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Abstract

In this paper we consider the training stability of recurrent neural networks (RNNs),
and propose a family of RNNs, namely SBO-RNN, that can be formulated using
stochastic bilevel optimization (SBO). With the help of stochastic gradient descent
(SGD), we manage to convert the SBO problem into an RNN where the feedforward
and backpropagation solve the lower and upper-level optimization for learning
hidden states and their hyperparameters, respectively. We prove that under mild
conditions there is no vanishing or exploding gradient in training SBO-RNN.
Empirically we demonstrate our approach with superior performance on several
benchmark datasets, with fewer parameters, less training data, and much faster
convergence. Code is available at https://zhang-vislab.github.io.

1 Introduction

Training Stability in RNNs. Recurrent neural networks (RNNs) have achieved significant success in
learning complex patterns for sequential input data. Due to the repeatability of network weights in the
chain rule when computing gradients, vanishing or exploding gradients often occur in training RNNs,
i.e., the gradient magnitudes either too small or too large, leading to the well-known critical training
stability issue [Pascanu et al., 2013a]. To see this, suppose that we are optimizing the following RNN:

min
ω,θ

E(x,y)∈X×Y`(hT , y;ω), s.t.ht = f(ht−1,xt; θ),∀xt ∈ x, ∀t ∈ [T ], (1)

where (x, y) ∈ X × Y denotes the training data with samples x = {x1, · · · ,xT } ⊆ Rd and label
y, ht ∈ RD denotes the hidden state variable at the t-th time step with a predefined initial h0, `, f
denote the loss and nonconvex transition functions parametrized by ω, θ, respectively, and E denotes
the expectation operation. The gradient of ` w.r.t. θ per data in the RNN can be computed as follows:

∂`

∂θ
=

∂`

∂hT
·
∑

1≤t≤T

(
∂hT
∂ht

∂ht
∂θ

)
, where

∂hT
∂ht

=
∏

t<k≤T

∂hk
∂hk−1

. (2)

The training challenge mainly comes from ∂hT

∂ht
, i.e., ‖∂hT

∂ht
‖ → 0 leading to vanishing gradients and

‖∂hT

∂ht
‖ → +∞ leading to exploding gradients, where ‖ · ‖ denotes the magnitude of a gradient.

Penalty/Lagrangian Methods. In fact, the learning problem in Eq. 1 is a constrained optimization
problem with recursive equality constraints. To solve it, an intuitive idea is to relax it to an uncon-
strained optimization problem using, for instance, penalty methods [Zhang and Brand, 2017] or
(augmented) Lagrangian methods [Gu et al., 2020] that lift the constraints into the objective function.
As demonstration, we list a relaxation of Eq. 1 using a penalty method as follows:

min
ω,θ,{ht}

E(x,y)∈X×Y

`(hT , y;ω) + ∑
t∈[T ]

λt ‖ht − f(ht−1,xt; θ)‖2
 , (3)
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where λt ≥ 0,∀t denotes a penalty coefficient. Now the gradient w.r.t. θ is only dependent on the
second term, i.e., least squares, with no training stability issue. Such relaxation has modified the RNN
network architectures that leads to new challenges in such methods for RNN training, for instance:

• The size of variables {ht} increases linearly w.r.t. the sequence length T , leading to large memory.
• The learned parameters ω, θ may not work well in the original RNN at test time, due to the penalty.

How to solve these challenges in the relaxed training approaches still remains an open question [Gu
et al., 2020].

Bilevel Optimization (BO) & Ordinary Differential Equations (ODEs). Alternatively, based on
a similar idea of penalty methods, a trivial yet equivalent modification of Eq. 1 is listed as Eq. 4
below, which essentially defines a bilevel optimization problem where one optimization problem is
embedded within the other (e.g., [Vicente and Calamai, 1994, Sinha et al., 2017]):

min
ω,θ

E(x,y)∈X×Y`(hT , y;ω), s.t.ht = argmin
h

‖h− f(ht−1,xt; θ)‖2,∀t ∈ [T ] (4)

≡min
ω,θ

E(x,y)∈X×Y`(hT , y;ω), s.t. ḣt = ht − f(ht−1,xt; θ),∀t ∈ [T ], (5)

where ḣt denotes the change rate of variable ht over time in the gradient flow, and ḣt = 0 when ht
converges to a fixed point, if exists. In fact, some of recent ODE based RNNs have similar transition
functions to Eq. 5. For instance, Kag et al. [2020] proposed an incremental RNN (iRNN) with a
transition function of −βḣt = α (ht + ht−1) − f (ht + ht−1,xt; θ) , ht(0) = 0, and proved that
there is no vanishing/exploding gradient in training iRNN. As we can see, the key difference between
iRNN and Eq. 5 is that the current hidden state variable ht is introduced into function f , leading to a
sequence of updates for ht through variable discretization. However, to the best of our knowledge,
so far no work has been proposed to formulate RNNs using BO. Recently BO regains attention
in meta-learning. For instance, Franceschi et al. [2018] proposed a framework based on bilevel
programming to unify gradient-based hyperparameter optimization and meta-learning. Mounsaveng
et al. [2021] proposed using online BO to tune the hyperparameters for data augmentation.

Our Contributions. In contrast to the literature, in this paper we consider the training of RNNs
itself as a bilevel optimization problem. Specifically, we propose a new family of RNNs, namely
SBO-RNN, that can be formulated using stochastic bilevel optimization (SBO), where we consider
hidden state vectors as intermediate auxiliary variables that depend on the RNN model parameters.
These auxiliary variables are optimized in the lower-level problem of SBO, and the model parameters
as well as the predictor are learned by optimizing the outer objective function. We utilize stochastic
gradient descent (SGD) and its momentum variants to solve such SBO problems, where in return the
optimization process of the lower-level problem can be (approximately) represented by SBO-RNN.
We also prove that under mild conditions, our SBO-RNN can avoid vanishing or exploding gradients
in training by selecting proper learning rates for the lower-level problem. We conduct comprehensive
experiments on several benchmark datasets to evaluate our approach, and achieve superior results.

In summary, our key contributions in this paper are listed as follows:

• We propose a new family of RNNs, namely SBO-RNN, that are the first in the literature, to the
best of our knowledge, to formulate RNNs using stochastic bilevel optimization for streaming data.

• We prove that our networks manage to obtain good training stability by selecting proper learning
rates for the lower-level problem to avoid vanishing and exploding gradients.

• We demonstrate superior performance empirically with fewer parameters, less training data, and
much faster convergence.

2 Related Work

RNN Architectures. To address the training stability issue, there are significant amount of works
on developing RNN architectures such as, just to name a few, long short-term memory (LSTM)
[Hochreiter and Schmidhuber, 1997], gated recurrent unit (GRU) [Cho et al., 2014, Collins et al.,
2016], unitary RNNs [Arjovsky et al., 2016, Jing et al., 2017, Zhang et al., 2018, Pennington et al.,
2017], deep RNNs [Pascanu et al., 2013b, Zilly et al., 2017, Mujika et al., 2017, Zhang et al., 2021],
linear RNNs [Bradbury et al., 2016, Lei et al., 2018, Balduzzi and Ghifary, 2016], residual/skip
RNNs [Jaeger et al., 2007, Bengio et al., 2013, Chang et al., 2017, Campos et al., 2017, Kusupati
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et al., 2018a], ODE RNNs [Talathi and Vartak, 2015, Niu et al., 2019, Chang et al., 2019, Kusupati
et al., 2018a, Chen et al., 2018, Rubanova et al., 2019, Kag et al., 2020, Rusch and Mishra, 2021, Bai
et al., 2019, Erichson et al., 2020], implicit RNN [Revay and Manchester, 2020], and TreeRNN [Lyu
et al., 2021]. We summarize the literature as the following groups:

• Recurrent units: LSTM applies gate-controlled memory cells to mitigate the vanishing/exploding
gradient issue in sequence-based tasks. GRU is another widely-used variant of RNNs, and similar
to LSTM it can stabilize the training [Chung et al., 2014]. Recently, Jose et al. [2018] proposed
a flexible Kronecker recurrent unit (KRU) based on Kronecker product. Nguyen et al. [2020]
proposed MomentumRNN by integrating momentum into the recurrent unit.

• Residual/Skip RNNs: This family of RNNs feed-forward state vectors with the help of skip or
residual connections to serve as a middle ground between feed-forward and recurrent models and
to mitigate gradient decay. Such network architectures can also be used to search for equilibrium
(or fixed) points in ODEs, such as iRNN [Kag et al., 2020].

• Stable recurrent models: Miller and Hardt [2019] proved that stable recurrent neural networks
are well approximated by feed-forward networks for the purpose of both inference and training
by gradient descent. The analysis is based on the contraction assumption in the state transition
function. Revay and Manchester [2020] proposed an implicit model structure that allows for a
convex parametrization of stable models using contraction analysis of non-linear systems. Collins
et al. [2016] showed experimentally that all common RNN architectures achieve nearly the same
per-task and per-unit capacity bounds with careful training, for a variety of tasks and stacking
depths.

• Unitary and orthogonal RNNs: These RNNs aim to preserve the norm of hidden features (i.e.,
‖ ∂ht

∂hk
‖ in Eq. 15) by controlling the eigenvalues, explicitly or implicitly, that has been studied

extensively in recent years [Arjovsky et al., 2016, Jing et al., 2017, Zhang et al., 2018, Pennington
et al., 2017, Erichson et al., 2020, Kerg et al., 2019, Lezcano-Casado and Martınez-Rubio, 2019,
Helfrich et al., 2018, Maduranga et al., 2019, Mhammedi et al., 2017]. For instance, Lezcano-
Casado and Martınez-Rubio [2019] proposed expRNN by performing the first-order optimization
with orthogonal and unitary constraints based on a parametrization stemming from Lie group theory
through the exponential map.

• RNNs with equilibrium hidden states: In such RNNs, the hidden states are represented by the
equilibrium points, if exist, of certain dynamical systems defined by ODEs, for instance. Typical
works include AntisymmetricRNNs [Chang et al., 2019], FastRNN [Kusupati et al., 2018b], iRNN
[Kag et al., 2020], Lipschitz RNN [Erichson et al., 2020]. It seems that all these works can
prove good training stability from different perspectives such as generalization bound or norm of
gradients, with empirical demonstration.

• Deep RNNs: RNNs are inherently deep in time. Inspired by this property, researchers are seeking
to develop new networks to investigate the benefits of depth in space of RNN architectures. For
instance, [Graves et al., 2013] combined multiple recurrent levels on the basis of bi-directional
LSTM [Graves and Schmidhuber, 2005, Schuster and Paliwal, 1997] to improve RNN performance
in speech recognition task. Another study in [Hermans and Schrauwen, 2013], with a deeper
analysis of the different emergent time scales, also proposed a similar stacking architecture. Some
deep RNNs have been proposed in the literature as well [Chen et al., 1995, El Hihi and Bengio,
1996, Fernández et al., 2007, Schmidhuber, 1992, Graves, 2013, Jaeger, 2007, Pascanu et al., 2013b,
Pinheiro and Collobert, 2014, Li et al., 2018, Dennis et al., 2019].

Optimization for RNNs. Same as training other deep networks, SGD is widely used in training
RNNs, but there is no guarantee of good training stability. In contrast, some works focus on
optimization in RNNs to stabilize gradients. Typical works include truncated backpropagation
through time (TBPTT) [Jaeger, 2002], real-time recurrent learning (RTRL) [Williams and Zipser,
1989], Frank-Wolfe algorithm [Yue et al., 2020], gradient clipping [Pascanu et al., 2013a, Li et al.,
2018, Zhang et al., 2020], identity or orthogonal weight initialization [Le et al., 2015, Arjovsky et al.,
2016, Jing et al., 2017, Jose et al., 2017, Mhammedi et al., 2017, Wisdom et al., 2016, Vorontsov
et al., 2017], weight matrix reparametrization [Zhang et al., 2018]. Different from these works, we
propose using SBO to interpret RNNs and further train them based on a two-loop algorithm where
the inner loop solves the SBO problems and the outer loop optimizes the RNN parameters.

Training Stability Analysis in RNNs. The stability analysis of different network architectures often
comes with the eigenvalues of the Jacobian of the hidden state dynamics, because RNNs can be
considered as dynamical systems. For instance, Engelken et al. [2020] studied the Lyapunov spectra
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Algorithm 1 Training algorithm for SBO-RNN
Input : loss function ` parametrized by ω, state transition function F parametrized by θ, step size η, training

data X and labels Y
Output :minimizer ω∗, θ∗

Randomly initialize ω∗, θ∗;
repeat

/* lower-level optimization: RNN inference */
foreach x ∈ X do

h0 ← 0;
foreach t ∈ [T ] do

ht ← ht−1 − η∇F (ht−1,xt; θ
∗); // Or momentum SGD using Eq. 8 or 9

end
end
/* upper-level optimization: hyperparameter learning */
ω∗, θ∗ ∈ argminω,θ E(x,y)∈X×Y` (hT (θ), y;ω) |ω=ω∗,θ=θ∗ ;

until Converge;
return ω∗, θ∗;

of chaotic recurrent neural networks. Vogt et al. [2020] proposed using Lyapunov exponents to
understand the information propagation in RNNs, but unfortunately there is no discussion on how to
introduce such nice Lyapunov stability into the development of RNNs. Drgona et al. [2020] proposed
viewing neural networks from a dynamical systems perspective as pointwise affine maps. However,
the theoretical results are adapted from dynamical system analysis and the assumptions for deep
neural networks are too strong to be met in practice. Tuor et al. [2020] proposed an ODE based
network implementation to guarantee stability as well as incorporating prior knowledge. Recently,
Ribeiro et al. [2020] proposed analyzing RNN training using attractors and smoothness as alternatives.

3 SBO-RNN

3.1 Stochastic Bilevel Optimization Formulation for RNNs

Recall that the goal of RNNs is to learn discriminant representations for different data sequences,
regardless of how the intermediate hidden states are defined. In our approach, we first assume that a
data sequence x = {x1, · · · ,xT } is generated by a certain stochastic process with distribution Py
that is conditional on the label y of x. That is, each xt,∀t ∈ [T ] is sampled from Py, i.e., xt ∼ Py.
We observe that this assumption can work well in practice, even for the sequences with strong
dependencies among samples. Based on this assumption, we propose the following learning problem:

min
ω,θ

E(x,y)∈X×Y` (h
∗, y;ω) , s.t.h∗ ∈ argmin

h∈H
Ext∼PyF (h,xt; θ) , h0 = 0,∀xt ∈ x, ∀t ∈ [T ], (6)

where F is a proper, differentiable everywhere, and lower-bounded function. As we can see, the
lower-level optimization in Eq. 6 aims to learn the data representations h on-the-fly, while the upper-
level optimization aims to learn the hyperparameter θ of F as well as the predictor ω simultaneously.
Different from Eq. 4, for instance, our approach utilizes the stationary points of function F as the
representations of data sequences, and θ is learned so that such stationary points can be separated
well for prediction. Similar ideas have been explored in the orthogonal RNNs such as expRNN
[Lezcano-Casado and Martınez-Rubio, 2019] where the transition functions are nonexpansive w.r.t.
hidden states (but no guarantee of convergence). It has been demonstrated that such nonexpansive
constraints in learning can significantly improve the performance of RNNs. In this paper we further
demonstrate that such convergence in the lower-level optimization can not only improve performance
but also accelerate the training (see our experimental section).

3.2 Learning

Lower-level Optimization. We show our general training algorithm in Alg. 1, where the lower-level
optimization is solved using SGD. We can also employ momentum SGD as our solver to train
SBO-RNN. Specifically, below we list three popular variants of SGD, namely vanilla SGD, stochastic

4



−∇𝐹!

+ + +
−∇𝐹!"#

+ + +

+ +

−∇𝐹! −∇𝐹!"#

+ + +

+ + +

−∇𝐹! −∇𝐹!"#

(a) SGD (b) SHB (c) SNAG

ℎ!"# ℎ! ℎ!$# ℎ!"# ℎ! ℎ!$#

"ℎ! "ℎ!$# ℎ!"# "ℎ!

"ℎ!"# ℎ! "ℎ!$#

ℎ!$#

Figure 1: Illustration of SBO-RNN architectures using the optimizers in Eq. 14, 8 and 9, respectively.

heavy-ball (SHB) momentum, and stochastic Nesterov accelerated gradient (SNAG) momentum:

SGD: ht = ht−1 − η∇Ft, h0 = 0, h∗ = hT , ∀t ∈ [T ], (7)

SHB: h̃t = µh̃t−1 − η∇Ft, ht = ht−1 + h̃t, h̃0 = h0 = 0, h∗ = hT , ∀t ∈ [T ], (8)

SNAG: h̃t = ht−1 − η∇Ft, ht = h̃t + µ(h̃t − h̃t−1), h̃0 = h0 = 0, h∗ = hT , ∀t ∈ [T ], (9)

where∇ denotes the gradient operator,∇Ft = ∇hF (ht−1,xt, θ) denotes the current gradient w.r.t.
h, η ≥ 0 denotes the step size, and µ ∈ [0, 1] denotes the momentum parameter. Note that SHB and
SNAG is identical to SGD when µ = 0.

RNN Interpretation. Eq. 14, 8 and 9 define three different iterative methods that take the previous
hidden state as input and output the current hidden state, leading to three different SBO-RNN network
architectures (see Fig. 1). Note that our SBO-RNN shares similarities in some recent RNNs such
as FastRNN [Kusupati et al., 2018b] and iRNN [Kag et al., 2020] that have skip connections in the
architectures and have been demonstrated to be trained stably. Recently, momentumRNN [Nguyen
et al., 2020] was proposed by drawing a connection between the dynamics of hidden states and GD.
It is clear, however, that in terms of formulation the “momentum” here is only used for accumulating
the weighted data samples without any purpose in optimization. In other words, its update rule has
nothing to do with GD or momentum variants. In contrast, in our SBO-RNN we utilize first-order
methods to really solve the lower-level optimization problems, which makes the gradient term in our
SBO-RNN analytically integralable.

Instantiations. In this paper, we demonstrate our approach based on the following two functions:

F (h,xt; θ)
def
=

1

2

∥∥αh− φ (UTh+VTxt + b
)∥∥2 , (10)

F (h,xt; θ)
def
=

α

2
‖h‖2 − 1

2

∥∥U−1φ (UTh+VTxt + b
)∥∥2 , (11)

where U ∈ RD×D,V ∈ Rd×D,b ∈ RD, α ∈ R together form the model parameters θ, φ : RD →
RD denotes an entry-wise nonconvex and differentiable function such as ReLU and tanh, and
(·)T , (·)−1 denote the matrix transpose and inverse operators. Here we borrow the transition function
in vanilla RNNs that aim to enforce the hidden state vectors to satisfy certain properties induced by φ.
Note that in Eq. 11 we presume that U is full-rank and thus invertible. In practice we observe that
this assumption holds all the time. Correspondingly, the gradients of both models are:

∇Ft = (αI−∇hφt) (αht−1 − φt) , ∇Ft = αht−1 − φt, (12)

where φt = φ
(
UTht−1 +VTxt + b

)
, and I denotes the identity matrix. Now we can substitute

these gradients into Eq. 14, 8 and 9, respectively, to solve the lower-level optimization in Alg. 1.
Note that Eq. 11 leads to a similar update rule for the hidden states to FastRNN [Kusupati et al.,
2018b]. Without explicitly mentioning, in our experiments we will show the best performance from
the two instantiations in Eq. 10 and 11.

Convergence Rate. Under some mild conditions, to minimize strongly-convex and smooth objectives,
all the three stochastic optimizers can converge with the same rates as their deterministic counterparts
[Assran and Rabbat, 2020]. In the convex and smooth setting, recent results in [Sebbouh et al., 2021]
proved that their convergence rates can be arbitrarily close to o(1/

√
t), and can be exactly o(1/t) in
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the overparametrized case. In both nonconvex and smooth and nonconvex and nonsmooth settings,
the convergence rates are changed to O(1/

√
t) [Yan et al., 2018, Mai and Johansson, 2020]. Overall,

our solvers should be able to locate solutions around stationary points for our problem in Eq. 6.

Network Implementation. We illustrate three different network blocks for SBO-RNN in Fig. 1,
where each directed edge towards

⊕
is associated with a certain learnable weight that is either 1

or related to one of α, µ, η in Eq. 14, 8, 9 and 10. As we see, Fig. 1(a) is essentially a variant of
ResNet [He et al., 2016], and Fig. 1(b) and (c) are similar to dual-path networks (DPN) [Chen et al.,
2017] where information is propagated between two parallel paths. Note that though both (b) and (c)
come from momentum SGD, the distributions of h and h̃ are totally different due to their weighting
strategies for gradients. The output hT is fed to a predictor parametrized by ω in Eq. 6.

Such networks can implement Alg. 1 effectively and efficiently. Precisely, we utilize the network
blocks in Fig. 1 to construct a (sub)network to solve the lower-level optimization (i.e., the foreach loop
in Alg. 1), appended with a prediction subnetwork (e.g., a fully-connected layer). The outputs of the
entire network are used for minimizing the upper-level optimization problem. In training, we still use
some popular deep learning solvers such as Adam [Kingma and Ba, 2014] to backpropagate gradients
to update the network parameters, while the feedforward solves the lower-level optimization.

3.3 Analysis

Theorem 1 (Upper Bound of Hidden Feature Distance during Network Inference). Let ∀t ∈ [T ], x =
{xt}, x′ = {x′t} and {ht}, {h′t} denote two data sequences and their corresponding hidden fea-
tures, repectively. Suppose that function F (h,xt; θ) is differentiable, Lh-smooth w.r.t. h, i.e.,
‖∇F (h,xt; θ) − ∇F (h′,xt; θ)‖ ≤ Lh‖h − h′‖, and its gradient w.r.t. xt is Lx-Lipschitz, i.e.,
‖∇F (h,xt; θ)−∇F (h,x′t; θ)‖ ≤ Lx‖xt − x′t‖. Then for SGD in Eq. 14, we have

‖ht − h′t‖ ≤
∑
k∈[t]

ηLx(1 + ηLh)
t−k‖xk − x′k‖ ≤ tηγtLx = O(tγt), (13)

where γt = maxk∈[t] ‖xk − x′k‖ and ηLh � 1.

ℎ! = ℎ!" = ℎ!""

ℎ#
ℎ#"

ℎ#""

Figure 2: Illustration of clus-
tering in the hidden feature
space based on Thm. 1.

This result provides us a hypothesis on our faster convergence empir-
ically that is beneficial from the factor γt in the upper bound. Since
we assume xt ∼ Py, it is very likely that γt for the data from the
same class will be smaller than that from different classes, leading
to clusters for different classes. We illustrate this intuition in Fig. 2,
where red and green colors denote two different classes. The smaller
upper bound encourages the data from the same class to form a clus-
ter that can be easily separate from the data from different classes.
This behavior would accelerate the learning of discriminative fea-
tures in the networks, leading to fast convergence. Note that with
simple algebra we can show that both F ’s in Eq. 10 and 11 satisfy
the smoothness conditions in Thm. 1.
Corollary 1. For SHB in Eq. 8 and SNAG in Eq. 9, supposing
that the assumptions in Thm. 1 hold as well, then we still have
‖ht − h′t‖ ≤ O(tγt),∀t ∈ [T ].

To see this, we can simply scale the upper bound with a factor of T .
Theorem 2 (Training Stability). Suppose that function F is differentiable and L-smooth w.r.t. h,
i.e., ∇2F � LI or ‖∇2F‖ ≤ L where I denotes the identity matrix. Then by properly choosing
η ∈ (0, ε

TL ] where T is the sequence length and ε ∈ (0, 1) is a sufficiently small constant, we can
guarantee that there is no vanishing/exploding gradient for training SBO-RNN using SGD in Eq. 14.

Corollary 2. For SHB in Eq. 8 and SNAG in Eq. 9, supposing that the assumptions in Thm. 2 hold,
we still can guarantee that there is no vanishing and exploding gradient when training SBO-RNN.

To see this, we can rewrite the update rules as accumulation of the previous gradients. Then based on
the fact that ∂hk−1

∂ht−1
= 0,∀k ∈ [t− 1] holds, we can still achieve ∂ht

∂ht−1
∝ I− η∇Ft that leads to the

same conclusion in Thm. 2.
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Table 2: Performance summary of different variants of our SBO-RNN on HAR-2. The training/test
time is for per batch with 64 sequences.

dense SGD dense SHB dense SNAG sparse SGD sparse SHB sparse SNAG
1% data acc. (%) 90.25± 0.71 86.59±0.74 87.19±0.14 79.18±1.45 78.55±1.45 77.89±1.41
10% data acc. (%) 93.25± 0.07 93.44±0.67 93.52±0.38 90.76±0.32 91.98±0.49 91.89±0.59
training time (s) 0.60±0.07 0.65±0.06 0.67±0.10 0.54±0.02 0.55±0.04 0.58±0.04

test time (s) 0.30±0.02 0.33±0.05 0.31±0.02 0.28±0.01 0.26±0.01 0.27±0.01

4 Experiments

Table 1: Statistics and dimension of hidden state
vectors in each benchmark dataset.

Dataset Statistics Dim.
#Train #Test #Time #Feat. #Cls. D

Pixel-MNIST 60k 10k 784 1 10 128
HAR-2 7.3k 2.9k 128 9 2 128

PTB 929k 82k 300 300 10k 300

Datasets. We evaluate our method on long-
sequence benchmarks with varying difficul-
ties, and list the statistics of these datasets in
Table 1. We strictly follow the experimental
settings in the previous works (e.g., [Kag et al.,
2020, Kusupati et al., 2018b]) for fair com-
parison. Specifically, Pixel-MNIST refers to
pixel-by-pixel sequences of images in MNIST
[LeCun and Cortes, 2010] where each 28× 28 image is flattened into a 784 time-step sequence vector
and normalized as zero mean and unit variance. HAR-2 [Kusupati et al., 2018a] was collected from
an accelerometer and gyroscope on a Samsung Galaxy S3 smartphone for human activity recognition
tasks with zero mean and unit variance. Penn Treebank (PTB) dataset [Melis et al., 2017] consists of
300-word sequences for word-level language modeling task using the PTB corpus. The vocabulary
consists of 10, 000 words and the size of trainable word embeddings is kept the same as the number
of hidden units of the architecture.

Baseline Algorithms. We compare our results with baselines including vanilla RNN, LSTM [Hochre-
iter and Schmidhuber, 1997], AntisymmetricRNN [Chang et al., 2019], FastRNN [Kusupati et al.,
2018b], FastGRNN [Kusupati et al., 2018b], ShaRNN [Dennis et al., 2019], IndRNN [Li et al., 2018],
iRNN [Kag et al., 2020], LipschitzRNN [Erichson et al., 2020] and MomentumRNN [Nguyen et al.,
2020]. Note that using the public code we have verified the results of each competitor on the datasets
that were reported in the references. For simplicity and consistency we cite the numbers from the
references, if exist, otherwise, we report our reproduced results with best tuned hyperparameters.

Training & Testing Protocols. In our implementation we utilize ReLU as our activation function
(i.e., φ in Eq. 10), as we observed that this activation works better than others such as tanh in terms
of both accuracy and convergence. This observation is consistent with the state-of-the-art methods.
We replicate the same benchmark training/testing split with 20% of training data for validation to
tune hyperparameters. Then we retrain the models using best tuned hyperparameters using the full
training set and test them on the test set. We report our results (i.e., accuracy and running time) over
three trials with randomization wherever needed such as parameter initialization. All the experiments
were run on an Nvidia GeForce RTX 2080 Ti GPU server.

Hyperparameters. We use the grid search to fine-tune the hyperparameters of each baseline as well
as ours on the validation datasets whenever is necessary. We follow [Kusupati et al., 2018b, Kag
et al., 2020, Chang et al., 2019] to set the hidden feature dimension D, as listed in Table 1. We further
set η = 10−3 in Eq. 14, 8 and 9 in all the experiments as we observe that this number works well and
consistently that leads the lower-level optimization to converge. The batch size of 64 is used across
all the datasets for all the methods. Adam [Kingma and Ba, 2014] is used as the optimizer for all the
methods. The learning rate for training SBO-RNN architectures is always initialized to 10−3 with
linear scheduling of weight decay.

4.1 Ablation Study on Adding Task and HAR-2 Dataset

The adding task is widely used for RNN evaluation. We strictly follow [Arjovsky et al., 2016]
to generate the data using their public code. There are two sequences with length T = 100, 500,
respectively. The first sequence is sampled uniformly at random U [0, 1]. The second sequence
is filled with 0 except for two entries of 1. The two entries of 1 are located uniformly at random

7



0 1 2 3 4

# Training Steps (5 × 103)
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

 M
SE

Adding Task, T=100
dense SGD
sparse SGD
dense SHB
sparse SHB
dense SNAG
sparse SNAG
FastRNN
LipschitzRNN
VanillaRNN

0 20 40 60 80 10
0

12
0

14
0

# Epochs

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

Tr
ai

ni
ng

 L
os

s

HAR-2, T=128, 1% training data
dense SGD
sparse SGD
dense SHB
sparse SHB
dense SNAG
sparse SNAG

LSTM
FastRNN
LipschitzRNN
iRNN
VanillaRNN

0 20 40 60 80 10
0

12
0

14
0

# Epochs

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Te
st

 A
cc

ur
ac

y

HAR-2, T=128, 1% training data

dense SGD
sparse SGD
dense SHB
sparse SHB
dense SNAG
sparse SNAG

LSTM
FastRNN
LipschitzRNN
iRNN
VanillaRNN

0 1 2 3 4

# Training Steps (5 × 103)
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

 M
SE

Adding Task, T=500
dense SGD
sparse SGD
dense SHB
sparse SHB
dense SNAG
sparse SNAG
FastRNN
LipschitzRNN
VanillaRNN

(a) Adding Task

0 20 40 60 80 10
0

12
0

14
0

# Epochs

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

Tr
ai

ni
ng

 L
os

s

HAR-2, T=128, 10% training data
dense SGD
sparse SGD
dense SHB
sparse SHB
dense SNAG
sparse SNAG

LSTM
FastRNN
LipschitzRNN
iRNN
VanillaRNN

(b) HAR-2: Training Loss

0 20 40 60 80 10
0

12
0

14
0

# Epochs

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Te
st

 A
cc

ur
ac

y

HAR-2, T=128, 10% training data

dense SGD
sparse SGD
dense SHB
sparse SHB
dense SNAG
sparse SNAG

LSTM
FastRNN
LipschitzRNN
iRNN
VanillaRNN

(c) HAR-2: Test Accuracy

Figure 3: (a) Training loss on the Adding Task. (b-c) Training loss and test accuracy on HAR-2.
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Figure 4: Benchmark comparison using different RNNs.

position i1, i2 in the first half and second half of the sequence. The prediction value is the sum of the
first sequence between [i1, i2]. The ground-truth mean squared error is 0.167 when a model simply
guesses 1 as the output regardless of the input sequence. We use the value 0.167 as the baseline.

We conduct comprehensive experiments based on F defined in Eq. 10 to demonstrate the effectiveness
of SBO-RNN, trained with mean-square-error (MSE) loss and hidden feature dimension D = 128,
from the following three perspectives, compared with other baseline RNNs as summarized in Fig. 3
and Table 2:

• Fewer parameters: To this end, we simply set U = βI where β ∈ R is a learnable parameter.
In this way, we reduce the model size (including U,V,b, α, µ, η) from D(D × d + 1) + 3 to
D(d + 1) + 4. We denote this variant “sparse” model in contrast to the default “dense” model.
For instance, on HAR-2 our sparse models contain only 1.5K parameters, in contrast to the dense
models with 17.9K parameters, that is more than one order of magnitude reduction. In terms of
convergence, sparse models are slightly worse than the dense models, leading to worse test accuracy
as well, generally speaking. We also try to implement a sparse variant of each competitor based on
our setup, and compare these models on HAR-2. Using the whole training data, the test results for
FastRNN, iRNN, LipschitzRNN, vanilla RNN and ours are 94.57%, 80.21%, 85.03%, 84.90%, and
94.96%, respectively, where our result is still the best. For the adding task, with the increase of T ,
the convergence behavior of SBO-RNN does not vary a lot in terms of number of training steps.

• Less training data: On HAR-2, using either 1% or 10% of the original training data, our method
can outperform the competitors significantly by ∼10% in terms of test accuracy. Also in such
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cases, our method converges faster when data is more, and our dense models seem to consistently
work better than sparse ones. The number of data has more impact on sparse models than dense
models, as the accuracy increases by ∼13% and ∼3%, respectively. Also, we observe that the
hidden dimension has bigger impact on the performance for less training data. For instance, based
on 1%, 10%, and full training data, we can achieve the test accuracy of 83.99%, 91.31%, 95.08%,
respectively, with D = 128, in contrast with 86.29%, 92.37%, 94.74% with D = 256.

• Faster convergence: On both Adding Task and HAR-2 dataset, we clearly observe the much
faster convergence of all of our models than the competitors, in terms of both training loss and
the test accuracy. We hypothesize that such behavior has strong correlation with the lower-level
optimization that enforces data to cluster, as shown in Thm. 1.

From Table 2, we can see that the running time of sparse models in both training and testing is
significantly shorter than dense models, with smaller standard deviation as well (i.e., better stability).
Using the same setting, FastRNN, iRNN, LipschitzRNN, and vanilla RNN have the running time of
0.37x, 0.80x, 0.73x, 0.27x of our dense model, respectively, because our computational complexity
per time step is higher (but F in Eq. 11 has similar complexity to FastRNN). Also, from the table 2 we
can see that the three optimizers for the lower-level optimization often achieve similar performance
with small margins, especially when the training data is sufficiently large. Momentum variants bring
more computation in both feedforward and backpropagation in training networks and inference.
Therefore, in practice SGD based SBO-RNN seems to be sufficient. In terms of memory usage, they
have 0.44x, 0.63x, 0.66x, 0.44x of our dense model.

In summary, our dense models outperform all the other models on Adding Task and HAR-2 dataset,
and our sparse models seem to demonstrate strong potential in hardware implementation under
resource-limited circumstances, achieving similar performance to those with larger model sizes.

4.2 State-of-the-art Comparison on Pixel-MNIST, HAR-2, and PTB Datasets

We compare the best performance of our dense models with other proposed baseline RNNs in Fig. 4.
The x-axis measures the number of parameters in each network (including the classifier) in log-scale.
Overall, our approach can always achieve comparable accuracy to the state-of-the-art, and for complex
datasets such as PTB our approach can produce superior performance with smaller model sizes.
Although the model sizes of our sparse models are much smaller (e.g., ∼10x smaller than FastGRNN
[Kusupati et al., 2018b] that was designed as a tiny-size RNN), the test accuracy is notably lower
than the state-of-the-art, and thus we do not show them in the figure. Recall that our F function is so
simple that its variant is used in vanilla RNNs, while all the methods that achieve better accuracy,
e.g., IndRNN [Li et al., 2018], have very complicated hidden state transition functions, even with
larger model sizes. In summary, our SBO-RNN has great potential to achieve the state-of-the-art with
simpler transition functions and smaller model sizes.

5 Conclusion

In this paper we propose a new family of RNNs, namely SBO-RNN, that can be formulated using
stochastic bilevel optimization. Using SGD or its momentum variants we convert such a bilevel
optimization problem into an RNN architecture, where the lower-level optimization is mapped to the
sub-network for computing hidden features and the upper-level optimization defines the predictor
based on the computed features. We prove that under mild conditions there is no vanishing/exploding
gradient in the training of our SBO-RNN, and thus our training is easy and stabilized. Furthermore,
we demonstrate the superior performance of SBO-RNN on several benchmark datasets with faster
convergence, even based on fewer parameters and less training data.

Currently, we lack strong theorems to explain the fast convergence behavior of SBO-RNN, though
we have the hypothesis of data clustering, due to the lower-level optimization, that may significantly
contribute to this. Also, our current setting has difficulty in adapting to deep RNNs such as IndRNN.
In our future work, we will explore more on these topics.
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A Appendix

SGD: ht = ht−1 − η∇Ft, h0 = 0, h∗ = hT , ∀t ∈ [T ], (14)

∂`

∂θ
=

∂`

∂hT
·
∑

1≤t≤T

(
∂hT
∂ht

∂ht
∂θ

)
, where

∂hT
∂ht

=
∏

t<k≤T

∂hk
∂hk−1

. (15)

Theorem 3 (Upper Bound of Hidden Feature Distance during Network Inference). Let ∀t ∈ [T ], x =
{xt}, x′ = {x′t} and {ht}, {h′t} denote two data sequences and their corresponding hidden features, re-
spectively. Suppose that function F (h,xt; θ) is differentiable, (Lh, Lx)-smooth, i.e., ‖∇F (h,xt; θ) −
∇F (h′,xt; θ)‖ ≤ Lh‖h − h′‖ and ‖∇F (h,xt; θ) − ∇F (h,x′t; θ)‖ ≤ Lx‖xt − x′t‖. Then for SGD in
Eq. 14, we have

‖ht − h′t‖ ≤
∑
k∈[t]

ηLx(1 + ηLh)
t−k‖xk − x′k‖ ≤ tηγtLx = O(tγt), (16)

where γt = maxk∈[t] ‖xk − x′k‖ and ηLh � 1.

Proof. It holds that

‖ht − h′t‖ = ‖ht−1 − η∇F (ht−1,xt; θ)− h′t−1 + η∇F (h′t−1,x
′
t; θ)‖

= ‖ [ht−1 − η∇F (ht−1,xt; θ)]−
[
h′t−1 − η∇F (h′t−1,xt; θ)

]
+
[
h′t−1 − η∇F (h′t−1,xt; θ)

]
−
[
h′t−1 − η∇F (h′t−1,x

′
t; θ)

]
‖

≤ (1 + ηLh)‖ht−1 − h′t−1‖+ ηLx‖xt − x′t‖. (17)

When t = 1, based on Eq. 17, we know that Eq. 21 holds. Suppose at the t-th time step, Eq. 21 still holds. Then
at (t+ 1)-th time step, we have

‖ht+1 − h′t+1‖ ≤ (1 + ηLh)‖ht − h′t‖+ ηLx‖xt+1 − x′t+1‖

≤ ηLx‖xt+1 − x′t+1‖+ (1 + ηLh)
∑
k∈[t]

ηLx(1 + ηLh)
t−k‖xk − x′k‖

=
∑

k∈[t+1]

ηLx(1 + ηLh)
t+1−k‖xk − x′k‖. (18)

Therefore, Eq. 21 holds for any t ∈ [T ]. Now by substituting γt into Eq. 21, we can easily get

‖ht − h′t‖ ≤ γt
∑
k∈[t]

ηLx(1 + ηLh)
t−k =

γtLx
Lh

[
(1 + ηLh)

t − 1
]
≈ tηγtLx = O(tγt). (19)

Now we can complete our proof.

Theorem 4. Let ht = (1 − α)ht−1 − η∇F (ht−1, xt; θ),∀t ∈ [T ], x = {xt}, x′ = {x′t} and {ht}, {h′t}
denote two data sequences and their corresponding hidden features, respectively. Suppose that function
F (h,xt; θ) is differentiable and (Lh, Lx)-smooth, i.e., ‖∇F (h,xt; θ)−∇F (h′,xt; θ)‖ ≤ Lh‖h− h′‖ and
‖∇F (h,xt; θ)−∇F (h,x′t; θ)‖ ≤ Lx‖xt − x′t‖. Then for SGD in Eq. 14, we have

‖ht − h′t‖ ≤ ηLx
∑
k∈[t]

(1− α+ ηLh)
t−k‖xk − x′k‖. (20)

In particular, letting γt = maxk∈[t] ‖xk − x′k‖, then

1. When Lh < α
η

, it holds that ‖ht − h′t‖ ≤ Lxγt
1−Lh

= O(γt);
2. When Lh = α

η
, it holds that ‖ht − h′t‖ ≤ ηLx

∑
k∈[t] ‖xk − x′k‖ ≤ tηLxγt = O(tγt);

3. When 0 < ηLh − α� 1, it (approximately) holds that ‖ht − h′t‖ ≤ tηLxγt = O(tγt).
Theorem 5. Let ht = (1 − 1

t
)ht−1 − η

t
∇F (ht−1, xt; θ), ∀t ∈ [T ], x = {xt}, x′ = {x′t} and {ht}, {h′t}

denote two data sequences and their corresponding hidden features, respectively. Suppose that function
F (h,xt; θ) is differentiable and (Lh, Lx)-smooth, i.e., ‖∇F (h,xt; θ)−∇F (h′,xt; θ)‖ ≤ Lh‖h− h′‖ and
‖∇F (h,xt; θ)−∇F (h,x′t; θ)‖ ≤ Lx‖xt − x′t‖. Then for SGD in Eq. 14, we have

‖ht − h′t‖ ≤
ηLx
t

[
t−1∑
i=1

t−1∏
j=i

(
1 +

ηLh
j

)
‖xi − x′i‖+ ‖xt − x′t‖

]
≤ ηLx

t∑
i=1

1

i
‖xi − x′i‖ ≤ tηLxγt,

(21)

where γt = maxk∈[t] ‖xk − x′k‖ and ηLh ≤ 1.
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Proof.

‖ht − h′t‖ =
η

t

∥∥∥∥∥
t∑

k=1

∇F (hk−1,xk; θ)−
t∑

k=1

∇F (h′k−1,x
′
k; θ)

∥∥∥∥∥ (22)

‖ht+1 − h′t+1‖ =
η

t+ 1

∥∥∥∥∥
t+1∑
k=1

∇F (hk−1,xk; θ)−
t+1∑
k=1

∇F (h′k−1,x
′
k; θ)

∥∥∥∥∥
≤ η

t+ 1

[∥∥∥∥∥
t∑

k=1

∇F (hk−1,xk; θ)−
t∑

k=1

∇F (h′k−1,x
′
k; θ)

∥∥∥∥∥+ Lh‖ht − h′t‖+ Lx‖xt+1 − x′t+1‖

]

=
t+ ηLh
t+ 1

‖ht − h′t‖+
ηLx
t+ 1

‖xt+1 − x′t+1‖

≤ t+ ηLh
t+ 1

· ηLx
t

[
t−1∑
i=1

t−1∏
j=i

(
1 +

ηLh
j

)
‖xi − x′i‖+ ‖xt − x′t‖

]
+

ηLx
t+ 1

‖xt+1 − x′t+1‖

=
ηLx
t+ 1

[
t∑
i=1

t∏
j=i

(
1 +

ηLh
j

)
‖xi − x′i‖+ ‖xt+1 − x′t+1‖

]
(23)

Theorem 6 (Training Stability). Suppose that function F is differentiable andL-smooth w.r.t. h, i.e.,∇2F � LI
or ‖∇2F‖ ≤ L where I denotes the identity matrix. Then by properly choosing η ∈ (0, ε

TL
] where T

is the sequence length and ε ∈ (0, 1) is a sufficiently small constant, we can guarantee that there is no
vanishing/exploding gradient for training SBO-RNN using SGD in Eq. 14.

Proof. Let us take SGD for example to prove this. Firstly, in SGD we have ∂ht
∂ht−1

= I − η∇2Ft,∀t ∈ [T ].
Then, based on Eq. 15 we can have

∂hT
∂ht

=
∏

t<k≤T

∂hk
∂hk−1

=
∏

t<k≤T

(
I− η∇2Fk

)
= I− η

∑
t<k≤T

∇2Fk +O
(
Tη2L2) ,∀t ∈ [T ], (24)

where it holds that O
(
Tη2L2

)
≤ O

(
ε2

T

)
. Therefore, as long as ε (resp. T ) is sufficiently small (resp. large),

the big O term can be ignored, i.e., O
(
Tη2L2

)
→ 0. Empirically this condition can be met easily. Now we

come to the following inequation:

1− ε ≤ 1− ηTL ≤ 1− η

∥∥∥∥∥∥
∑

t<k≤T

∇2Fk

∥∥∥∥∥∥ ≤
∥∥∥∥∂hT∂ht

∥∥∥∥ ≤ 1 + η

∥∥∥∥∥∥
∑

t<k≤T

∇2Fk

∥∥∥∥∥∥ ≤ 1 + ηTL ≤ 1 + ε,

(25)

which clearly shows that the gradient of ∂hT
∂ht

can be well bounded, leading to no vanishing/exploding gradients.
Now we can complete our proof.
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