbors. In RSP, grid cells are classified as Criti-
cal cells, Border cells, or Outliers. Specifically, for each
level, RSP starts with checking a random cell. If this
cell is identified as a Critical cell, and then its neigh-
bors will also be checked until no Critical cell is identi-
fied. The border cell and critical cell are assigned with
a partition label. The algorithm repeats this process
to the next random unclassified grid cell until all grids
are classified. Importantly, We have this unique design
of identifying Critical cells by counting their high-risk
neighbors. The reason behind this design is that if we
simply count the total accidents within a region, some
low-risk grid cells with an extremely high-risk neighbor
cell will be classified as high-risk cells as a result of over-
influence from that high-risk neighbor. Lastly, grid cells
with no road are filtered out by using the mask map H.

The overall M-RSP algorithm calls for the single-
level RSP procedure iterative for partitioning on each
level for β iterations until all the levels are generated.
Algorithm 1 shows the details of the entire M-RSP,
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Algorithm 1: Multi-level Risk-based Spatial
Partitioning (M-RSP)

Input: accidents matrix A, mini points γ,
min risk λ, threshold η, epsilon ǫ

Output: matrix with assigned level label

1 iter = (2 ∗ ǫ+ 1)2

2 Initialize zero map matrix z

3 Initialize result as −1 map matrix
4 for each β from 0 to iter do
5 Partitions = RSP(A, ǫ, γ, λ, β)
6 if β == iter then
7 η = +∞

8 for each p in Partitions do
9 for each g in p do

10 if p[g] == 0 and z[g] == 0 then
11 z[g] = 1
12 result[g] = β − 1

13 ctr = CountAccidents(p, A)
14 if ctr <= η then
15 for each g in p do
16 if z[g] == 0 then
17 z[g] = 1
18 result[g] = β

19 result += 1
20 return result

where Line 1 determines the maximum number of itera-
tions, which equals to maximum neighbors controlled by
ǫ. Line 5 performs the partitioning for a single level us-
ing RSP. Line 6 checks for the last iteration to partition
all left regions by setting η as infinity. The remaining
algorithm implements binary-partitioning by checking
with η. In the end, the result is incremented by one
because the noise level was initialized as negative ones.
Figure 3 illustrates this process of multi-level partition-
ing on the entire Iowa dataset. In the binary tree, levels
represent partitioned maps with β from 0 to 9 when ǫ

is set as 1. The parent node represents the unassigned
cells from the previous level. The left child represents
the assigned grids in the current level, and the right
child node represents unassigned grids. The right-most
map on the top is the final risk-based partitioning map.
Lastly, depending on the granularity of the partition re-
sult we need, we can aggregate every k levels together
into a single partition, where k is a tunable hyperparam-
eter in our framework. The finest granularity is when
k = 1, which is the same as using the original parti-
tioned result.

4.2 HintNet deep learning solution Given the
partitioned regions on each level of the hierarchy, sep-
arate models are trained on each level to reduce the
spatial heterogeneity issue. However, simply apply-
ing separate models ignores the potential connectiv-
ity between regions on each level of the hierarchy.
Thus, we develop a knowledge transfer mechanism to
allow models to share learned knowledge across differ-
ent levels. Figure 4 shows the basic structure of Hint-
Net. The inputs include spatial features, temporal fea-
tures, spatial-temporal features, and an adjacency ma-
trix from the same region. The output of HintNet is
the predicted number of accidents. Firstly, The Graph
Convolution(GC) is carefully designed to capture the
local spatial auto-correlations along with the road sys-
tem. Meanwhile, the training process should remain
reasonably efficient. To achieve that goal, sub-regions
are extracted from each level. In every time interval t,
we treat each cell l and its surrounding neighbor cells
as one w × w image, where the size w, a hyperparame-
ter, controls the filter size of Graph Convolution. The
sub-region grids are converted into a graph, where cells
are treated as vertices and correlations between cells
are treated as edges. Inspired by the dynamic CNN [17]
proposed by Zhang et al., We use the Pearson correla-
tion coefficient in Equation 4.1 to quantify the accident
correlations between grid cells to capture the spatial de-
pendencies.

(4.1) aXY =

∑n

i=1(Xi −X)(Yi − Y )
√

∑n

i=1(Xi −X)2
∑n

i=1(Yi − Y )2

where the adjacency matrix A is a symmetric w2 ×
w2 matrix such that its element aXY is the accident
correlation between location X and Y . Thus, for each
cell l and time interval t, a feature image tensor Xt

l
∈

R
w×w×d is retrieved, where d is the dimension of the

features. The inputs of the Graph Convolution layer are
Xt

l
for each cell l and corresponding adjacency matrix

A, and the output is output feature matrix Hl.

(4.2) Hi

l = f(Hi−1
l

, A) = σ(AHi−1
l

Wi),

Where Hi

l
is the output feature matrix of the region

l in the i-th layer. In this way, Graph Convolution
filters focus more on regions with higher correlations
along with the road network and ignore the regions with
irrelevant traffic accident patterns.

Secondly, we use Long Short-Term Memory(LSTM)
[19] as building blocks. To capture the spatial depen-
dencies, Graph Convolution layers are first applied on
spatial-temporal features to obtain filtered feature ma-
trix Hl in each time interval t. Afterward, we concate-
nate the last output feature matrix Hl with temporal
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Figure 3: Multi-level partitioning. White box - unpartitioned regions that will be checked in the next level.
Colored box - partitioned regions, size indicating the number of partitioned grid cells in corresponding level.

Figure 4: HintNet Deep Learning framework.

features and feed it into a fully connected layer, and
then the output is used as input of each LSTM state.
Concurrently, Spatial Features are also fed into a Graph
Convolution layer, and another fully connected layer is
applied on its output feature matrix to get low dimen-
sion representation. Lastly, the representation of spa-
tial features is concatenated with the output of the last
LSTM state, and then we fed the concatenation into the
last fully connected layer to make final predictions.

Cross-level Knowledge Transfer We argue that
there exist some common traffic accident patterns in
all levels of hierarchy, especially for particular adjacent
levels. For example, the risk factors recognized in down-
town areas such as holiday events can be transferred to
nearby regions, because they tend to share similar traf-
fic patterns. To transfer learned knowledge across levels,
we transfer model parameters learned from the previous
level to the model in the next level. Compared with ini-
tializing model parameters randomly, we argue that the
transferred parameters learned from other levels carry
the experience of forecasting accidents and contribute
to the training process of other levels. The right part of

Figure 2 shows this process. In our case, the knowledge
is transferred from the level of urban areas to the level of
rural areas (i.e., from leaf to root). During the training
phase, we apply the gradient descent to update parame-
ters θ, with a learning rate α. The training process uses
the mean square error (MSE) as a loss function.

(4.3) Loss =
1

T

T
∑

t=1

(Yt − Ŷt)
2,

Where Yt is the ground truth and Ŷt is the predicted
values of all grid cells at time interval t.
Algorithm 2 shows the training process of the cross-
level knowledge transfer. The output contains trained
models on each level, and they are used in Predicting
Phase. In the Predicting Phase, real-time features in
each risk level are fed into corresponding trained models
and make predictions on each level. The final prediction
of HintNet is the integration of predictions on each level.

5 Evaluation

In this section, we demonstrate the effectiveness of our
proposed method comparing with baselines.

5.1 Experiment Settings In this part, we will ex-
plain the basic setting of our experiments.
Data Preprocessing: We use the data from the first
two years (2016-2017) as a training set, and the valida-
tion set is randomly selected from 20% of the training
set. The data from the year 2018 is used as a testing
set. Besides, the whole state of Iowa area is partitioned
into 5km by 5km grids.

Evaluation Goals: (1) Does the proposed frame-
work outperforms baseline methods with different lev-
els of heterogeneity? (2) Which features have the most
impact on prediction accuracy in different levels. (3)
Which granularity k of partitioning results in the best
performance? (4) Does the knowledge transfer mecha-
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Algorithm 2: Cross-level Training

Input: Multi-level partitioning τ , predictor
f(), True accidents Y , learning rate α,
Epoch e

Output: trained models on each level

1 initialize parameter θ in pool for each level
2 for each level v in τ do
3 if not 1st v then
4 θ = pool[previous v]

5 for each iteration in e do
6 FT , FS .FST , A = SubregionExtract(v)

7 Ŷ = fθ(FT , FS .FST , A)

8 Loss = 1
T

∑T

t=1(Yt − Ŷt)
2

9 Calculate gradient ∇g(θ) by Loss

10 Update pool[v] = pool[v] + α∇g(θ)

11 return pool

nism improve the model performance?
Metrics: We evaluate the performance of the

models by measuring the mean square error (MSE)
Besides, we use the number of model parameters to
demonstrate the resources usage between the proposed
model and baselines.

Baselines: We compare our proposed framework
with the following baselines: (1) Least Square Linear
Regression (2) FC-LSTM, two layers of LSTM (2)
Decision Tree Regression. The max depth is set to
30. (3) ConvLSTM [14]. We use a two-layer structure
and the hidden dimension is equal to the number of
features. (4) Hetero-ConvLSTM. Each ConvLSTM in
hetero-ConvLSTM uses the same parameter setting as
the ordinary ConvLSTM baseline. We use multiple
moving windows with fixed size 32 × 32. The number
of windows depends on the size of the study region. (5)
GSNet. we modify the weighted loss function part to fit
into our case. (6) Historical Average. Historical average
daily accident counts. The mask map is also applied on
all baseline predictions to filter out cells without roads.

5.2 Performance Comparison We compare the
performance between the proposed method and base-
lines given with different levels of spatial heterogeneity.
We test the models in 4 types of regions with grid size
16×16, 32×32, 64×64, and 128×64 separately. Figure
5 shows the corresponding grid map representing ho-
mogeneous, less-homogeneous, heterogeneous, severely
heterogeneous regions respectively. To test all methods
on them, the filter size of ConvLSTM and the sub-region
size in our method is set as 5 × 5 in the homogeneous
region (16× 16) and less-homogeneous region (32× 32)

Figure 5: Illustration of four test regions

grid map. For heterogeneous region (64×64) and severe-
heterogeneous region (128× 128), the both sizes are set
as 7 × 7. Besides, GSNest is infeasible to be applied
on the largest region (128× 64) because of its oversized
graph convolution part. Therefore, we applied two in-
dependent GSNet models on the left-half and right-half
parts of the study area, and calculate the total pre-
diction error. For Hetero-ConvLSTM, the number of
moving windows used for each region are 1, 1, 9, 21
respectively, as a result of its fixed window size.

Table 1 compares models in all heterogeneity levels,
where HintNet outperforms all baseline methods. State-
of-the-art methods like GSNet and ConvLSTM achieve
decent prediction in smaller regions with less spatial het-
erogeneity but perform poorer in large, heterogeneous
regions. In this case, HintNet outperforms GSNet 43%.
On the opposite, our method and hetero-ConvLSTM
address the heterogeneity problem and perform stably
in all regions. Nevertheless, Hetero-ConvLSTM suffers
from an excessive number of sub-models, square-shaped
partitioning with a fixed size, and dis-connectivity be-
tween sub-models. In a less-homogeneous region, our
method outperforms hetero-ConvLSTM by 26% in pre-
diction error. Model Complexity: The experiments
show that HinNet achieves better performance with a
relatively smaller model size. The results of model
complexity are included in supplementary materials.
The supplementary material and code is available at:
https://github.com/BANG23333/HintNet.

5.3 Ablation study In this section, we first evaluate
HintNet’s performance on each level of the hierarchy,
then compare the impact of features and parameters.

Improvements on each level: We study how our
proposed model performs in different levels of the par-
tition. The Historical Average(HA) is generally a good
reference value to measure the overall improvements of
HintNet in each level. We calculate the percent of im-
provements between our proposed model and the his-
torical average in each level. Figure 6 shows the trend
of improvements from rural regions to urban regions.
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Table 1: Model Comparison

LR DTR LSTM ConvLSTM GSNet Hetero-ConvLSTM HA HintNet

16× 16 0.221 0.388 0.264 0.197 0.179 0.197 0.220 0.174
32× 32 0.075 0.133 0.085 0.081 0.080 0.081 0.074 0.060
64× 64 0.032 0.085 0.033 0.044 0.036 0.028 0.032 0.025
128× 64 0.026 0.033 0.027 0.039 0.037 0.024 0.027 0.021

Table 2: Error Comparison with different k

k = 3 k = 2 k = 1
MSE 0.063 0.021 0.135

Figure 6: Improvement across levels

The red line represents the percentage of improvement
and the blue line represents the number of grid cells in-
volved in each level. As we can see, the improvements
grow steadily as the level number grows. This indicates
that HintNet makes relatively better predictions in ur-
ban areas and suburban areas, but only slightly exceeds
HA in rural areas partially due to data sparsity.

Impact of feature group: To determine the ef-
fectiveness of different feature groups on the results, we
examine the results by adding feature groups one by one.
As Table 3 illustrated, the model with only spatial fea-
tures (S) has slightly better performance than the his-
torical average. With extra temporal features (T) such
as calendar data, our model makes a great improvement
on level 6 which represents the downtown areas. It re-
veals that calendar features enable the model to capture
the temporal patterns in areas with frequent human ac-
tivities such as traffic jams in holidays. Interestingly,
the spatial-temporal (ST) features like weather infor-
mation brings down the errors on level 5, level 6, and
level 4 significantly. This indicates that the dynamic
weather changes play a significant role in predicting ac-
cidents in state highways and residential areas which
covers the large road systems with high-speed traffic
volumes. Lastly, the prediction on extreme rural areas
including level 2 and level 1 is still challenging due to
the randomness of accidents.

Impact of risk-tree level aggregation granu-
larity k: To investigate which degree of partitioning

Figure 7: Knowledge Transfer

granularity leads to best model accuracy. We test the
model when k is set to be 3, 2, and 1. As shown in Ta-
ble 2, when k = 2 we obtain the best result. When the
k = 3, there are only 3 partitioned levels. The cells with
different accident patterns are mixed in a single group,
so the model cannot address the spatial heterogeneity
appropriately. Similarly, the model has the worst results
when k = 1. In this case, the over-fined granularity re-
sults in a limited number of samples in each level, and it
becomes extremely difficult for our model to learn from
levels with more variability.

5.4 Impact of cross-level knowledge transfer
We assume that the inherent knowledge learned from
levels helps the training process on other levels. We
examine the benefits of using the knowledge transferring
mechanism based on its accuracy and efficiency. To
check the improvements in prediction accuracy, we
train our models with and without knowledge transfer
mechanism under the same parameter setting for 10
times, and then we draw a box-plot from their mean
square errors of testing sets. Figure 7 shows that models
with knowledge transfer have lower average and lower
variance. On the other hand, to test the improvements
on model efficiency, we first use the training set and
validating set to get the best validating errors on each
level and use them as target lines. Next, we train the
models with and without knowledge-transferring for 10
times to reach the same target validating errors on each
level. We record the average number of epochs the
models take to reach the target error. Lastly, we draw a
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Table 3: Impact of feature groups

level 6 level 5 level 4 level 3 level 2 level 1 All levels

S 0.676 0.164 0.098 0.057 0.036 0.007 0.024
S+T 0.648 0.150 0.090 0.053 0.036 0.007 0.022

S+T+ST 0.625 0.118 0.066 0.049 0.034 0.007 0.021

box plot based on their level-average epoch cost. We can
find that models with knowledge transfer mechanism
have less average epoch cost and less variance. The
experiments results show that knowledge transfer can
further improve and stabilize prediction accuracy and
training efficiency.

6 Conclusion

In this paper, we performed a comprehensive study on
the traffic accident forecasting problem. Traffic acci-
dent prediction is important to transportation manage-
ment and public safety, but it is very challenging due
to spatial heterogeneity and rareness. We proposed a
HintNet model to partition areas into multi-level sub-
regions based on their accident risk and learn models
for each level. Meanwhile, A knowledge transfer mecha-
nism is applied across different levels. The experiments
show that the HintNet is a promising solution to acci-
dent prediction problems, and HintNet outperforms the
state-of-art method up to 12.5% on prediction error.
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