
Deep Incremental RNN for Learning Sequential
Data: A Lyapunov Stable Dynamical System

Ziming Zhang#, Guojun Wu#, Yanhua Li#, Yun Yue#, Xun Zhou†

#Worcester Polytechnic Institute
†University of Iowa

Email: {zzhang15, gwu, yli15, yyue}@wpi.edu, xun-zhou@uiowa.edu

Abstract—With the recent advances in mobile sensing tech-
nologies, large amounts of sequential data are collected, such as
vehicle GPS records, stock prices, sensor data from air quality
detectors. Recurrent neural networks (RNNs) have been studied
extensively to learn complex patterns for sequential data, with
applicatons in natural language processing for sentence predic-
tion/completion, human activity recognition for predicting or clas-
sifying human activities. However, there are many practical issues
when training RNNs, e.g., vanishing and exploding gradients
often occur due to the repeatability of network weights, etc. In
this paper, we study the training stability in deep recurrent neural
networks (RNNs), and propose a novel network, namely, deep
incremental RNN (DIRNN). In contrast to the literature, we prove
that DIRNN is essentially a Lyapunov stable dynamical system
where there is no vanishing or exploding gradient in training. To
demonstrate the applicability in practice, we also propose a novel
implementation, namely TinyRNN, that sparsifies the transition
matrices in DIRNN using weighted random permutations to
reduce the model sizes. We evaluate our approach on seven
benchmark datasets, and achieve state-of-the-art results. Demo
code is provided in the supplementary file.

Index Terms—Machine Learning, Recurrent Neural Network

I. INTRODUCTION

Thanks to the fast development of mobile sensing tech-
nologies, large amounts of sequential data are being collected
rapidly, such as vehicle GPS records, stock prices, sensor data
from air quality detectors, etc. In these sequential datasets,
the points in a sequence are dependent on the other points
in the dataset. In practice, there are many applications in
mining these sequential data. For example, Natural Language
Processing (NLP) [1] aims to predict or guess the next word
for us (Fig 1(a)), and human activity recognition (HAR) [2; 3]
predicts or classifies human activities from sequential data
collected from IoT wearable devices, such as accelerometers
and gyroscopes (Fig 1(b)). Recurrent neural networks (RNNs)
have achieved significant success in tackling these applications,
i.e., learning complex patterns for sequential input data. At
each time step t, an RNN stores the previous hidden state
vector, ht−1 ∈ RD, and upon receiving the current input

1. The first two authors contributed equally in this work.
2. Guojun Wu and Yanhua Li were supported in part by NSF grants

IIS-1942680 (CAREER), CNS1952085, CMMI-1831140, and DGE-2021871.
Ziming Zhang and Yun Yue were supported in part by NSF grant CCF-
2006738. Xun Zhou was funded partially by Safety Research using Simulation
University Transportation Center (SAFER-SIM). SAFER-SIM is funded by a
grant from the U.S. Department of Transportation’s University Transportation
Centers Program (69A3551747131). However, the U.S. Government assumes
no liability for the contents or use thereof.

(a) Language modeling. (b) Human activity prediction.
Fig. 1: Illustration of various sequential tasks. For (a)language
modeling task, we use sentence as input of recurrent models
to predict the next word. As for (b)human activity prediction,
the figure shows sensor data from IoT wearable devices on
body, arms and legs respectively when the user jumps.

vector, xt ∈ Rd, linearly transforms the tuple (ht−1,xt) and
passes it through a non-linearity to update the state vectors
over T time steps. Subsequently, RNNs output the predictions
as a function of the hidden states. The model parameters (i.e.,
state/input/prediction parameters) are learned by minimizing
an empirical loss.

In the literature, there are significant amount of works on
developing RNNs such as, just to name a few, long short-term
memory (LSTM) [4], gated recurrent unit (GRU) [5], UGRNN
[6], FastGRNN [2], unitary RNNs [7; 8; 9; 10; 11], deep RNNs
[12; 13; 14], linear RNNs [15; 16; 17], residual/skip RNNs
[18; 19; 20; 21; 2], ordinary differential equation (ODE) based
RNNs [22; 23; 24; 2; 25; 26; 27].
Continuous-Time RNN (CTRNN). [28] introduced
continuous-time RNN to mimic activation propagation in
neural circuitry, which is modeled as follows:

βġt = −αgt + φ(Ugt + Wxt + b), (1)

where at the t-th time step, xt ∈ Rd denotes the input signal,
gt ∈ RD denotes the hidden state vector, ġt denotes the
change rate of the vector gt, φ denotes the activation function
parametrized by U ∈ RD×D,W ∈ RD×d,b ∈ RD, and
α, β ∈ R+ denote some predefined constants.
Incremental RNN (iRNN). Inspired by CTRNN, [27] in-
troduced an incremental RNN whose hidden-state transition
function is defined as follows:

zt = gt + ht−1, (2)
βġt = −αzt + φ(Uzt + Wxt + b),gt(0) = 0,ht = g∗t ,

where gt(0) denotes the initial value for gt, g∗t denotes an
equilibrium point of the ODE, if any, and α, β ∈ R+ are
learnable through iRNN training. Then by using Euler’s method
to discretize the ODE in Eq. 2, we can further rewrite the
equation as

zt(k) = gt(k) + ht−1, (3)

gt(k + 1) = gt(k) + ηkt (φ(Uzt(k) + Wxt + b)− αzt(k)),

gt(0) = 0,ht = gt(K), k ∈ [K − 1],

where α, ηkt ∈ R+ are some learnable parameters. [27]
proved that under mild conditions gt(k) converges linearly
and limK→∞ gt(K) = g∗t , if any equilibrium exists. Note that
Eq. 3 is used for implementation.

Training Stability Challenge of RNNs. Vanishing and ex-
ploding gradients often occur in training RNNs, due to the
repeatability of network weights in the chain rule when
computing gradients, leading to instability in training with their
magnitude either too small or too large. It has been proven that
theoretically there is no vanishing/exploding gradient in the
training of iRNN, leading to fast convergence empirically. In the
literature, some other RNNs have analyzed and demonstrated
their training stability as well, such as AntisymmetricRNN
[24], LipschitzRNN [29], MomentumRNN [30], nnRNN [31],
expRNN [32]. In particular, the stability analysis often comes
with the eigenvalues of the Jacobian of the hidden state
dynamics in order to study the problem of vanishing/exploding
gradients. Recently, [33] proposed analyzing RNN training
using attractors and smoothness as alternatives.

Lyapunov Stability in Dynamical Systems. RNNs are often
considered as dynamical systems, and several derivatives
are developed from this perspective, such as iRNN and
AntisymmetricRNN. However, there are few works that borrow
the theory of dynamical systems to analyze the RNN training
stability (without strong assumptions on the Jacobian). Recently,
[34] studied the Lyapunov spectra of chaotic recurrent neural
networks. [35] proposed using Lyapunov exponents to under-
stand the information propagation in RNNs, but unfortunately
there is no discussion on how to introduce such nice Lyapunov
stability into the development of RNNs. [36] proposed viewing
neural networks from a dynamical systems perspective as
pointwise affine maps. However, the theoretical results are
adapted from dynamical system analysis and the assumptions
for deep neural networks are too strong to be met in practice.
[37] proposed an ODE based network implementation to
guarantee stability as well as incorporating prior knowledge.

Deep (Stacked) RNNs. By stacking the conventional shallow
RNNs such as LSTM, GRU, or iRNN, we can generate deep
RNNs whose hidden states depend on the previous states along
not only time steps but also network layers. In particular, in
this paper we consider the deep RNN as illustrated in Fig. 2. It
is well-known that deep RNNs require a considerable amount
of work (such as learning rate and clipping) to ensure proper
convergence. In other words, the training stability of deep

Fig. 2: Illustration of the network architecture in our DIRNN
with L = 3 and T = 4. Here each blue node represents a
neuron in the network that a hidden state vector is generated
by an ODE.

RNNs can be achieved empirically with careful initialization,
but its theoretical property still remains elusive.

Our Contributions. In this paper we study the training stability
of deep RNNs from the perspective of Lyapunov stability, and
propose a novel deep incremental RNN (DIRNN) that is a
generalization of iRNN into the deep regime.
• Theoretical contributions: We prove that our DIRNN is

essentially a Lyapunov stable dynamical system with a set
of equilibrium points, each for a hidden state. We then
prove the training stability of DIRNN where there exists no
vanishing/exploding gradient. To the best of our knowledge,
we are the first to provide such theoretical results on the
training stability for deep RNNs.

• Empirical contributions: The model sizes of deep RNNs
grow linearly with the increase of the network depth, which
may limit the applications of DIRNN in reality. To address
this problem, we propose a sparsified DIRNN, namely
TinyRNN, that significantly reduces the number of parameters
with marginal accuracy loss. We evaluate our approach on
seven benchmark datasets and demonstrate state-of-the-art
performance.

II. RELATED WORK

RNN Architectures. LSTM [4] applies gate-controlled mem-
ory cells to mitigate the vanishing/exploding gradient issue in
sequence-based tasks. Another widely-used variant of RNNs
is GRU [5]. Both LSTM and GRU are developed through
sophisticated recurrent units [38]. In particular, FastGRNN
[2] feed-forwards state vectors to induce skip or residual
connections, to serve as a middle ground between feed-forward
and recurrent models, and to mitigate gradient decay. ShaRNN
[39] was proposed to induce long-term dependencies and yet
admit parallelization, where the first layer splits the input
sequence and runs several independent RNNs, and the second
layer consumes the output of the first layer using a second
RNN thus capturing long term dependencies. iRNN [27]
was proposed based on a novel ODE based formulation to
facilitate the training of RNNs by achieving identity gradient
between hidden layers and low-rank matrix decomposition.
Unitary and orthogonal RNNs aim to preserve the norm of

hidden features by controlling the eigenvalues, explicitly or
implicitly, that has been studied extensively in recent years
[7; 8; 9; 10; 11; 29; 31; 32; 40; 41]. For instance, [32] proposed
expRNN by performing the first-order optimization with
orthogonal and unitary constraints based on a parametrization
stemming from Lie group theory through the exponential map.

Deep RNNs. RNNs are inherently deep in time. Inspired by this
property, researchers are seeking to develop new networks to
investigate the benefits of depth in space of RNN architectures.
For instance, [42] combined multiple recurrent levels on
the basis of bi-directional LSTM [43; 44] to improve RNN
performance in speech recognition task. Another study in [45],
with a deeper analysis of the different emergent time scales,
also proposed a similar stacking architecture. [46] proposed
IndRNN where neurons in the same layer are independent
of each other and they are connected across layers. Other
deep RNNs have been proposed in the literature as well
[47; 48; 49; 50; 51; 52; 12; 53].

Lightweight RNNs. Recently, lightweight RNNs, i.e., RNNs
with small model sizes, have been attracting more and more
attention due to the great potentials in both academic research
and industrial products [27; 39; 54; 55; 56; 57; 2]. Such
RNNs can be loaded on mid-end and more powerful high-end
edge devices such as smartphones, and have been introduced
into some real-world applications such as machinery fault
diagnosis [54]. In particular, FastGRNN [58] employed gated
techniques and fixed-point quantization to further compress
the models learned by FastRNN. [59; 60] proposed hybrid
matrix decomposition (HMD) and Kronecker product (KP)
approaches, respectively, for RNN compression on edge devices.
Both approaches belong to low-rank tensor decomposition.
DirNet [61] was proposed based on an optimized fast dictionary
learning algorithm to compress RNNs on mobile devices.

III. DIRNN: DEEP INCREMENTAL RNN

Motivation. iRNN [27] introduced an interesting notion of
“identity” gradient in backpropagation. That is, given two
arbitrary hidden state vectors ht,ht−1, (t ∈ [T]), it holds
that ∂ht + ∂ht−1 = 0 where ∂ denotes the partial derivative
operator. Letting τ denote the continuous time for measuring
the change rate, we then can achieve the following ODE:

ḣt(τ) + ḣt−1(τ) ≡ ∂ht(τ)

∂τ
+
∂ht−1(τ)

∂τ
= 0,∀t ∈ [T]. (4)

Now if we take ht,ht−1 as variables, then such linear
dynamical systems are Lyapunov stable (see Def. 1). This
novel perspective motivates us to study the training stability
for deep RNNs.

Formulation. In order to prove the Lyapunov stability, we
intentionally propose the following ODE based hidden-state

transition function for our DIRNN with L hidden layers:

zl,t = gl,t +

l−1∑
m=1

γm,thm,t +

t−1∑
n=1

ρl,nhl,n, (5)

βlġl,t = −αlzl,t + φ(Ulzl,t + Wlxt + bl),

gl,t(0) = 0,hl,t = g∗l,t,∀l ∈ [L],∀t ∈ [T],

where gl,t(0) denotes the initial value for gl,t, g∗l,t denotes
an equilibrium point of the ODE, if any, and αl, βl ∈
R+, γm,t, ρl,n ∈ R are learnable through DIRNN training.
Compared with Eq. 2, we can see that the key difference
between DIRNN and iRNN lies in the auxiliary variable zl,t
where DIRNN involves additional stacked hidden state vectors
with suitable weights. This formulation corresponds to the
network architecture in Fig. 2.

A. Stability Analysis

Definition 1 (Lyapunov Stability [62]). Consider a nonlinear
dynamical system ẋ = f(x(τ)), x(0) = x0 with the system
state vector x(τ) ∈ D ⊆ Rn and a continuous function f :
D → Rn. Suppose that f has an equilibrium at x∗ so that
f(x∗) = 0, then this equilibrium is said to be Lyapunov
stable, if for every ε > 0, there exists a δ > 0 such that, if
‖x(0)−x∗‖ < δ, then for every τ ≥ 0 we have ‖x(τ)−x∗‖ <
ε.

In other words, if the solutions that start near an equilibrium
point x∗ stay near x∗ forever, then x∗ is Lyapunov stable.

Proposition 1 ([24]). The solution of an ODE is (Lyapunov)
stable if maxi=1,··· ,nRe(λi(J(t))) ≤ 0,∀t ≥ 0, where
J(t) ∈ Rn×n denotes the Jacobian matrix of function f , λi(·)
denotes the i-th eigenvalue, and Re(·) denotes the real part
of a complex number.

Lemma 1. Consider the change rates of hidden states h over
continuous time τ . Then DIRNN satisfies

żl,t = ḣl,t +

l−1∑
m=1

γm,tḣm,t +

t−1∑
n=1

ρl,nḣl,n = 0,∀l,∀t. (6)

Proof. By plugging the equilibrium point into the ODE, we
have −αlz + φ(Ulz + Wlxt + bl) = 0. Now by taking the
derivative w.r.t. τ , we have αlżl,t =

[
∇φ ·UT

l

]
żl,t that holds

for all possible xt, leading to żl,t = 0. Here ∇ denotes the
gradient operator and (·)T denotes the matrix transpose operator.
We now complete our proof.

Theorem 1 (Stability of Hidden States). We define s =∑
l,t zl,t =

∑
l,t θl,thl,t where θl,t ∈ R,∀l,∀t denotes the

combination weights. Then it holds in DIRNN that

ṡ(τ) = 0,∀τ ≥ 0, (7)

leading to a Lyapunov stable dynamical system.

Proof. We can achieve Eq. 7 based on Eq. 6 in Lemma 1. This
is equivalent to ṡ = 0 · s whose Jacobian is 0 where all the
eigenvalues are zeros. Then based on Prop. 1, we can complete
our proof.

Theorem 2 (Training Stability). Assuming θl,t 6= 0,∀l,∀t in
Thm. 1, then it holds in DIRNN that

∥∥∥∂s(τ)∂hl,t

∥∥∥
F

is constant
in time, leading to no vanishing or exploding gradient. Here
‖ · ‖F denotes the Frobenius norm of a matrix, respectively.

Proof. Base on Thm. 1, we have ∂
∂τ

(
∂s(τ)
∂hl,t

)
= ∂ṡ(τ)

∂hl,t
=

0,∀l,∀t. Then based on Def. 1, the magnitude of ∂s(τ)
∂hl,t

along

any direction is constant in time, and thus
∥∥∥∂s(τ)∂hl,t

∥∥∥
F

is constant
in time. If there were vanishing gradients over all the hidden
states (i.e., slow update), the F-norm would be arbitrarily small.
If there were exploding gradients over at least one hidden state
(i.e., fluctuation), the F-norm would be arbitrarily big. We now
complete our proof by the contradictions of both cases to the
constant F-norm.

B. Implementation

Similar to iRNN in Eq. 3, we apply Euler’s method to
compute the equilibrium point for each hidden state, i.e.,

zl,t(k) = gl,t(k) +

l−1∑
m=1

γm,thm,t +

t−1∑
n=1

ρl,nhl,n, (8)

gl,t(k + 1)

= gl,t(k) + ηkl,t(φ(Ulzl,t(k) + Wlxt + bl)− αlzl,t(k)),

gl,t(0) = 0,hl,t = gl,t(K), k ∈ [K − 1],∀l ∈ [L],∀t ∈ [T].

Theorem 3. Suppose that φ(·) is a 1-Lipshitz function in
the norm induced by ‖ · ‖ (i.e., the `2 norm), ‖Ul‖ < αl,
and ηkl,t ≤ 1

αl−‖Ul‖ ,∀k, then it follows that DIRNN in Eq. 8
converges to the equilibrium point asymptotically, i.e., hl,t =
limK→∞ gl,t(K) = g∗l,t. Moreover, if ηkl,t = ηl,t,∀k holds,
then the convergence is linear with the rate of 1− ηl,t(αl −
‖Ul‖).

Proof. Letting T (g) = g + ηkl,t(φ(Ulzl,t(g) + Wlxt + bl)−
αlzl,t(g)), similar to iRNN, it follows that T (·) is a contraction:
‖T (g)− T (g′)‖ ≤ [1− ηkl,t(αl −‖Ul‖)]‖g− g′‖ < ‖g− g′‖.
Therefore, the Euler’s method in Eq. 8 leads to asymptotic
convergence, with linear rate if ηkl,t are the same over k. We
then complete the proof.

Learning Objective. Given training data (x, y) ∼ X × Y
where x = {x1, · · · ,xT } is a data sample and y is its label,
we aim to minimize the following loss:

min
αl,γl,t,ρl,t,ηkl,t,ω,Ul,Wl,bl

∑
(x,y)∼X×Y

`
(
y, zL,T ;ω

)
, (9)

where ` : Y × RD × Ω → R denotes the loss function
parameterized by ω such as cross-entropy.

C. Discussion

We validate our analysis on the Adding task that is widely
used for RNN evaluation. We strictly follow [7] to generate
the dataset using the public code1. There are two sequences
with length T = 50. The first sequence is sampled uniformly

1https://github.com/rand0musername/urnn

1 3 5

K

−0.002

−0.001

0.000

0.001

0.002

S
ta

b
ili

ty

(a) ReLU + N (0, 0.1)

1 3 5

K

−0.03

−0.02

−0.01

0.00

0.01

0.02

S
ta

b
ili

ty

(b) ReLU + N (0, 1)

1 3 5

K

−0.0002

−0.0001

0.0000

0.0001

0.0002

S
ta

b
ili

ty

(c) tanh + N (0, 0.1)

1 3 5

K

−0.0015

−0.0010

−0.0005

0.0000

0.0005

0.0010

S
ta

b
ili

ty

(d) tanh + N (0, 1)

Fig. 3: Training stability validation for Thm 2.
at random U [0, 1]. The second sequence is filled with 0 except
for two entries of 1. The two entries of 1 are located uniformly
at random position i1, i2 in the first half and second half of the
sequence. The prediction value is the sum of the first sequence
between [i1, i2]. The ground-truth mean squared error is 0.167
when a model simply guesses 1 as the output regardless of the
input sequence. We use the value 0.167 as the baseline.
Stability Validation in Thm. 2 with Random Gaussian
Weights for DIRNN. Note that s is a variable over continuous
time, which is difficult to measure directly. Instead, we utilize
the sampling approach to simulate it. Specifically, first we
randomly select a sample from the dataset (denoted as τ = 0)
and add Gaussian noise (sampled from either N (0, 0.1) or
N (0, 1)) to each time step of the sample to generate a new
sample at the time τ , leading to 5,000 new samples in total.
Then we feed these samples together with the original one
to DIRNN with random Gaussian weights for L = 3 as
demonstration. Such weights satisfy the conditions in Thm. 3.
The activation functions φ are either ReLU or tanh, and the
hidden state vectors are well distributed. Finally we compute[
‖∂ṡ(τ)∂hl,t

‖/‖∂ṡ(0)∂hl,t
‖ − 1

]
l=3,t=1

to measure the stability, and

illustrate the results in Fig. 3. Though the errors in computing
the equilibrium points are propagated through the network, we
can still observe that:
• A larger K leads to better stability, regardless of the noise,

indicating that our analysis should hold for the equilibrium
points, i.e., K → +∞;

• With small amounts of noise, all K’s can perform similarly,
on average, to preserve the stability;

• With large amounts of noise, K = 1 seems to fail due to
the poor estimation of the equilibrium points.

Such observations can be made across different network depth
L, sequence length T , network weights, and activation functions
that satisfy the conditions in Thm. 3. Please refer to our
supplementary file for more results.

0 20 40 60 80 100

K

1

2

3

4

5

6

7

8

9
g

(k
−

1)
−
g

(k
)

×10−3

1st Layer+tanh

2nd Layer+tanh

1st Layer+relu

2nd Layer+relu

(a) Equilibrium

0 1 2 3 4 5 6 7
Training steps (1 × 102)

0.00
0.10
0.20
0.30
0.40
0.50
0.60

M
SE

DIRNN(K=1,relu)
DIRNN(K=3,relu)
DIRNN(K=5,relu)
DIRNN(K=1,tanh)

DIRNN(K=3,tanh)
DIRNN(K=5,tanh)
ShaRNN
IndRNN

(b) Training loss
Fig. 4: Illustration of convergence on the adding task.

Validation of Convergence to Equilibrium in Thm. 3. In
general, it will be challenging to learn a deep model that can
meet all the conditions in Thm. 3, except for homogeneous
functions over Ul,Wl,bl, γl,t, ρl,t. To see this, we can rewrite
the conditions as maxk{αl − 1/ηkl,t} ≤ ‖Ul‖ < αl. Since
empirically it often holds that 0 ≤ αl ≤ 1 and 0 ≤ ηkl,t ≤ 1,
the lower bound here is often less than 0, while ‖Ul‖ is
often bigger than 0. Therefore, very often the lower bound
holds. To guarantee the upper bound, we can simply divide
Ul,Wl,bl, γl,t, ρl,t by a sufficiently large constant. Such
rescaling will not affect the lower bound.

Note that the conditions in Thm. 3 are sufficient. Therefore,
in practice even the function in Eq. 8 is not homogeneous,
the update for ODE may still converge. We illustrate such
convergence behavior in Fig. 4(a) with either ReLU (leading
to a homogeneous function in Eq. 8) or tanh as our activation
functions. The network architecture is the same as the one
for stability validation. Then we use Eq. 8 to compute
the distances between the k and k − 1 iterations in ODE.
The monotonically decreasing curves over different layers
demonstrate the convergence for both activation functions.

Training Convergence on Adding Task. To demonstrate the
effect of our stability analysis on training networks, we illustrate
the convergence of several RNNs on the adding task in Fig. 4(b),
where ShaRNN and indRNN are another two deep RNNs. As
we see, our DIRNN can converge with either ReLU or tanh
activations, and ReLU leads to faster convergence. The setting
of ReLU plus K = 5 converges the fastest in terms of the
training steps. Note that neither ShaRNN nor indRNN has the
convergence guarantee theoretically, and thus some tricks such
as gradient clipping are often used in training. In contrast, there
is no need at all to use such training tricks in DIRNN to avoid
vanishing/exploding gradients.

IV. TINYRNN: A SPARSIFIED DIRNN

A critical problem in DIRNN is that the number of pa-
rameters grows linearly with the number of layers L, leading
to larger model sizes and longer running time w.r.t. other
RNNs that may limit its applicability. To address this issue,
we further propose a novel implementation of DIRNN, namely
TinyRNN, where all the transition matrices are sparsified. Note
that our stability analysis holds for any transition matrix which
guarantees that TinyRNN can be trained well.

Inspired by ShuffleNet [63] and ShufflingRNN [64], we
propose reparametrizing the transition matrices in Eq. 8 using
weighted permutation matrices. That is,

Ul = AlBl,Wl = ClDl,∀l ∈ [L], (10)

where Al,Cl ∈ RD×D denote two diagonal weighting matrices
and Bl ∈ RD×D,Dl ∈ RD×d denote two permutation
matrices, respectively.

Our proposed weighted permutation matrices essentially
favor the learning of orthogonality in the transition matrices
for training RNNs [32]. To see this, let us take the cal-
culation of Uz (no subscripts for simplicity) for example,
Uz = ABz = [aiB(i)z]i∈[D], where ai denotes the i-th entry
along the diagonal, B(i) denotes the i-th row in the matrix, and
[·] denotes the vector concatenation operator. In our permutation
matrices Bl,Dl,∀l, the rows of each matrix are predefined as
orthogonally with each other as possible. Such permutation
matrices define new coordinate systems where the diagonal
matrices are learned for proper scaling factors.
Predefined Random Permutation Matrices. Note that learn-
ing the permutation matrices along with the TinyRNN training
is very challenging, because the permutation imposes a strong
constraint in the matrix structure that is difficult to be
satisfied during learning. To address this problem, we propose
initializing both permutation matrices randomly (Bl without
repetition and Dl with repetition if d < D, otherwise without
repetition) and fixing them during training. We only learn the
weighting matrices accordingly.
Number of Model Parameters. To further reduce the model
size, we simply set bl = 0,∀l, because we only ob-
serve marginal accuracy improvement with such parameters.
Therefore, the learnable parameters in our TinyRNN are
Al,Cl, αl, γl,t = γl, ρl,t = ρl, η

k
l,t = ηl, leading to the total

number of parameters as (2D + 4)L. We also learn a linear
classifier ω on top of hidden state zL,T consisting of D|Y|
parameters, where |Y| denotes the cardinality of the label set.
Together, we have (2D + 4)L+D|Y| parameters.
Fix-Point Quantization. To further reduce the model size,
the fix-point quantization techniques can be integrated into
TinyRNN as well, either during or after the training. For
simplicity to demonstrate this capability, in our experiments
we apply the quantizer in [58] as a post-processing step to
compress our models.

V. EXPERIMENTS

Datasets. We test our approach on different tasks that are
widely used in the literature of RNN evaluation. All the
statistics of the benchmark datasets are listed in Table I.
• Benchmark vision task: We conduct the experiments on two

datasets, i.e., Pixel-MNIST and Perm-MNIST. Specifically,
Pixel-MNIST refers to pixel-by-pixel sequences of images
in MNIST where each 28 × 28 image is flattened into a 784
time sequence vector, while a random permutation to the
Pixel-MNIST is applied to generate a harder time sequence
dataset as Perm-MNIST.

TABLE I: Dataset statistics and default hyperparameters in
DIRNN and TinyRNN. Please refer to our ablation study for
more details.

Dataset Statistics DIRNN TinyRNN
#Train #Test #Time #Feat. #Cls. D L K D L K

Pixel-MNIST 60k 10k 784 1 10 128 3 3 128 3 2
Perm-MNIST 60k 10k 784 1 10 128 5 3 128 3 2
Noisy-MNIST 60k 10k 1000 28 10 128 4 3 128 10 1
Noisy-CIFAR 50k 10k 1000 96 10 256 4 3 256 10 1

HAR-2 7.3k 2.9k 128 9 2 128 5 3 128 5 3
DSA-19 4.6k 4.6k 125 45 19 128 4 3 128 6 3

PTB 929k 82k 300 300 10k 300 5 3 300 5 1

• Noise padded vision task: For this task, we utilize Noisy-
MNIST and Noisy-CIFAR. For Noisy-MNIST, each row of
an MNIST image with dimension 28 is fed into the model
at every time step. The first 28 time steps of input contain
the original 28 rows of MNIST. The remaining 972 time
steps are filled with random noise, leading to T = 1, 000
time steps in total. Noisy-CIFAR is created in the same way
with input dimension 32 ∗ 3 = 96 due to the RGB channels.

• Human activity recognition task: We test our method on
HAR-2 [2] and DSA-19 [3]. HAR-2 was collected from
an accelerometer and gyroscope on a Samsung Galaxy
S3 smartphone. DSA-19 was collected from a resource
constrained IoT wearable device with 5 Xsens MTx sensors
having accelerometers, gyroscopes and magnetometers on
the torso and four limbs.

• Language modeling task: We test our method on Penn
Treebank (PTB) dataset [65]. 300 length word sequences
were used for word level language modeling task using Penn
Treebank (PTB) corpus. The vocabulary consisted of 10, 000
words and the size of trainable word embeddings was kept
the same as hidden units. This is the setup used in [58]. Note
that, for the language modeling task, just the model size of
the various RNN architectures has been reported.

Baseline Algorithms.. We compare our results with base-
lines including vanilla RNN, LSTM [4], Antisymmetri-
cRNN [24] 2, FastRNN [58]3, FastGRNN [58]3, IndRNN [46]4,
ShaRNN [39]3, iRNN [27]5, LipschitzRNN [29]6 and Momen-
tumRNN [30]7. As a demonstration for comparison on model
size, we employ the pruning algorithm from [66]8 as a post-
processing step for TinyRNN to further compress the learned
models. Note that using the public code we have verified the
results of each competitor on the datasets that were reported
in the references. For simplicity and consistency we cite the
numbers from the references, if exist, otherwise, we report our
reproduced results with the tuned best hyperparameters.

Training & Testing Protocols. In our implementation, we
utilize ReLU as our activation functions, as we observed
that this activation works better than others such as tanh

2https://github.com/KurochkinAlexey/AntisymmetricRNN
3https://github.com/microsoft/EdgeML
4https://github.com/Sunnydreamrain/IndRNN_pytorch
5https://github.com/dtake1336/ERNN-for-speech-enhancement
6https://github.com/erichson/LipschitzRNN
7https://github.com/minhtannguyen/MomentumRNN
8https://github.com/mightydeveloper/Deep-Compression-PyTorch

in terms of both accuracy and convergence. This observa-
tion is consistent with the state-of-the-art methods such as
iRNN and FastRNN. In both DIRNN and TinyRNN, we
set γl,t = γl, ρl,t = ρl, η

k
l,t = ηl over different time steps

and iterations in the ODE solver. Following FastRNN and
iRNN for a fair comparison, we replicate the same benchmark
training/testing split with 20% of training data for validation
to tune hyperparameters. Then we retrain the models using
best tuned hyperparameters using the full training set and test
them on the test set. We report our results over three trials
with randomization wherever needed. All the experiments were
run on an Nvidia Tesla P40 GPU with CUDA10 on a machine
with Intel Xeon@2.60GHz CPU with 20 cores.

0 200 400 600
Training steps

0.00

0.20

0.40

0.60

0.80

1.00

C
ro

ss
en

tr
op

y

IndRNN

ShaRNN

TinyRNN

DIRNN

Fig. 5: Training curve com-
parison on HAR-2.

Hyperparameters. We use the
grid search to fine-tune the hy-
perparameters of each baseline
as well as ours on the valida-
tion datasets whenever is nec-
essary. Table I lists all the hy-
perparameters for DIRNN and
TinyRNN architectures on dif-
ferent datasets, where we follow
[58; 27; 24] to set the hidden
feature dimension D, and fine-tune the numbers of layers in
depth L, and update times in iRNN K, respectively. The batch
size of 128 seems to work well across all the datasets for all
the methods. Adam [67] is used as the optimizer for all the
methods. The learning rate is always initialized to 10−3 with
linear scheduling of weight decay.

A. Ablation Study on HAR-2

We first show the training convergence in Fig. 5 that
has similar behavior to Fig. 4(b) for the adding task. This
demonstrates that the training stability can be generalized on
different datasets. Then we illustrate the performance of our
method under different (D,L,K)-hyperparameter settings in
Fig. 6, where we can see that:
• The deep architectures contribute the most to the performance

of both architectures;
• D = 128 is already sufficient for good accuracy with a small

model size;
• Among all settings, we can observe a performance drop from
L = 5 to L = 6;

• It seems that small K’s can already produce good accuracy
that leads to good computational efficiency as well.

B. State-of-the-art Performance Comparison

Benchmark Vision Task. Fig. 7(a-b) illustrate our perfor-
mance comparison. The y-axis is the test accuracy of different
models and the x-axis is the number of parameters in the log
scale. As we see, DIRNN achieves the best on both datasets,
indicating the advantages of deep RNN structures. Compared
with it, the results of TinyRNN are lower by 1% ∼ 2% with a
tiny fraction of parameters. This compact design in TinyRNN
can provide us the capability of processing larger data orrunning
multiple models in parallel in real-world applications.

TABLE II: Result comparison of quantization. Our results are over three trials with networks being trained from the scratch.

Algorithms HAR-2 DSA-19 PTB
Acc.(%) Model (KB) Acc.(%) Model (KB) Perplexity Model (KB)

RNN 91.31 29 71.68 20 144.71 129
LSTM 93.65 74 84.84 526 117.41 2052
FastRNN 94.50 29 84.14 97 127.76 513
FastGRNN 95.59 3 83.73 3.25 116.11 39
Antisymmetric 93.15 29 85.37 32 116.87 45
iRNN 96.30 18 88.11 19 115.71 288
ShaRNN 95.40 29 87.36 40 116.14 130
IndRNN 95.35 139 86.93 93 116.02 653
LipschitzRNN 95.32 35 87.51 260 115.36 578
MomentumRNN 95.28 29 87.13 20 115.87 130
DIRNN 96.53±0.18 174 88.38±0.16 124 115.35±0.35 775
TinyRNN 96.17±0.24 8 86.04±0.17 12 115.81±0.45 45
TinyRNN+Q 95.73±0.32 0.99 85.65±0.18 1.4 116.09±0.43 20

1 2 3 4 5 6
Layers

0.88

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

u
ra

cy

D=128,K=1

D=64,K=1

D=256,K=1

D=128,K=3

D=64,K=3

D=256,K=3

D=128,K=5

D=64,K=5

D=256,K=5

(a) DIRNN

1 2 3 4 5 6
Layers

0.88

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

u
ra

cy

D=128,K=1

D=64,K=1

D=256,K=1

D=128,K=2

D=64,K=2

D=256,K=2

D=128,K=3

D=64,K=3

D=256,K=3

(b) TinyRNN
Fig. 6: Ablation study on the HAR-2 dataset.

Noise Padded Vision Task. This task is specifically designed
for evaluating the capability of RNNs to capture the long term
dependency (LTD) among the data. Fig. 7(c-d) illustrate our
comparison results. On Noisy-MNIST, DIRNN achieves the
best accuracy, while on Noisy-CIFAR LipschitzRNN achieves
the best and DIRNN is the second. TinyRNN achieves only
∼1% accuracy loss with ∼3x smaller architecture compared
with LipschitzRNN. Surprisingly, ShaRNN works as poorly
as vanilla RNNs on both datasets. We hypothesize that this
comes from the network design choice where the two-layer
architecture with data splitting actually breaks the LTD among
the data, although this may not occur on other datasets.

Human Activity Recognition Task. We illustrate our compar-
ison results in Fig. 7(e-f). Unsurprisingly, our DIRNN achieves
the best on HAR-2 with an accuracy of 96.53%. And on DSA-
19, the DIRNN architecture also achieves the best accuracy.
Besides, our TinyRNN achieves the second best on HAR-2 with
the smallest number of parameters. This is probably because
the data is relatively simple with low-dimensional features and
fewer classes where models with small complexity can handle.

Model Size Comparison. Table II lists the test accuracy and
model sizes (i.e., the storage on the hard drive, including the
linear classifiers) of different competitors. TinyRNN+Q indi-
cates the method where the quantization method in FastGRNN
is applied to further reduce the sizes of learned models by
TinyRNN. As we see, DIRNN works the best in terms of
accuracy, and TinyRNN+Q performs slightly worse but with
smaller models by two orders of magnitude. This indicates

that the proposed tiny architecture can achieve a good balance
between model size and performance.

Training & Inference Time. Such numbers are highly depen-
dent on the network architectures of DIRNN as well as the
data. For instance, on HAR-2 and DSA-19, the training time
is 103s and 100s per epoch and the inference time is 0.46ms
and 0.35ms per data sequence on an Nvidia Tesla P40 GPU.

C. Case Study

We use real world cases from DSA-19 dataset to demonstrate
the advantage of the proposed DiRNN model. The DSA-
19 dataset contains 19 different human activities and some
activities have similar patterns which sometimes makes it
hard to distinguish those similar activities. For example, both
jumping and playing basketball are categories of those 19
activities. However, jumping is a common activity when
playing basketball. In Fig. 8, we show the acceleration sensor
data of users’ body movement when they perform playing
basketball and jumping, respectively. From the Fig. 8 (b), we
can observe periodic fluctuations of the acceleration in X Axis,
which indicates the body ascending and descending in the air.
However, when a user plays basketball, the jumping sequence
becomes noisy, since the player usually completes more
complex movements with the basketball such like dribbling
or shooting. In our experiments, we notice that the traditional
RNN model usually cannot tell the difference between jumping
and playing basketball, we believe it is because that the vanilla
RNN model only detects the jumping patterns in the basketball
sequence and treat other irregular patterns as noise. However,
with our proposed DiRNN model, we can successfully classify
the jumping and playing basketball activities. This indicates
that the proposed DiRNN model can better learn the sequential
patterns in the series data.

VI. CONCLUSION

In this paper, we study the problem of training stability
in deep RNNs. We propose a novel deep incremental RNN
(DIRNN) that has skip connections along both dimensions of
time steps as well as network depth. Inspired by recent works
such as iRNN, we propose a novel ODE based formulation for

0.0 1.0 2.0 3.0 4.0 5.0

log(#Params/1000)

94.00

95.00

96.00

97.00

98.00

99.00

A
cc

u
ra

cy
FastRNN (Acc=96.44)

RNN (Acc=94.10)

LSTM (Acc=97.81)

Antisymmetric (Acc=98.01)

iRNN (Acc=98.13)

ShaRNN (Acc=97.85)

IndRNN (Acc=99.00)

LipschitzRNN(Acc=99.00)

MomentumRNN(Acc=99.08)

FastGRNN(Acc=98.72)

TinyRNN (Acc=97.61)

DIRNN (Acc=99.13)

(a) Pixel-MNIST

0.0 1.0 2.0 3.0 4.0 5.0

log(#Params/1000)

20.00

40.00

60.00

80.00

100.00

A
cc

u
ra

cy

FastRNN (Acc=98.12)

RNN (Acc=10.05)

LSTM (Acc=10.31)

Antisymmetric (Acc=93.59)

iRNN (Acc=98.48)

ShaRNN (Acc=11.08)

IndRNN (Acc=98.20)

LipschitzRNN(Acc=98.45)

MomentumRNN(Acc=98.31)

FastGRNN(Acc=98.43)

TinyRNN (Acc=97.20)

DIRNN (Acc=98.67)

(c) Noisy-MNIST

0.0 1.0 2.0 3.0 4.0 5.0 6.0

log(#Params/1000)

92.00

93.00

94.00

95.00

96.00

A
cc

u
ra

cy

FastRNN (Acc=94.50)

RNN (Acc=91.31)

LSTM (Acc=93.65)

Antisymmetric (Acc=93.15)

ShaRNN (Acc=95.40)

IndRNN (Acc=95.35)

iRNN (Acc=96.30)

LipschitzRNN(Acc=95.32)

MomentumRNN(Acc=95.28)

FastGRNN (Acc=95.59)

TinyRNN (Acc=96.17)

DIRNN (Acc=96.53)

(e) HAR-2

0.0 1.0 2.0 3.0 4.0 5.0 6.0

log(#Params/1000)

82.00

84.00

86.00

88.00

90.00

92.00

94.00

96.00

A
cc

u
ra

cy

FastRNN (Acc=92.68)

RNN (Acc=82.15)

LSTM (Acc=92.61)

Antisymmetric (Acc=93.59)

iRNN (Acc=95.62)

ShaRNN (Acc=94.70)

IndRNN (Acc=96.00)

LipschitzRNN(Acc=96.32)

MomentumRNN(Acc=94.72)

FastGRNN(Acc=94.75)

TinyRNN (Acc=93.83)

DIRNN (Acc=96.53)

(b) Perm-MNIST

0.0 1.0 2.0 3.0 4.0 5.0

log(#Params/1000)

10.00

20.00

30.00

40.00

50.00

A
cc

u
ra

cy

FastRNN (Acc=45.76)

RNN (Acc=11.35)

LSTM (Acc=11.60)

Antisymmetric (Acc=48.63)

iRNN (Acc=54.50)

ShaRNN (Acc=11.60)

IndRNN (Acc=52.17)

LipschitzRNN(Acc=55.20)

MomentumRNN(Acc=54.63)

FastGRNN(Acc=49.43)

TinyRNN (Acc=53.57)

DIRNN (Acc=54.72)

(d) Noisy-CIFAR

0.0 1.0 2.0 3.0 4.0 5.0

log(#Params/1000)

72.50

75.00

77.50

80.00

82.50

85.00

87.50

A
cc

u
ra

cy

FastRNN (Acc=84.14)

RNN (Acc=71.68)

LSTM (Acc=84.84)

Antisymmetric (Acc=85.37)

ShaRNN (Acc=87.36)

IndRNN (Acc=86.93)

iRNN (Acc=88.11)

LipschitzRNN(Acc=87.51)

MomentumRNN(Acc=87.13)

FastGRNN (Acc=85.00)

TinyRNN (Acc=86.04)

DIRNN(Acc=88.38)

(f) DSA-19

Fig. 7: Test accuracy comparison. To better view the differences between different RNN architectures, by following some recent
papers such as FastGRNN and iRNN, here the numbers of parameters exclude those for linear classifiers that are identical for
all the competitors.

0 20 40 60 80 100 120
Time step

-15.00
-10.00

-5.00
0.00
5.00

10.00
15.00

Bo
dy

 a
cc

el
er

at
io

n

X Axis
Y Axis
Z Axis

(a) Playing basketball

0 20 40 60 80 100 120
Time step

0.00
10.00
20.00
30.00
40.00
50.00

Bo
dy

 a
cc

el
er

at
io

n X Axis
Y Axis
Z Axis

(b) Jumping

Fig. 8: Two kinds of activities in DSA-19 dataset.

DIRNN that can be solved efficiently using Euler’s method.
We prove that DIRNN is a Lyapunov stable dynamical system
where there is no vanishing/exploding gradient in training,
and thus leading to good training stability. To the best of our
knowledge, we are the first in the literature to provide such
theoretical results on the training stability for deep RNNs. To
address the model complexity issue in DIRNN, we also propose
a novel implementation, namely TinyRNN, where the transition
matrices are sparsified using weighted random permutation
matrices to reduce the number of parameters in the network.
The learned models can be further compressed using other
techniques such as network pruning. We evaluate both RNN
models on five different tasks that involve seven benchmark
datasets and ten baseline algorithms. Our DIRNN can achieve
state-of-the-art accuracy and TinyRNN (with pruning) can
achieve the best trade-off between accuracy and model size.
Note that our theoretical results can be valuable to analyze the
training stability of other networks such as ResNet [68]. In
future work, we will explore more for deep learning from the
perspective of dynamical systems.

REFERENCES

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding,” arXiv preprint arXiv:1810.04805,
2018.

[2] A. Kusupati, M. Singh, K. Bhatia, A. Kumar, P. Jain,
and M. Varma, “Fastgrnn: A fast, accurate, stable and
tiny kilobyte sized gated recurrent neural network,” in
Advances in Neural Information Processing Systems,
2018.

[3] K. Altun, B. Barshan, and O. Tunçel, “Comparative study
on classifying human activities with miniature inertial and
magnetic sensors,” Pattern Recognition, vol. 43, no. 10,
pp. 3605–3620, 2010.

[4] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[5] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio,
“On the properties of neural machine translation: Encoder-
decoder approaches,” arXiv preprint arXiv:1409.1259,
2014.

[6] J. Collins, J. Sohl-Dickstein, and D. Sussillo, “Capacity
and Trainability in Recurrent Neural Networks,” arXiv
e-prints, p. arXiv:1611.09913, Nov. 2016.

[7] M. Arjovsky, A. Shah, and Y. Bengio, “Unitary evolution
recurrent neural networks,” in International Conference
on Machine Learning, 2016, pp. 1120–1128.

[8] L. Jing, Y. Shen, T. Dubcek, J. Peurifoy, S. Skirlo, Y. Le-
Cun, M. Tegmark, and M. Soljačić, “Tunable efficient
unitary neural networks (eunn) and their application to
rnns,” in International Conference on Machine Learning,
2017, pp. 1733–1741.

[9] J. Zhang, Q. Lei, and I. S. Dhillon, “Stabilizing gradients
for deep neural networks via efficient svd parameteriza-
tion,” in ICML, 2018.

[10] Z. Mhammedi, A. D. Hellicar, A. Rahman, and
J. Bailey, “Efficient orthogonal parametrisation of
recurrent neural networks using householder reflections,”
CoRR, vol. abs/1612.00188, 2016. [Online]. Available:
http://arxiv.org/abs/1612.00188

[11] J. Pennington, S. Schoenholz, and S. Ganguli, “Resur-
recting the sigmoid in deep learning through dynamical
isometry: theory and practice,” in Advances in Neural
Information Processing Systems 30, 2017, pp. 4785–4795.

[12] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to
construct deep recurrent neural networks,” arXiv preprint
arXiv:1312.6026, 2013.

[13] J. G. Zilly, R. K. Srivastava, J. Koutník, and J. Schmid-
huber, “Recurrent highway networks,” in ICML. JMLR.
org, 2017, pp. 4189–4198.

[14] A. Mujika, F. Meier, and A. Steger, “Fast-slow recurrent
neural networks,” in Advances in Neural Information
Processing Systems, 2017, pp. 5915–5924.

[15] J. Bradbury, S. Merity, C. Xiong, and R. Socher, “Quasi-
recurrent neural networks,” CoRR, vol. abs/1611.01576,
2016. [Online]. Available: http://arxiv.org/abs/1611.01576

[16] T. Lei, Y. Zhang, S. I. Wang, H. Dai, and Y. Artzi, “Simple
recurrent units for highly parallelizable recurrence,” in
Empirical Methods in Natural Language Processing
(EMNLP), 2018.

[17] D. Balduzzi and M. Ghifary, “Strongly-typed recurrent
neural networks,” arXiv preprint arXiv:1602.02218, 2016.

[18] H. Jaeger, M. Lukosevicius, D. Popovici, and U. Siewert,
“Optimization and applications of echo state networks with
leaky-integrator neurons,” Neural networks : the official
journal of the International Neural Network Society,
vol. 20, pp. 335–52, 05 2007.

[19] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu,
“Advances in optimizing recurrent networks,” 2013 IEEE
International Conference on Acoustics, Speech and Signal
Processing, pp. 8624–8628, 2013.

[20] S. Chang, Y. Zhang, W. Han, M. Yu, X. Guo, W. Tan,
X. Cui, M. Witbrock, M. A. Hasegawa-Johnson, and T. S.
Huang, “Dilated recurrent neural networks,” in Advances
in Neural Information Processing Systems, 2017, pp. 77–
87.

[21] V. Campos, B. Jou, X. Giró-i Nieto, J. Torres, and S.-F.
Chang, “Skip rnn: Learning to skip state updates in recur-
rent neural networks,” arXiv preprint arXiv:1708.06834,
2017.

[22] S. S. Talathi and A. Vartak, “Improving performance of
recurrent neural network with relu nonlinearity,” arXiv
preprint arXiv:1511.03771, 2015.

[23] M. Y. Niu, L. Horesh, and I. Chuang, “Recurrent neural
networks in the eye of differential equations,” arXiv
preprint arXiv:1904.12933, 2019.

[24] B. Chang, M. Chen, E. Haber, and E. H. Chi,
“AntisymmetricRNN: A dynamical system view on

recurrent neural networks,” in International Conference
on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=ryxepo0cFX

[25] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K.
Duvenaud, “Neural ordinary differential equations,” in
Advances in Neural Information Processing Systems, 2018,
pp. 6571–6583.

[26] Y. Rubanova, R. T. Q. Chen, and D. Duvenaud,
“Latent odes for irregularly-sampled time series,”
CoRR, vol. abs/1907.03907, 2019. [Online]. Available:
http://arxiv.org/abs/1907.03907

[27] A. Kag, Z. Zhang, and V. Saligrama, “Rnns incrementally
evolving on an equilibrium manifold: A panacea for
vanishing and exploding gradients?” in International
Conference on Learning Representations, 2020.

[28] F. Rosenblatt, Principles of neurodynamics. Spartan
Books, Washington, D.C., 1962.

[29] N. B. Erichson, O. Azencot, A. Queiruga, and M. W.
Mahoney, “Lipschitz recurrent neural networks,” arXiv
preprint arXiv:2006.12070, 2020.

[30] T. M. Nguyen, R. G. Baraniuk, A. L. Bertozzi, S. J.
Osher, and B. Wang, “Momentumrnn: Integrating mo-
mentum into recurrent neural networks,” arXiv preprint
arXiv:2006.06919, 2020.

[31] G. Kerg, K. Goyette, M. P. Touzel, G. Gidel, E. Vorontsov,
Y. Bengio, and G. Lajoie, “Non-normal recurrent neural
network (nnrnn): learning long time dependencies while
improving expressivity with transient dynamics,” in Ad-
vances in Neural Information Processing Systems, 2019,
pp. 13 613–13 623.

[32] M. Lezcano-Casado and D. Martınez-Rubio, “Cheap
orthogonal constraints in neural networks: A simple
parametrization of the orthogonal and unitary group,” in
International Conference on Machine Learning, 2019, pp.
3794–3803.

[33] A. H. Ribeiro, K. Tiels, L. A. Aguirre, and T. Schön,
“Beyond exploding and vanishing gradients: analysing
rnn training using attractors and smoothness,” in Interna-
tional Conference on Artificial Intelligence and Statistics.
PMLR, 2020, pp. 2370–2380.

[34] R. Engelken, F. Wolf, and L. Abbott, “Lyapunov spectra
of chaotic recurrent neural networks,” arXiv preprint
arXiv:2006.02427, 2020.

[35] R. Vogt, M. P. Touzel, E. Shlizerman, and G. Lajoie,
“On lyapunov exponents for rnns: Understanding informa-
tion propagation using dynamical systems tools,” arXiv
preprint arXiv:2006.14123, 2020.

[36] J. Drgona, E. Skomski, S. Vasisht, A. Tuor, and D. Vrabie,
“Spectral analysis and stability of deep neural dynamics,”
arXiv preprint arXiv:2011.13492, 2020.

[37] A. Tuor, J. Drgona, and D. Vrabie, “Constrained neural
ordinary differential equations with stability guarantees,”
arXiv preprint arXiv:2004.10883, 2020.

[38] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical
evaluation of gated recurrent neural networks on sequence
modeling,” arXiv preprint arXiv:1412.3555, 2014.

http://arxiv.org/abs/1612.00188
http://arxiv.org/abs/1611.01576
https://openreview.net/forum?id=ryxepo0cFX
http://arxiv.org/abs/1907.03907

[39] D. Dennis, D. A. E. Acar, V. Mandikal, V. S. Sadasivan,
V. Saligrama, H. V. Simhadri, and P. Jain, “Shallow rnn:
accurate time-series classification on resource constrained
devices,” in Advances in Neural Information Processing
Systems, 2019, pp. 12 896–12 906.

[40] K. Helfrich, D. Willmott, and Q. Ye, “Orthogonal recur-
rent neural networks with scaled cayley transform,” in
International Conference on Machine Learning, 2018, pp.
1969–1978.

[41] K. D. Maduranga, K. E. Helfrich, and Q. Ye, “Complex
unitary recurrent neural networks using scaled cayley
transform,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 2019, pp. 4528–4535.

[42] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech
recognition with deep recurrent neural networks,” in 2013
IEEE international conference on acoustics, speech and
signal processing. IEEE, 2013, pp. 6645–6649.

[43] A. Graves and J. Schmidhuber, “Framewise phoneme
classification with bidirectional lstm and other neural
network architectures,” Neural networks, vol. 18, no. 5-6,
pp. 602–610, 2005.

[44] M. Schuster and K. K. Paliwal, “Bidirectional recurrent
neural networks,” IEEE transactions on Signal Processing,
vol. 45, no. 11, pp. 2673–2681, 1997.

[45] M. Hermans and B. Schrauwen, “Training and analysing
deep recurrent neural networks,” in Advances in neural
information processing systems, 2013, pp. 190–198.

[46] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao, “Independently
recurrent neural network (indrnn): Building a longer and
deeper rnn,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 5457–
5466.

[47] W.-Y. Chen, Y.-F. Liao, and S.-H. Chen, “Speech recogni-
tion with hierarchical recurrent neural networks,” Pattern
Recognition, vol. 28, no. 6, pp. 795–805, 1995.

[48] S. El Hihi and Y. Bengio, “Hierarchical recurrent neural
networks for long-term dependencies,” in Advances in
neural information processing systems, 1996, pp. 493–
499.

[49] S. Fernández, A. Graves, and J. Schmidhuber, “Sequence
labelling in structured domains with hierarchical recurrent
neural networks,” in Proceedings of the 20th International
Joint Conference on Artificial Intelligence, IJCAI 2007,
2007.

[50] J. Schmidhuber, “Learning complex, extended sequences
using the principle of history compression,” Neural
Computation, vol. 4, no. 2, pp. 234–242, 1992.

[51] A. Graves, “Generating sequences with recurrent neural
networks,” arXiv preprint arXiv:1308.0850, 2013.

[52] H. Jaeger, “Discovering multiscale dynamical features
with hierarchical echo state networks,” Jacobs University
Bremen, Tech. Rep., 2007.

[53] P. H. Pinheiro and R. Collobert, “Recurrent convolutional
neural networks for scene labeling,” in 31st International
Conference on Machine Learning (ICML), 2014.

[54] W. Liu, P. Guo, and L. Ye, “A low-delay lightweight

recurrent neural network (llrnn) for rotating machinery
fault diagnosis,” Sensors, vol. 19, no. 14, p. 3109, 2019.

[55] I. Korvigo, M. Holmatov, A. Zaikovskii, and M. Skoblov,
“Putting hands to rest: efficient deep cnn-rnn architecture
for chemical named entity recognition with no hand-
crafted rules,” Journal of cheminformatics, vol. 10, no. 1,
pp. 1–10, 2018.

[56] D. Neil, J. H. Lee, T. Delbruck, and S.-C. Liu, “Delta
networks for optimized recurrent network computation,”
in Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 2017, pp.
2584–2593.

[57] D. Roy, S. Srivastava, P. Jain, A. Kusupati, M. Varma, and
A. Arora, “Lightweight deep rnns for radar classification,”
in Proceedings of the 6th ACM International Conference
on Systems for Energy-Efficient Buildings, Cities, and
Transportation, 2019, pp. 360–361.

[58] A. Kusupati, M. Singh, K. Bhatia, A. Kumar, P. Jain,
and M. Varma, “Fastgrnn: A fast, accurate, stable and
tiny kilobyte sized gated recurrent neural network,” in
Advances in Neural Information Processing Systems, 2018,
pp. 9017–9028.

[59] U. Thakker, J. Beu, D. Gope, G. Dasika, and M. Mattina,
“Run-time efficient rnn compression for inference on edge
devices,” arXiv preprint arXiv:1906.04886, 2019.

[60] U. Thakker, J. Beu, D. Gope, C. Zhou, I. Fedorov,
G. Dasika, and M. Mattina, “Compressing rnns for iot
devices by 15-38x using kronecker products,” arXiv
preprint arXiv:1906.02876, 2019.

[61] J. Zhang, X. Wang, D. Li, and Y. Wang, “Dynamically
hierarchy revolution: dirnet for compressing recurrent
neural network on mobile devices,” in Proceedings of
the 27th International Joint Conference on Artificial
Intelligence, 2018, pp. 3089–3096.

[62] S. Sastry, “Lyapunov stability theory,” in Nonlinear
Systems. Springer, 1999, pp. 182–234.

[63] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet:
An extremely efficient convolutional neural network for
mobile devices,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp.
6848–6856.

[64] M. Rotman and L. Wolf, “Shuffling recurrent neural
networks,” arXiv preprint arXiv:2007.07324, 2020.

[65] G. Melis, C. Dyer, and P. Blunsom, “On the state of
the art of evaluation in neural language models,” arXiv
preprint arXiv:1707.05589, 2017.

[66] S. Han, H. Mao, and W. J. Dally, “Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[67] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[68] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learn-
ing for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition,
2016, pp. 770–778.

	Introduction
	Related Work
	DIRNN: Deep Incremental RNN
	Stability Analysis
	Implementation
	Discussion

	TinyRNN: A Sparsified DIRNN
	Experiments
	Ablation Study on HAR-2
	State-of-the-art Performance Comparison
	Case Study

	Conclusion

