
2332-7790 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2020.3014511, IEEE
Transactions on Big Data

1

Off-Deployment Traffic Estimation — A Traffic
Generative Adversarial Networks Approach

Yingxue Zhang, Yanhua Li, Xun Zhou, Xiangnan Kong and Jun Luo

Abstract—The rapid progress of urbanization has expedited the process of urban planning, e.g., new residential, commercial areas,
which in turn boosts the local travel demand. We propose a novel “off-deployment traffic estimation problem”, namely, to foresee the
traffic condition changes of a region prior to the deployment of a construction plan. This problem is important to city planners to
evaluate and develop urban deployment plans. However, this task is challenging. Traditional traffic estimation approaches lack the
ability to solve this problem, since no data about the impact can be collected before the deployment and old data fails to capture the
traffic pattern changes. In this paper, we define the off-deployment traffic estimation problem as a traffic generation problem, and
develop a novel deep generative model TrafficGAN that captures the shared patterns across spatial regions of how traffic conditions
evolve according to travel demand changes and underlying road network structures. In particular, TrafficGAN captures the road
network structures through a dynamic filter in the dynamic convolutional layer. We evaluate our TrafficGAN using a large-scale traffic
data collected from Shenzhen, China. Results show that TrafficGAN can more accurately estimate the traffic conditions compared with
all baselines. We also showcase that TrafficGAN can identify potential traffic issues in some regions and suggest possible reasons.

Index Terms—Traffic estimation, TrafficGAN, generative model.
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1 INTRODUCTION

O VER the past a few decades, we have witnessed drastic
urbanization at the global scale. It is reported that the

world’s urban population ratio has reached 54% in 2014,
and it is projected that by 2050, two-thirds of the world
population will live in urban areas [1].

With the rapid progress of urbanization, urban planning
is becoming a vital problem concerning with resources
allocation, urban transportation efficiency and living en-
vironment. The fast development of new residential and
commercial areas always comes with population growth,
which in turn increases the travel demands and the risk
of worsening traffic conditions due to the overload of the
transportation infrastructures. For example, the Olympic
Village was built in the northern area of Beijing for the 2008
Olympic Games with many new residential and commercial
areas constructed in its nearby areas as illustrated in Fig. 1.
The population in that region increased drastically after
2008, which significantly worsened the local traffic condi-
tions [2]. This could have been avoided if more thorough
and accurate traffic evaluation had been done before the
constructions. Therefore, it is crucial to foresee both positive
and negative impacts on traffic conditions before an urban
construction plan is deployed. In our work, we refer to
such a problem as “off-deployment traffic estimation” problem.
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Fig. 1: Traffic condition changes around Olympic Village in
Beijing, China
Solving this problem is technically challenging, since no
new data can be collected before deployment in an area,
while old data collected before deployment fails to capture
the traffic pattern changes.

The traffic estimation problem has been extensively stud-
ied in the literature [3]–[7]. These works use the historical
traffic data of regions to build machine learning models that
capture the correlations among the past traffic, environmen-
tal features and the future traffic. However, when predicting
the traffic impact of a newly developed construction plan,
these models will fail because they cannot capture the future
traffic pattern changes caused by the new deployment plan
due to the lack of training samples. Traditionally in civil
engineering, agent-based simulation models [8] or physical
models [9] are used to estimate the projected traffic volume
after constructions. However, these models rely heavily on
model choice and parameter settings, which are not trans-
ferable across urban regions.

In this paper, we propose a novel traffic genera-
tive adversarial network (TrafficGAN1) to tackle the off-
deployment traffic estimation problem. The proposed Traf-
ficGAN can capture the traffic correlations along the under-
lying road networks, and estimate traffic conditions prior to

1. A preliminary version of the results in this paper appeared in [10].
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deployment of a construction plan. Our main contributions
are summarized as follows:
• We model the off-deployment traffic estimation problem
as a traffic data generation problem, and propose a novel
deep generative model – TrafficGAN, which captures the
shared patterns across spatial regions of how traffic con-
ditions evolve according to travel demand changes and
underlying road network structures. (See Sec 4.)
• We evaluate TrafficGAN using a large scale traffic data
collected during 7/2016-12/2016 from Shenzhen, China.
The unique dataset represents a wide range of regions with
diverse travel demands and traffic conditions in both rural
and urban areas. Our results demonstrate that our proposed
TrafficGAN can accurately estimate the traffic conditions
compared with all baselines. When applying TrafficGAN to
a number of representative regions with higher (than their
current) travel demands, we showcase the issues of those
regions (in case of new construction plan deployed) and
identify potential reasons of the issues. (See Sec 6.)
• Compared with the preliminary version of this work in
[10], we have (i) added a threshold to control the traffic
correlation matrix and provided more detailed analysis on
how the threshold of traffic correlation influenced the size
and shape of the dynamic filter (in Section 4.3 and 4.4.1);
(ii) provided the preliminaries of state-of-the-art generative
models (in Section 4.2); (iii) detailed how the results ob-
tained from TrafficGAN can be utilized by urban planner to
make decisions (in Section 5); (iv) added more metrics and
presented more evaluation results on threshold selection,
statistics comparisons and traffic condition visualizations,
and looked into real traffic condition evaluation cases (in
Section 6.4 and 6.5); (v) added comprehensive related work
(in Section 7).

This paper is organized as follows. Section 2 formally
defines the problem, outlines the solution framework for
off-deployment traffic estimation. Section 3 – 5 detail the
three key stages of the solution. Section 6 presents our ex-
perimental results. Related works are discussed in Section 7
and we conclude our paper in Section 8.

2 OVERVIEW

In this section, we define the off-deployment traffic estima-
tion problem, describe the datasets we use, and outline our
solution framework.

2.1 Problem Definition
Urban planning, especially, governmental zoning2, is a pro-
cess of planning land use and development in a target
region, in which certain land uses (e.g., residential, commer-
cial) are permitted or prohibited [11]. In this work, we focus
on urban deployment and zoning plans when developing
certain new residential or commercial areas in a target
region, which will potentially promote the population size
and influence the travel demand in the region. Denote a city
under planning asR0, e.g., Shenzhen City in China bounded
by [22.534◦, 22.87◦] in latitude and [113.77◦, 114.40◦] in
longitude. As defined below, we partition R0 into grid cells
(as the smallest granular region to characterize the traffic
status) and form target regions R’s as collections of grid cells.

2. https://en.wikipedia.org/wiki/Zoning

Fig. 2: Travel demand and traffic distribution of region R

Definition 1 (Grid cell s). The planning city R0 is parti-
tioned into N0 grid cells with equal side-length in latitude
and longitude, denoted as S = {si}, where 1 ≤ i ≤ N0, i ∈
N.
Definition 2 (Target region R). A target region R is a square
geographic region inR0, formed by `×` grid cells. Formally,
R = 〈s, `〉 is uniquely defined by an anchor grid cell s on its
top-left corner and a number ` of grid cells on the side3.

In our study, grid cells are the minimum units where
traffic status and travel demands are measured. Alterna-
tively, urban planning and traffic estimation will be per-
formed at a target region. As a result, a region is analogous
to an “image”, where grid cells are viewed as “pixels”.
Fig. 5a visualizes grid cells of Shenzhen, China and Fig. 5b
illustrates the target region examples with ` = 10.
Definition 3 (Travel demand of a grid cell and a target
region). The travel demand of a geographic area captures
the total number of departures in a period of time, e.g., one
hour interval. Thus, we denote the travel demand of a grid
cell s as ds ∈ N. Given a target region R, DR is an ` × `
matrix representing the travel demand distribution of all
grid cells in R. Moreover, we denote the total travel demand
of a target region R as dR ∈ N, which is the sum of travel
demands in all grid cells within R, i.e., dR =

∑
s∈R ds =∑

1≤i,j≤lDR(i, j).
In general, it is hard to obtain the total travel demand

in a region including all transport modes. In this work,
we use the demand for taxis to represent the regional
travel demand, where many studies have shown that taxi
demands represent the total demands quite well [12], [13].
Definition 4 (Traffic status of a grid cell and traffic
distribution of a target region). Traffic status includes
various measures representing the quality of traffic in a
geographic region, such as average driving speed, traffic
inflow/outflow, traffic volume, etc. Taking traffic inflow as
an example, we denote ms as the traffic inflow of grid cell
s in a period of time. Similar, given a target region R with
`× ` grid cells, we denote an `× ` matrix MR as the traffic
distribution in R.

Each element of MR represents the taxi inflow in a grid
cell. As shown in Fig. 2, the whole matrixMR can be viewed
and visualized as an “image” characterizing the underlying
traffic distribution of a target region R, where each pixel
represents a grid (e.g., gird s, the small red box in the map).
Definition 5 (Urban deployment plan). An urban deploy-
ment plan in a target region R is referred to a plan to con-
struct new residential or commercial areas in the region R
without changing the road structures. As a part of the plan,

3. Note that target regions can also be defined as rectangles rather
than squares. For simplicity, we use square shape of target regions in
this work.
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Fig. 3: Off-deployment traffic estimation problem

the expected travel demand after deployment is specified4,
denoted by d̂R.

Clearly, an urban deployment plan will lead to an up-
dated regional travel demand d̂R, which in turn would
significantly affect the regional traffic distribution MR. The
goal of our work is to estimate MR(d̂R), which reflects the
potential traffic burden to be introduced by a deployment
plan and can be used by the planning authorities to evaluate
the pros and cons of urban deployment plans. The problem
is formally defined as below.
Problem definition. Given a city area R0 partitioned into
grid cells S , the citywide historical travel demands and
traffic distributions DR0,t and MR0,t are available over a
time span 1 ≤ t ≤ T . For a target region R = 〈s, `〉 and a
deployment plan in R with the expected travel demand d̂R,
we aim to estimate the traffic distribution MR(d̂R).

Fig. 3 illustrates an example of the problem. The series
of matrices on the left are the historical traffic distributions
and travel demands for each time slot. The map on the right
is the estimated traffic distribution MR(d̂R) based on an
expected travel demand d̂R=350 of the proposed plan.

2.2 Data Description

In effect, all kinds of personal vehicle data can be used, es-
pecially the GPS trajectories and other spatial-temporal data
records. In this paper, we use two real-world traffic datasets,
(1) taxi GPS data; (2) road map data. For consistency, both
of the datasets are collected from the same time interval, i.e.,
from Jul 1st to Dec 31st, 2016 in Shenzhen, China.
Taxi GPS data contains GPS records collected from taxis in
Shenzhen, China from Jul 1st to Dec 31st, 2016. There are
17,877 taxis equipped with GPS sensors, each GPS sensor
generates a GPS record every 40 seconds on average. Over-
all, a total number of 51,485,760 GPS records are collected
each day, each record contains five key data fields includ-
ing taxi ID, time stamp, passenger indicator, latitude and
longitude. The passenger indicator field is a binary value
indicating whether a passenger is on board.
Road map. In our study, we use the Google GeoCoding5 to
retrieve the bounding box of Shenzhen. The bounding box is
defined between 22.534◦ to 22.87◦ in latitude and 113.77◦

to 114.40◦ in longitude. Shenzhen road map6 is shown in
Fig. 5.

4. The expected travel demand d̂R after deploying a construction
plan is assumed given in this paper, which can be done by commonly
used Four-Steps demand forecasting approaches in Civil Engineer-
ing [14].

5. https://developers.google.com/maps/documentation/
geocoding/

6. http://www.openstreetmap.org/

Fig. 4: Solution framework

2.3 Solution Framework
Fig. 4 outlines our off-deployment traffic estimation frame-
work, which takes taxi GPS data and road map data as
inputs, processes the data in three stages to get the output:
• Stage 1 (Data Preprocessing): In this stage, we partition
the road map into small grid cells and calculate the travel
demands and traffic status (i.e., taxi inflow) of all grid cells
and time intervals.
• Stage 2 (TrafficGAN Training): In this stage, we train
TrafficGAN, a novel generative model for traffic estima-
tion. TrafficGAN automatically captures the shared patterns
across spatial regions of how traffic distributions evolve
according to travel demand changes and underlying road
network structures.
• Stage 3 (Urban Plan Evaluation): In this stage, the
generator obtained from Stage 2 will be used to estimate
the future traffic distribution MR(d̂R) for a target region R,
given a deployment plan with the expected travel demand
d̂R. Depending on traffic distribution requirement defined
by the urban planners/authorities, the deployment plan is
accepted or rejected.

3 STAGE 1: DATA PREPROCESSING

3.1 Map Gridding
For the ease of implementation in practice, we adopt the
grid based method, which simply partitions the map into
equal side-length grids [15], [16]. The grid based method
has the advantage of allowing us to adjust the side-length
of grids, which helps to examine and understand impacts of
the grid size. In this paper, we divide the map of Shenzhen
City into 40 × 50 grid cells with a side-length l1 = 0.0084◦

in latitude and l2 = 0.0126◦ in longitude.

3.2 Training Sets Construction
Given all 40 × 50 grid cells in Shenzhen, we choose target
region size ` = 10 as an example in this study, where
our TrafficGAN actually applies to any target region size.
Thus, there are in total 1, 271 possible target regions with
size 10 × 10. As shown in Fig. 5b, the upper-left red box
is the first region in Shenzhen, to get new regions, we
can slide it horizontally for p grid cells, 0 ≤ p ≤ 40,
and/or vertically for q grid cells, 0 ≤ q ≤ 30, p, q ∈ N.
The location of each region is described with a tuple (i, j)
which indicates the coordinates of the first grid cell (the
upper-left one) in the region, i.e., the row and column index
0 ≤ i ≤ 30, 0 ≤ j ≤ 40, i, j ∈ N. However, it is unnecessary
and too costly to use data from all 1, 271 regions as training
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Fig. 5: Map gridding and regions illustration
data. Instead, we set p = q = 5 and get 63 regions covering
entire Shenzhen city as target regions, extract their traffic
distributions and travel demands over time.
Travel Demand. We use six months taxi GPS records of
Shenzhen, China in 2016 to extract the travel demand of
each grid cell and region in Shenzhen. In each time slot, i.e.,
one hour, we count the total pickup events within each grid
cell and each ` × ` region. Since in each GPS record, the
passenger indicator value indicates whether a passenger is
on board, which can be easily used to monitor the pickup in-
formation. In addition, for other personal vehicle trajectory
data, if the passenger indicator is not available, alternative
approaches can be employed to detect the demand (start of
a trip), for example, if the car start moving (in GPS record),
we can safely claim it is a starting location and time of a
demand.
Traffic Distribution. Traffic distributions reflect the traffic
status in a region, which can be quantified with many
measures such as traffic speed, volume, inflow/outflow.
Taking traffic inflow as an example, it is a crucial metric
capturing the amount of arrivals in each grid cell. Since it is
hard to obtain the total traffic inflow in a grid cell including
all transport modes, in this paper, we use taxi inflow to
represent the traffic inflow In each time slot of each day,
we count all taxis which stay or arrive at each grid cell as
the taxi inflow. Since taxi may not be representative to all
vehicles, taxi data may introduce bias to the traffic status
estimation, the limitations of taxi data can be easily tackled
by [17] and [18] as complementary techniques to our work.

4 STAGE 2: TRAFFICGAN TRAINING

Taking an analogy, our “off-deployment traffic estimation”
problem is similar as image generation problem, where the
traffic distribution of a region can be viewed as a gray-
scale “image”, where the traffic status (e.g., inflow) of each
grid can be viewed as a “pixel” value. Thus, image gener-
ation approaches, such as GANs [19], sound a promising
solution. However, the unique challenges of our problem
prevent the state-of-the-art GAN models from solving it.
In this section, we highlight the technical challenges of our
problem, summarize the state-of-the-art generative models,
and introduce our TrafficGAN for off-deployment traffic
estimation problem.

4.1 Challenges
To solve the off-deployment traffic estimation problem, we
aim to generate the traffic distributions with respect to
various travel demands and the road network structures
in the target region, which is a challenging task for the
following reasons:

Fig. 6: Propagation rule of dynamic convolutional layer, f
refers to traffic features
• Traffic correlations along road networks. In a target
region R, the traffic of neighboring grids along the underly-
ing road networks has strong correlations. Capturing such
correlations is non-trivial since the correlation patterns are
defined by the road network structures, which may have
irregular shapes (rather than squares or rectangles).
• Conditioned Traffic Distribution Generation. The gen-
erated traffic distribution is meaningful only when condi-
tioned on the given region R and the travel demand dR.
However, how to design a generative model that outputs the
traffic distributions for a desired region and travel demand
is challenging.

4.2 Preliminaries
Generative adversarial networks (a.k.a. GANs) [19] have
been widely employed to many applications, including im-
age, text generation, domain adaptation, etc. GAN includes
a generator which generates a new data instance with input
as a random code in a low dimensional space, and a discrim-
inator which evaluates input data instances for authenticity.
Conditional GANs with deep convolutional layers (cDC-
GANs) [20] are composed of multiple convolutional layers
in both generator and discriminator to obtain better gen-
eration quality for primarily image data, and introduce a
condition as input in both generator and discriminator to
guarantee not only the generated data is close to the real, but
also matches the input condition. cDCGAN seems a feasible
method to solve the off-deployment traffic estimation prob-
lem since it can control the outputs by conditions and the
convolutional layers can capture local patterns with filters.
However, it is still hard to capture the traffic correlations
along road networks accurately due to filters’ fixed size and
shape.

Below, we introduce a measure of traffic correlation
across grid cells and develop TrafficGAN. As a generative
model, TrafficGAN integrates the traffic correlations for
traffic generations.

4.3 Quantifying Traffic Correlation
We introduce traffic correlation to capture the inherent traf-
fic dependence between a grid cell pair. For each grid cell,
there is time series traffic data (taxi inflow) over the entire
study time period. We calculate the Pearson correlation coef-
ficient between time series of a grid cell pair to quantify their
traffic correlation. Pearson correlation coefficient [21] measures
the linear correlation between variables X and Y , where X
and Y are time series taxi inflow data of two grid cells in our
case. The Pearson correlation coefficient a can be calculated
by the formula below, where X and Y are the mean of X
and Y :

aXY =

∑n
i=1

(
Xi −X

) (
Yi − Y

)√∑n
i=1

(
Xi −X

)2√∑n
i=1

(
Yi − Y

)2 , (1)
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Fig. 7: Convolutional filter comparison, λ1 > λ2
where a ∈ [−1, 1]. If a ∈ [−1, 0), the two grid cells are
negatively correlated, a = 0 means two grid cells don’t
have any linear correlation, a ∈ (0, 1] indicates two cells are
positively correlated. For an `×` regionR, its corresponding
traffic correlation matrix A is a symmetric `2 × `2 matrix,
where the entry aij is the traffic correlation between grid
cell si and sj , si, sj ∈ R.

In a road network, nearby road segments (resp. nearby
grid cells) often have stronger correlations in traffic accord-
ing to the First Law of Geography [22]. In fact, the effective
traffic correlations are generally positive, since if a road
segment (resp. a grid cell) has traffic congestion, the road
segments adjacent to it (resp. nearby grid cells) are likely to
have high traffic volumes, the similar trend indicates posi-
tive correlations. However, the traffic correlations between
distant road segments (resp. distant grid cells) are weak
due to the lack of direct traffic connections. In our work,
for a specific grid cell, we only consider its nearby grid
cells which are directly connected with it by roads and thus
(likely) to have positive traffic correlations. To remove other
uncorrelated grids, we set a threshold λ ∈ (0, 1) such that
we set aij = 0, if aij < λ. After removing the uncorrelated
grids by the threshold λ, we perform row normalization for
the traffic correlation matrix A as Eq. 2, so it will not affect
the scale of features when multiplied to the feature matrix
in Eq. 3.

aij =
aij∑`2

j=1 aij
. (2)

Next, we will elaborate on how to integrate the traffic
correlation matrix for traffic distributions estimation and
generation.

4.4 TrafficGAN

In this paper, to solve the challenges mentioned above,
we propose a novel conditional generative model – Traf-
ficGAN which can capture the traffic correlations of road
networks, control the generation results with desired region
and travel demand conditions, and generate realistic traffic
distributions. TrafficGAN consists of a generator G and
a discriminator D, and it applies dynamic convolutional
layers in G and D.

4.4.1 Dynamic Convolutional Layer
The goal of dynamic convolutional layer is to learn a func-
tion of traffic features in a region including traffic inflow,
volume, speed, etc. The input of dynamic convolutional
layer includes two parts:
• A traffic feature matrix H of size N × F0 (N : number of
grid cells in a region, N = `× `; F0: initial number of traffic
features).

Fig. 8: TrafficGAN
• A non-negative and row-normalized traffic correlation
matrix A of size N ×N .

The output is a new feature matrix after one-layer con-
volution. The layer-wise propagation rule is:

Hi+1 = f (Hi,A) = σ (AHiWi+1) , (3)

whereHi is the feature matrix of a region got after ith layer
and is the input of the (i + 1)th layer, Wi+1 is the weight
matrix in (i+1)th layer and σ is an activation function. The
rule is illustrated in Fig. 6.
Dynamic Filter. In the propagation, since the traffic corre-
lation matrix is multiplied by the traffic feature matrix, for
each grid cell, the new features after one-layer propagation
is the weighted sum of all grid cells features within the
corresponding region, and we can treat the correlations
between the current grid cell and any other grid cells (i.e.,
the corresponding row in correlation matrix) as a filter,
whose shape and size are irregular. Hence, we say such
filters are dynamic since the the filter of each grid cell would
be different and changeable.
Dynamic Convolutional Layer vs. Standard Convolutional
Layer. Fig. 7 illustrates the difference between a standard
convolutional layer and a dynamic convolutional layer
(with different threshold λ). By introducing the traffic corre-
lation matrix A in dynamic convolutional layer, a dynamic
filter is created and applied to the feature matrix H , where
the size and the shape of the dynamic filter is controlled
by A and the threshold λ, when λ changes, the dynamic
filter for the same grid cell could be different. The filters
are marked in yellow, and the blue block represents the
target grid. The filter of a standard convolutional layer
(Fig. 7(a) has fixed size, e.g., a 3 × 3 square, which cannot
naturally captures the traffic correlations along the road
networks and would include some grids with no roads
or some girds having low traffic correlations. In contrast,
the dynamic filters created by the traffic correlation matrix
(in Fig. 7(b)-7(c)) align with the road network very well.
Moreover, comparing Fig. 7(b) and Fig. 7(c), it is clear that a
smaller threshold λ leads to a larger range of dynamic filter,
and vice versa.

Besides the dynamic filter, another filter W in Eq. 3 per-
forms convolution on traffic features in each grid cell. More-
over, the corresponding dynamic de-convolutional layer is
the same structure as the dynamic convolutional layer as
shown in Fig 6. This is because the matrix operation of the
dynamic convolutional layer and dynamic de-convolutional
layer is invariant. We omit the detailed proof for brevity.

4.4.2 TrafficGAN Architecture
To tackle the challenge of conditioned traffic distribu-
tion generation, we introduce conditional generative model
structure in designing TrafficGAN. Fig. 8 shows the overall
structure of TrafficGAN. The goal of the generator G is
to generate traffic distributions with respect to the region
location loc and travel demand d. The input of the generator
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(a) Generator of TrafficGAN (b) Discriminator of TrafficGAN

Fig. 9: TrafficGAN architecture

G includes three parts, i) a low-dimensional code vector z,
randomly sampled from Gaussian distribution, ii) condition
vector c = [loc, d], defining the desired region and travel
demand and iii) a traffic correlation matrix Aloc. The dis-
criminator D takes three inputs, i) a traffic distribution M ,
ii) condition information c = [loc, d] and iii) a traffic correla-
tion matrix Aloc. D outputs a scalar indicating whether the
traffic distribution M is real and whether the input M and
c are matched. The detailed structures of generator G and
discriminator D are detailed in Fig. 9a and Fig. 9b, len(c)
represents the number of conditions in c. In generator, c is
concatenated into z such that the generator is conditioned
by c, which means the generatorG builds the mapping from
distribution pz(z) to a traffic distribution G(c,Aloc, z). In
our case, N = 100, F0 = 1 since the only traffic feature is
taxi inflow.

4.4.3 TrafficGAN Loss Function

In TrafficGAN, the generator G aims to generate “like-
real” traffic distributions so that the discriminator D cannot
distinguish the generated traffic distributions from the real
traffic distributions well. For the discriminator D, it aims
to rise the score of real traffic distributions, lower down
the score of generated traffic distributions, and lower down
the score of mismatched pairs of traffic distributions and
conditions. As a result, the loss function of TrafficGAN is in
the form of Eq. 4, modeled as a MinMax game. (See more
details in [23].)

min
G

max
D
V (D,G) = EM∼pdata(M)[logD(c,Aloc,M)]

+ Ez∼pz(z)[log(1−D(G(c,Aloc, z)))]. (4)

4.4.4 Training Process

During the training process, we apply batch gradient de-
scent. The detailed training process is shown in Algorithm 1,
where the discriminator D and the generator G are updated
in line 3 – 7 and line 8, respectively. In each training iteration,
we update the parameters θD of D with Eq. 5 and Eq. 6,
where ηD is the learning rate.

ṼD =
1

m

m∑
i=1

(
log(1−D(ci,Ai

loc,M̃
i))

+ logD(ci,Ai
loc,M

i) + log(1−D(ci,Ai
loc,M̂

i))
)
, (5)

θD = θD + ηDOṼθD (θD). (6)

Algorithm 1 TrafficGAN Training Process

Input: Training iteration K, a training set Z =
{(c1,A1

loc,M
1), · · · , (cn,An

loc,M
n)}, initialized G and

D.
Output: Well trained G and D.
1: In each training iteration iter:
2: repeat
3: Sample Z0 = {(c1,A1

loc,M
1), · · · , (cm,Am

loc,M
m)}

from training set Z , where m < n.
4: Sample N = {z1, z2, · · · , zm} from Gaussian distri-

bution.
5: Generate T̃ = {M̃1, · · · ,M̃m} with G, where M̃ i =

G(ci,Ai
loc, z

i).
6: Sample T̂ = {M̂1,M̂2, · · · ,M̂m} from training set

Z , where each M̂ i is mismatched with (ci,Ai
loc).

7: Update D with Eq. 6 to maximize Eq. 5.
8: Update G with Eq. 8 to maximize Eq. 7.
9: until iter > K .

Then, we update the parameters θG of G with Eq.7 and Eq.8,
where ηG is the learning rate.

ṼG =
1

m

m∑
i=1

logD(G(ci,Ai
loc, z

i)), (7)

θG = θG + ηGOṼθG(θG). (8)

5 STAGE 3: URBAN PLAN EVALUATION

The generatorG obtained from Stage 2 can be used by urban
planners to evaluate urban construction plans at various
locations, and search for more appropriate plans. To do so,
given an urban deployment plan, the generator G takes (i)
the expected travel demand d̂R, (ii) the location of the target
regionR, (iii) traffic correlation matrix ofR, and (iv) random
code vector z, as inputs to generate traffic distributions for
the plan to be evaluated.

Note that future traffic distributions hinge on many
factors such as weather, etc. To capture the entire distri-
bution of what the future traffic will look like over all
potential (hidden) factors, we randomize a large number L
of random code vectors to regenerate the traffic distributions
for the urban plan. All L generated traffic distributions
[M̃1, · · · ,M̃L] are used to capture the future traffic dis-
tributions. The urban planners can summarize and evaluate
various statistics of their interests using theL generated traf-
fic distributions, for example, the mean, variance, minimum,
maximum of L traffic distributions as outlined below.
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Traffic mean distribution. The average of L generated
traffic distributions reflects the average traffic status in the
target region R after the plan is deployed. The positive
or negative impacts of the urban construction plan on the
local traffic status in R can be analyzed with the average
generated distribution.
Traffic variance distribution. Similarly, we can take the
variance of traffic status (e.g., inflow) in each grid cell in
R to obtain a traffic variance distribution, which indicates
the fluctuation of the generated traffic status in each grid
cell.

6 EVALUATIONS

We conduct experiments to evaluate our proposed Traffic-
GAN with baseline approaches using large scale real world
taxi GPS data.

6.1 Experiment Design

We performed two sets of experiments: (i) Generate traffic
distributions in a target region R that was “seen” by Traffic-
GAN in the training set but under other travel demands.
To do this, we remove the traffic distribution MR of R
under a specific travel demand dR from the training set,
and train our model with the rest of the data. Then we
let TrafficGAN generate the traffic distribution M̃R under
dR and compare them with the removed MR. (ii) Generate
traffic distributions for an “unseen” target region R with a
specific target travel demand dR, where R was not included
in the training set, therefore, TrafficGAN has never seen
traffic distributions of R under any travel demand during
training process. We extract the real traffic distributions of
R from the original taxi GPS dataset and treat them as the
ground truths, then we use the well-trained generator of
TrafficGAN to generate the same number of traffic distribu-
tions and compare them with the ground truths. Obviously,
the second task is more challenging.

In this paper, Euclidean distance and mean absolute
percentage error (MAPE) are used to evaluate the quality
of a generated traffic distribution against the ground truth
traffic distribution of a target region R. Euclidean distance
is defined as follows. For the ground-truth vector V =
(v1, · · · , vn) and the predicted vector V̂ = (v̂1, · · · , v̂n), the
Euclidean distance and MAPE between V and V̂ is:

‖V̂ − V ‖2 =

√√√√ n∑
i=1

(v̂i − vi)2. (9)

MAPE =
1

n

n∑
i=1

|vi − v̂i| /vi, (10)

We define statistics P1—P4 (measured by Eq. 9), P ′1—P ′4
(measured by Eq. 10) to measure and evaluate the difference
between the generated traffic distribution and the ground-
truth traffic distribution.
•P1 and P ′

1: For each R and dR pair, we calculate the av-
erage traffic distribution using real traffic distributions and
refer to it as “true average distribution”. We also calculate
the average of generated traffic distributions and refer to
it as “generated average distribution”. The “true average

distribution” and “generated average distribution” can be
reshaped into two vectors, the smaller Euclidean distance
and MAPE between the two vectors (denoted with P1 and
P ′1, respectively) reflect that the mean of the generated data
are similar to the mean of the true data.
•P2, P3 and P ′

2, P ′
3: Under the condition of target region R

and target travel demand dR, for each grid cell s ∈ R, we
calculate the Euclidean distance and MAPE of s between
real traffic distributions and generated distributions so that
we have N = `2 Euclidean distances and MAPEs for all
s ∈ R. The mean of them (denoted as P2 and P ′2) indicate
on average the similarity between the generated data and
the true data for each grid cell. The standard deviation of
these Euclidean distances and MAPEs are denoted as P3

and P ′3.
•P4 and P ′

4 refer to the Euclidean distance and MAPE
between real traffic distributions and generated traffic dis-
tributions with various travel demands. We combine all
the real/generated traffic distributions with different travel
demands as two huge matrices and reshape them into two
vectors and calculate the Euclidean distance and MAPE be-
tween them, which indicate whether the traffic distributions
conditioned on different travel demands are realistic or not.

6.2 Baseline Models
We compare our TrafficGAN with four baseline approaches
below.
Standard cGAN [23]. Without deep convolutional layers,
the generator and discriminator are both composed of four
fully-connected layers and the first three layers are activated
by ReLU, output of the generator is activated by hyperbolic
tangent function, and the output of discriminator is fed to
Sigmoid function.
Conditional DCGAN [20]. The generator and discriminator
of cDCGAN are composed of four transposed convolu-
tional/convolutional layers and the first three layers are
batch normalized and activated by leaky ReLU, the output
of the generator is activated by hyperbolic tangent function,
and the output of discriminator is activated by Sigmoid.
Spatial smoothing approach with neighboring regions
[24]. This method uses the traffic distributions of 9 closest
regions under the same travel demand to compute a mean
distribution as the resulting estimation. Note we only use
available data in the training set to estimate and we will
ignore a neighboring region if its data is not available for
this travel demand.
Regression [25]. Ridge regression is applied to estimate the
taxi inflow of each grid cell with the location of the grid cell
and the travel demand as predictors.

6.3 Experiment Settings
In the experiments, we obtain 122, 472 traffic distributions
of Shenzhen, China from Jul 1st to Dec 31st in 2016. We
train TrafficGAN, cGAN and cDCGAN both for 200 epochs,
and randomly sample code z from a standard normal dis-
tribution with µ = 0, σ = 1. All models are trained using
Adam with β1 = 0.5 and β2 = 0.999, and a learning rate
of 2 × 10−5 for the first 10 epochs and linearly decayed to
2 × 10−6. In the training process, we use batch stochastic
gradient descent with a batch size of 128.
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Fig. 10: P1 value changes with λ

Fig. 11: TrafficGAN Loss with λ = 0.47

6.4 Evaluation Results
6.4.1 λ selection
As we illustrated in Fig. 7, as a parameter of TrafficGAN,
the correlation threshold λwould influence the performance
of the generation. First we test the impact of different λ
on the results. In Fig. 10, we pick two ”seen” regions and
two “unseen” regions with specific travel demands to see
how their P1 performances change with λ. We can see when
λ moves from 0 to 0.4, the performance slightly improves
(P1 decreasing) but with big fluctuations. P1 becomes more
stable with smaller fluctuations when 0.4 < λ < 0.5.
When λ > 0.6, the P1 increases drastically indicating bad
performance. Based on our test when λ = 0.47, almost all
regions have the lowest P1. Thus, in this paper, we pick
0.47 as the proper value of λ, all the following experiments
are conducted with λ = 0.47. Moreover, with λ = 0.47,
we show the convergence of our TrafficGAN with the loss
plot in Fig. 11. In Fig. 11, the TrafficGAN approaches to
convergence after 150 epochs.

6.4.2 Statistics comparisons with four baselines
With λ = 0.47, we have the P1 values for 4 “seen” and 4
“unseen” regions in Fig. 12, where TrafficGAN always has
the lowest P1 indicating the mean of the generated data with
TrafficGAN is the closest to the true data. Other statistics
also have similar results.

We pick two representative regions (seen and unseen) as
target regions with a specific travel demand. All the statistics
are shown in Table. 1 and Table. 2. Since smoothing and
regression method can only provide one estimated traffic
distribution for a region based on a specific travel demand,
only P1 and P ′1 can be calculated. For both “seen” and “un-
seen” regions, TrafficGAN presents the lowest error in all
statistics, which indicates the generated traffic distributions
with TrafficGAN are much closer to the real ones. Compared
with cGAN and cDCGAN, our TrafficGAN model brings

TABLE 1: Statistics Comparisons for an “Unseen” Region
TrafficGAN cGAN cDCGAN smoothing regression

P1 956.78 14321.60 1452.82 1178.62 55302.89
P ′
1 3.55 1710.41 3.71 21.27 220.79

P2 420.50 7096.76 523.37 - -
P ′
2 0.65 253.48 1.25 - -

P3 314.21 1914.90 539.78 - -
P ′
3 0.87 400.30 3.09 - -

P4 5249.24 73505.63 7519.95 - -
P ′
4 1.68 223.64 2.26 - -

TABLE 2: Statistics Comparisons for a “Seen” Region
TrafficGAN cGAN cDCGAN smoothing regression

P1 896.95 14436.03 1473.42 1418.74 57792.57
P ′
1 4.35 1669.10 6.43 207.04 527.47

P2 361.74 6393.57 455.25 - -
P ′
2 0.73 247.53 2.13 - -

P3 277.67 1837.80 512.83 - -
P ′
3 0.89 403.26 5.04 - -

P4 4560.26 66524.57 6857.47 - -
P ′
4 3.78 287.66 4.23 - -

down the P1 error by up to 93.79% and 39.12% on the “seen”
region and up to 93.32% and 34.14% on the “unseen” region.

6.4.3 Spatial pattern visualization
In this part, we visualize the generated/estimated traffic
distributions and compare them with the real one. Here the
traffic distributions are normalized to the same scale. Fig. 13
shows the visualizations of spatial patterns of 9 connected
“unseen” regions, where each region has a corresponding
travel demand. Fig. 13a marks the locations of selected 9
regions with red color on the whole city map. Fig. 13b shows
the zoomed-in road map of the 9 regions. Fig. 13c shows the
true average distribution and Fig. 13d shows the generated
average distribution with TrafficGAN. Fig. 13e - 13h show
the generated/estimated average traffic distribution of the
baselines. Obviously, the generated average distribution
with TrafficGAN captures the structure of the underlying
road networks of all 9 “unseen” regions. TrafficGAN clearly
outperforms all the baselines which cannot accurately learn
the spatial patterns of “unseen” regions and they usually
overestimate or underestimate the value in each grid cell.

6.4.4 Traffic condition visualization
Moreover, in the traffic estimation problem, we focus more
on estimating the traffic conditions in roads. Fig. 14 shows
the traffic conditions in all roads in an “unseen” region un-
der a specific travel demand, where the roads in red indicate
congestion, the yellow roads indicates slight congestion,
and the green ones represent no traffic congestion. Fig. 14a
shows the location of this “unseen” region. Fig. 14b is the
road map of the “unseen” region with high travel demand
locations marked. Fig. 14c shows actual traffic condition in
the data. Fig. 14d shows the generated traffic condition with
TrafficGAN, which is highly similar to the ground truth.
Fig. 14e - 14h show the results of the baselines. Clearly, the
results of TrafficGAN outperforms all baselines. Results on
the “seen” regions also suggest the same trend, where Traf-
ficGAN can better capture the road networks and generate
more realistic traffic distributions than all baselines. Due to
space limit, we only present the results on “unseen” regions
since it is a harder task.

In conclusion, TrafficGAN is a success in traffic estima-
tion, which can not only capture the shared patterns across
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Fig. 12: P1 comparisons over 8 target regions (seen and unseen)

Fig. 13: Spatial patterns of 9 “unseen” regions

spatial regions of how traffic conditions evolve according
to travel demand changes and underlying road network
structures, but also provide realistic estimation of the traffic
conditions in roads based on different travel demands.

6.5 Case Studies
To further utilize our TrafficGAN, we look into real traf-
fic condition evaluation cases in urban planning. As we
mentioned earlier in this paper, the traffic condition always
changes with the travel demand and rural areas usually
have lower travel demands than urban areas. Therefore,
it is a good opportunity to apply TrafficGAN in practice
to forecast the possible traffic conditions under a not-yet-
observed travel demand in an area.

For example, in 2018, Shenzhen government announced
the plan to expropriate residential building. A large part
of residential buildings to be expropriated are located in
Longgang District. The goal of the expropriation is to build
new residential and commercial areas in Longgang. The
urban off-deployment traffic estimation can be performed
before the expropriation and construction.

Longgang District is mainly located in the region marked
with red box in Fig. 15a. The current average travel demand
is 192. Fig. 15b shows the current traffic conditions. If new
residential and business areas are built in Longgang, the
travel demand would grow rapidly to 800 [14]. Fig. 15c
shows the predicted traffic conditions of nearby roads under
this expected travel demand. Compared with the current
traffic conditions in Fig. 15b, apparently the overall traffic in-
flow is higher, the average traffic inflow increases drastically

in two places marked in Fig. 15c. Fig. 15d illustrates possible
reasons for the traffic congestion after the construction, i.e.,
compacted roads and the poor design of lanes in these areas.

7 RELATED WORK

Urban planning is a technical and political process con-
cerning with urban data analysis, urban data mining,
off-deployment evaluation and urban design. The off-
deployment evaluation problem is a vital and difficult part
among all the urban problems. Related works are summa-
rized below.
Traffic volume prediction. Some previous works focus on
traffic volume prediction from different perspectives. For
example, [26] proposes a hybrid framework that integrates
both state-of-art machine learning techniques and well-
established traffic flow theory to estimate citywide traffic
volume. In [27] and [28], the authors develop models to
predict the road traffic volume and crowd flows in subway
stations. These work assume unchanged urban settings and
predict the traffic volume over time and locations. However,
in this work we aim to generate the traffic distributions un-
der various travel demands, which are significant changes
to the urban settings.
Graph Convolutional Networks (GCN). [29] is usually
used to classify the nodes in a graph. It can be seen as
a generalization of neural network models like CNN to
graphs and networks. GCN applies graph convolutional
layers inside the model with a feature matrix and an adja-
cency matrix as inputs, where each row of the feature matrix
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Fig. 14: Traffic conditions of an “unseen” region

Fig. 15: Traffic condition forecast. (a) is the target region covering the Longgang District; (b) is the actual traffic condition
with current travel demand in the region; (c) is the forecast traffic condition with a higher expected travel demand, where
more congestion appears; (d) indicates two possible reasons for (c);

contains the features of one node, and the adjacency matrix
is a representative description of the graph structure. Even
though GCN takes the graph structure and the correlation
between two nodes into consideration in convolution pro-
cess, it is not a generative model which is in need to solve
the traffic estimation problem.
Deep Learning for Urban Computing. Urban Computing
is a general research area which integrates urban sensing,
data management and data analysis as a unified process
to explore, analyze and solve crucial problems related to
people’s everyday life [30]–[33]. With the recent rapid devel-
opment of deep learning techniques, many researchers have
made attempts to use deep learning models to solve urban
computing problems. For example, Yuan et al. [33] propose
to use a variation of the ConvLSTM model to predict traffic
accidents. Wu et al use recurrent neural networks (RNN)
to predict trajectories. Huang et al. [31] employ a deep
attention model to predict crimes. Li et al. [32] employ
a reinforcement learning method to dynamically reposition
shared bikes. These work, however, do not use a generative
model and they are very different from our problem.
Other Generative Models have been discussed in Sec-
tion 4.2 when motivating the TrafficGAN model. They do
not capture irregular spatial structures of the road networks

and the traffic correlations and thus could not effectively
solve our problem.

8 CONCLUSION

This paper proposed and investigated a novel off-deployment
traffic estimation problem, namely, estimating the impact on
regional traffic conditions before an urban construction plan
is deployed. Solving this problem is crucial to potentially
avoid traffic issues caused by an urban construction plan. In
this paper, a novel generative model - TrafficGAN was pro-
posed. Using traffic data (e.g., taxi inflow) from all regions
under different travel demands, TrafficGAN is trained to
capture the fundamental patterns of how traffic condition
evolves with respect to the travel demand changes and
underlying road network structures. With such knowledge,
the obtained generator is capable of generating realistic traf-
fic conditions within a region for a not-yet-observed travel
demand. Evaluation results on a large-scale real taxi dataset
demonstrate that TrafficGAN can generate meaningful and
accurate traffic distributions on the road network under
various travel demands, and outperforms all the baselines.
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