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Abstract—
Emergence of autonomous vehicles (AVs) offers the potential to fundamentally transform the way how urban transport systems be
designed and deployed, and alter the way we view private car ownership. In this paper we advocate a forward-looking, ambitious and
disruptive smart cloud commuting system (SCCS) for future smart cities based on shared AVs. Employing giant pools of AVs of varying
sizes, SCCS seeks to supplant and integrate various modes of transport – most of personal vehicles, low ridership public buses, and
taxis used in today’s private and public transport systems – in a unified, on-demand fashion, and provides passengers with a fast,
convenient, and low cost transport service for their daily commuting needs. To explore feasibility and efficiency gains of the proposed
SCCS, we model SCCS as a queueing system with passengers’ trip demands (as jobs) being served by the AVs (as servers). Using a
1-year real trip dataset from Shenzhen China, we quantify (i) how design choices, such as the numbers of depots and AVs, affect the
passenger waiting time and vehicle utilization; and (ii) how much efficiency gains (i.e., reducing the number of service vehicles, and
improving the vehicle utilization) can be obtained by SCCS comparing to the current taxi system. Our results demonstrate that the
proposed SCCS framework can serve the trip demands with 22% fewer vehicles and 37% more vehicle utilization, which shed lights on
the design feasibility of future smart transportation systems.

Index Terms—Cloud Commuting, urban computing, queuing theory

F

1 INTRODUCTION

In most urban cities today, there are two primary modes of transit:
i) Public transit services such as buses, subways which run along
fixed routes with fixed timetables, and have limited coverage
areas. These limitations mean that one cannot take public transport
between any two arbitrary points in a city. ii) private transit
services such as taxis, shared-van shuttles, (mobile app-based)
ride-hailing services (e.g., Uber or Lyft) are largely “on-demand”
– although their service may not be immediate or “real-time”.
However, taxi and ride-hailing services can be expensive, limiting
them mostly for ad hoc use, namely, occasional short trips.

It is optimistic for us to imagine that, in the near future, there
will be autonomous vehicles 1 (AVs) on the road networks either
for commerce or private use. So far there are some exciting news
about the application of AVs, for example, Voyage Auto, Optimus
Ride and Waymo One have deployed robo-taxi systems in Florida,
California and Arizona. Voyage Auto employs AV taxis to shuttle
residents in a large retirement community in Florida. TuSimple,
Kodiak, Ike Robotics, and Pronto. AI are developing long-haul
autonomous driving system for trucks. Nuro.AI, Starship Tech-
nologies, Refraction AI and others are developing smaller, slower
speed vehicle systems designed for last mile delivery (from a
local warehouse to customer’s home or business) of groceries and
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1. Colloquially known as “self-driving cars” – however in our study we will
use the term AVs to refer to not only passenger cars, but also “self-driving”
shuttles, vans or busses; namely, AVs of varying sizes.

packages[22]. The emergence of autonomous vehicles although
will offer new potentials to address the challenges facing the
current urban transit systems, and challenge and transform how
we view and design public and private transport systems in future
smart cities. For instance, with their autonomy, would it still
make sense to take “self-driving” cars to work, but have them
spend most time parked, when in fact they can go somewhere
by themselves? We envisage a forward-looking, ambitious and
disruptive cloud commuting based transport system – smart cloud
commuting system (SCCS) – for future smart cities based on
shared AVs. Employing giant pools of AVs of varying sizes, SCCS
seeks to supplant and integrate various modes of transport – most
of personal vehicles, taxis, and low ridership public buses used
in today’s private and public transport systems – in a unified, on-
demand fashion, and provides passengers with a fast, convenient,
and low cost transport service for their daily commuting needs.

We postulate the four key aspects of system efficiency gains
that could potentially be achieved in a smart cloud commuting
system with shared AVs (see Section 2.1). This paper constitutes a
first attempt at exploring the feasibility and efficiency gains of the
proposed SCCS; due to space limitation, we focus primarily on the
temporal multiplexing gain through time-sharing of AVs. To this
end, we model SCCS as a queueing system with passengers’ trip
demands (as jobs) being served by the AVs (as servers). Using a
1-year real trip dataset from Shenzhen China, we quantify (i) how
various design choices – such as the number of shared AVs and
number and locations of depots (where idle AVs are stationed) –
affect the passenger waiting time and vehicle utilization; and (ii)
how much system efficiency gain (e.g., in terms of number of AVs
and vehicle utilization) can be attained through SCCS.

• Utilizing a large-scale taxi trip dataset, we develop gener-
ative models to capture the arrival and service patterns of
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Fig. 1: Idling taxis

urban taxi trip demands over different time periods of the
day.

• By modeling SCCS as an M/G/k queuing system, we
propose an theoretical framework to estimate the average
waiting time of all passengers, given the total number of
AVs and the number/locations of depots.

• We investigate the impacts of different design choices,
e.g., number of AVs and number/locations of depots, on
passenger waiting time and vehicle utilizations.

• We quantify the temporal multiplexing efficiency gain of
time-sharing AVs achieved via SCCS, and compare that
with the current urban taxi system. The evaluation results
obtained using the 1-year taxi trip dataset demonstrate that
the proposed SCCS can serve the trip demands with 22%
less vehicles and 37% more vehicle utilization.

The rest of the paper is organized as follows. In Section 2,
we motivate the proposed SCCS and outline a queueing system
model for its feasibility study. In Section III we present the overall
methodology and detail the modeling framework. In Section IV we
describe the evaluation results using the Shenzhen taxi datasets.
The related work is discussed in Section V, and the paper is
concluded in Section VI.

2 MOTIVATION AND PROBLEM DEFINITION

In this section we first motivate the proposed SCCS. We then lay
out a general queueing system model for SCCS for studying its
feasibility and quantifying its potential efficiency gains.

2.1 Smart Cloud Commuting System (SCCS)
As alluded in the introduction, today’s urban transit systems
suffer many well-known shortcomings. Taking taxis as an exam-
ple, Fig. 1 shows the number of on-road taxis in 3 days from
03/04/2014 − 03/06/2014 for each 5-minutes time interval in
Shenzhen, which indicates on average more than 60% of taxis
are idle over time. Now imagine a (perhaps not-so-distant) future
where we live in a smart city with autonomous vehicles or “self-
driving” cars. How would the transport systems, both public and
private, be designed in such a smart city? What transport services
would be needed or plausible? Our envisaged SCCS is a bold
attempt to re-imagine and re-design transport for future smart
cities by fusing information technologies with AVs to offer a new
kind of mobility-as-a-service that targets more specifically daily
commuting needs for most (if not all) users in cities and metro

Fig. 2: Request pattern

Fig. 3: Framework of SCCS

areas (urban and suburban). As shown in Fig.3, in SCCS, each AV
is controlled by (centralized) dispatch servers residing in the cloud.
Once a passenger requests a trip, the cloud servers will arrange an
AV to pick up and send the passenger to the destination. When
a trip demand is completed, the vehicle can be re-used for other
passengers. In this paper, we introduce the SCCS implemented
with centralized servers, and in our future work, we will study
the implementation of SCCS with decentralized cloud computing
system. Our proposed SCCS can also benefit public transportation
system with high-capacity AVs, e.g., autonomous buses. To inte-
grate public transportation in SCCS, the high-capacity AVs can be
assigned to pick up a group of passengers who can share the trips
along the way. Employing giant pools of shared AVs of varying
sizes, SCCS aims to provide users with a fast, convenient, and low
cost transport service to meet their daily commuting needs. The
scale and the resulting abilities to maximize system efficiencies via
shared AVs differentiate our envisaged SCCS from today’s ride-
hailing services, which are designed primarily to serve ad hoc
trips.

We postulate the following four key aspects of system effi-
ciency gains that could potentially be achieved in a smart cloud
commuting system with shared AVs. (i) Temporal multiplexing
gain through time-sharing of AVs: by leveraging “bursty” travel
demands and sharing of AVs over time, the number of AVs needed
would be significantly less than what would be if every user
had his or her personal AV. This is analogous to the statistical
multiplexing gain attained by a packet-switched data network. (ii)
Payload multiplexing gain through ride-sharing among users: By
utilizing AVs of varying sizes to enable ride-sharing among users
(similar to today’s car-pooling, shared shuttle or transit services,
but leveraging the autonomy of AVs), the number of AVs needed
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Fig. 4: Queuing system

can be further reduced. (iii) Elastic demand gain through smart
trip scheduling: Many travel demands are elastic in nature (a trip
to a store for grocery shopping now may not be crucial and thus
can be delayed, say, for 30 minutes). Even for peak hour travel
demands, as long as a user can reach her destination within a
desired time window, the trip can be scheduled dynamically to
leverage such elasticity to achieve additional system efficiency
gain. (iv) Road network efficiency gain through intelligent control
of AVs: With fewer vehicles on the road through shared AVs,
road congestion can be alleviated or avoided, thus shortening
trip times. Road network efficiency gain can be further increased
by packing more AVs during peak demands (e.g., by reducing
inter-car spacing) without creating safety issues, and by intelligent
routing of AVs through less congested roads.

As a first attempt at studying the feasibility of the envisaged
SCCS, in this paper we focus primarily on the first aspect of the
system efficiencies, namely, temporal multiplexing gain through
time-sharing of AVs, that can be potentially achieved through
SCCS. In particular, by modeling SCCS as a queueing system,
we investigate how various design choices – such as the numbers
of vehicles and the number/locations of depots – affect the quality
of services (QoS) of passengers (e.g., waiting time) and the overall
system performance (e.g., vehicle utilization). For this study, we
utilize a real-world, taxi trip dataset from Shenzhen, China over a
period of one year. One interesting and important feature of this
dataset lies in that due to the limited area coverage (and the fact
that the public transit capacity cannot meet the demands during
the peak hours), many residents in the city rely on taxis for daily
commuting needs (see Fig. 2). This feature enables us to study the
feasibility of the proposed SCCS to meet daily commuting needs
and compare its system performance with that of the existing taxi
system.

2.2 Modeling SCCS as a Queuing system

SCCS can be viewed as a queuing system. Passengers request for
commute services from SCCS. Their requests will be placed in a
queue, if the servers (i.e. AVs) are busy. Fig.4 shows the queuing
model of SCCS, an arrival event is a request received from a
passenger, and a service event is the process of an AV taking
the passengers to the destination. As a queueing system, there are
three components charactering the system performances, including
the arrival pattern, service pattern and number of servers.

Arrival pattern is the distribution of the arrival events coming
into the queuing system. We can use arrival rate and arrival interval
to capture the arrival pattern of a queuing system. Service pattern
captures the distribution of the service time.

Fig. 5: Framework

Definition 1 (Arrival interval A). The arrival interval is the time
period between each two successive trip requests.

Definition 2 (Arrival rate λ). The arrival rate is the number of trip
requests arriving the system within a unit time slot.

Definition 3 (Service time S). The service time is the time period
when a self-driving vehicle is dispatched to serve a passenger.

If the passengers’ requests arrive the queue while all of the AVs
are busy, the requests will be placed in a queue to wait for the next
available AV. The waiting time indicates how long a passenger
waits in a queue, which characterizes the quality of experience of
the passenger in SCCS.

Definition 4 (Waiting time W ). The waiting time is the time
period from the arrival of a passenger request to an AV being
dispatched to the passenger.

2.3 Problem Definition

Thanks to the fast development of location sensing technologies,
the increasing prevalence of embedded sensors inside mobile
devices, vehicles has led to an explosive increase of the scale
of urban mobility datasets, including the trip demands data of
passengers in urban areas.

Definition 5 (Trip demand). A trip demand of a passenger indi-
cates the intent of a passenger to travel from a source location
src to a destination location dst from a given starting time ts
with an expected trip duration ∆t, which can be represented
as a 4-tuple 〈src, dst, ts,∆t〉.

Fig. 2 shows the temporal distribution of urban taxi trip
demands for each 10-minute time interval in Shenzhen from
03/04/2014 − 03/06/2014, which exhibits a clear diurnal pat-
tern. Such pattern is driven by the daily commuting needs between
residential and working locations. Given such strong diurnal
pattern, we divide each day into a few time intervals, and focus on
the daily dynamics of trip demands over intervals.
Problem definition. Given the total number of available self-
driving vehicles k and the number of depots d, we aim to (1)
estimate the impact of design choices (in k and d) on passenger
waiting time and vehicle utilization; and (ii) evaluate the efficiency
gains of SCCS comparing to the current taxi system, in terms of
numbers of vehicles needed and the vehicle utilization.
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Fig. 6: Heat map of starting location
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No demand
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High demand

Fig. 7: Heat map of ending location Fig. 8: Shenzhen road map

3 METHODOLOGY

In this section, we introduce our design model of SCCS given
the total number of vehicles k and the number of depots d,
and provides an analytical framework for analyzing the system
performances and passenger quality of experience.

3.1 Overview

Fig. 5 illustrates our solution framework, that takes two sources
of urban data as inputs and contains four key analytical stages:
(1) trip demands extraction, (2) depots deployment, (3) arrival and
service pattern extraction (4) system performance evaluation.

• Stage 1 (Trip demands extraction) This stage aims to
extract the passengers’ trip demands from the collected
taxi GPS data. In our datasets, each taxi trajectory consists
of a sequence of time-stamped GPS points, where a GPS
point is collected every 40 seconds on average. A GPS
data point includes the time stamp, latitude, longitude,
and binary indicator (indicating if a passenger is aboard).
Moreover, the raw trajectory data are noisy, with spatial
errors from the groud-truth locations, due to the accuracy
limit of the GPS devices. By cleaning the taxi GPS data,
we can extract the passenger taxi trips, indicated by four
key elements: (1) starting location src, (2) ending location
dst, (3) starting time ts, (4) trip duration ∆t. As a result,
each trip represents a passenger demand.

• Stage 2 (Depots deployment) Given the number of depots
d and the number of AVs k, this stage aims to identify
the depot locations and assign AVs to depots. First, the
urban area is divided into d grids with equal sizes. Second,
the trip demands extracted in stage 1 can be aggregated
into each grid based on the source locations. Then, for
each grid with trip demands, we will deploy a AV depot.
To reduce the dispatching distance, the depot location is
obtained by the average geo-location of all trip source
locations inside the grid. If the location is not exactly on
a road segment, the depot location will be shifted to the
nearest road network.

• Stage 3 (Arrival/Service pattern extraction) With a par-
ticular SCCS design (from stage 2), this stage will examine
the arrival and service patterns. The trip requests arrive
in a sequence of time stamps, i.e., {ts1 , ts2 , ..., tsm}. We
will quantify the arrival pattern of such time sequence.
Moreover, with all trip durations (as system service times),
we will characterize the service pattern.

• Stage 4 (System performance estimation) With genera-
tive models for arrival and service patterns of the urban trip
demands, we can naturally view the taxi service system as
a queuing system, with trip demands as the customers and
taxis as the servers. In Stage 4, by modeling the SCCS as

Fig. 9: GPS set and passenger
indicator on taxis

Fig. 10: GPS data generated by
taxis

an M/G/k queueing system, we will quantify the average
waiting time of passengers and vehicle utilizations.

3.2 Data Description
Our analytical framework takes two urban data sources as input,
including (1) taxi trajectory data and (2) road map data. For
consistency, both datasets are collected in Shenzhen, China in
2014. We introduce the details of these datasets below.

Taxi trajectory data are GPS records collected from taxis
in Shenzhen, China during 2014. There were in total 17, 877
taxis equipped equipped with GPS sets and passenger indicators
as shown in Fig.9, where each GPS set generates a GPS point
every 40 seconds on average. The passenger indicator will be
pulled down if there is a passenger aboard, and it sends binary
values indicating if a passenger is aboard or not to the GPS set.
Overall, a total of 51, 485, 760 GPS records are collected on each
day, and each record contains five key data fields, including taxi
ID, time stamp, passenger indicator, latitude and longitude. The
passenger indicator field is a binary value, indicating if a passenger
is aboard or not. Note that, in this paper, the results are from the
data collected in 2014, and similar results can be obtained with
new data collected in 2016. For better reproducibility, we made
our data public.2

TABLE 1: Road Map Data in Shenzhen

Type Counts Type Counts
Motorway 563 Secondary 868

Trunk 258 Tertiary 1,393
Primary 745 Unclassified 16,829

Road map data. In our study, we use Google GeoCoding [1]
to retrieve a bounding box of Shenzhen, which is defined between
22.44◦ to 22.87◦ in latitude and 113.75◦ to 114.63◦ in longitude.
The covered area covers a total of 1, 300km2. Within such a
bounding region, we crawl road map data in Shenzhen from
OpenStreetMap [3]. The road map data contain six levels of
road segments, which are detailed in Table 1 and visualized with
different colors in Fig.8.

2. https://www.dropbox.com/sh/m28gv5qeh7wbeft/AAAj92KoycrhSdX6Q4
hBu4lMa?dl=0
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3.3 Stage 1: Demands Extraction
In stage 1, we clean and extract the urban trip demands from the
raw trajectory data.
Trajectory data cleaning. The trajectory data are noisy in nature.
First of all, the GPS locations are with errors of around 15
meters. Secondly, there are GPS points outside the bounding box
of Shenzhen. We conduct two steps to clean the noisy trajectory
data, including map-matching and spatial filtering. Map-matching
is a process that project the noisy GPS locations back to the road
segments, which has been extensively studied in the literature We
apply the map-matching technique [11] to our dataset. Secondly,
we apply a simple spatial filtering step to remove GPS records
that are outside the bounding region of Shenzhen.
Trip demand extraction. The passenger indicator field in the taxi
trajectory data is the key enabler to extract the taxi trip demands. A
taxi trip can be represented as a sequence of taxi GPS points with
the passenger indicator as 1. The first and last GPS locations of
the taxi trip capture the source/destination locations (src, dst) of
a trip demand, and the corresponding time stamps characterize the
trip starting/ending time ts/te. The trip duration can be obtained
as the elapsed time from ts to td, i.e., ∆t = te−ts. Once we have
all trip demand tuples 〈src, dst, ts,∆t〉, we observe that there are
a small number of trip demands with extremely short or long trip
durations. From the size of the bounding region of Shenzhen and
the road map, any trip could be done within 2 hours (including the
rush hours with traffic congestion). Moreover, people would not
take a taxi trip shorter than 2 minutes in general. Thus, we simply
filter out those noisy taxi trips longer than 2 hours or shorter than
2 minutes, which may be due to the issues with hardware or data
collection processes. Note that in this work, each demand can be
from either one individual passenger or a group of passengers
sharing the entire trip. Without loss of generality, we assume each
demand is from one passenger.

After the two steps, we obtain a total of 595, 501 daily trip
demands from our trajectory data. Fig.6 and Fig.7 show the
geo-distributions of source and destination locations in Shenzhen
during the morning rush hours 6–9AM on March 6th, 2014.

3.4 Stage 2: Depots deployment
Given the number of depots d and total number of available vehi-
cles k, our system deployment model works as follows: (1) road
map partitioning, (2) depot placement, (3) vehicles assignment.

Step 1: Road map partitioning. We first get the boundary of
Shenzhen from OpenStreetMap, which is defined between 22.44◦

to 22.87◦ in latitude and 113.75◦ to 114.63◦ in longitude. Then,
we partition the area of the city into d grids with the sizes.

Step 2: Depot placement. After the regions are divided, we
try to deploy one depot in each region, and totally d depots will be
deployed. First, we aggregate the trip demands extracted in stage
1 into each grid. In SCCS, the request in a grid will be served
by the depot in that region. We allocate those demands into grids
based on their source locations. Then, to reduce the dispatching
distances, in each grid, the center location of all the source demand
locations are calculated to place the depot. Moreover, if the center
source locations is not on the road network, it will be shifted to
the nearest road segment. Fig.11 shows the result of road map
partition and depot deployment. Note that one region is in the
ocean, and we do not deploy a depot in that region.

Step 3: Vehicle assignment. After deploying the depots, the
vehicles are assigned to each depot according to the portion of

TABLE 2: Parameters of arrival rate distributions

Time slot 12am-6am 6am-12pm 12pm-6pm 6pm-12am
λ 4.1375 7.6189 8.4415 9.0023

demands in the region. Let N be the total demands in the urban
area, Ni be the number of demands in region i. The total number
of vehicles assigned to region i is thus ki = k ·Ni/N .

3.5 Stage 3: Arrival/Service pattern
SCCS can be viewed as a queuing system. Each trip demand and
the corresponding trip represent a customer arrival event and a
service event, respectively. Self-driving vehicles are the servers in
the system. Now we characterize the arrival pattern and service
pattern from the trips.
Arrival pattern analysis. We chose the time unit as one second,
and count the number of arrived trip demands over each second
in demand data we obtained from Stage 1. Fig.12 shows the
distributions of the arrival rate in four different intervals of a
day. The x-axis represents the arriving rates and the y-axis is the
percentage of demands. The blue dots are obtained from original
demands data, which nicely fit Poisson distributions. The green
curves are the best fitting curves with Poisson distribution. The
parameters λ’s of Poisson distributions are the mean arrival rates,
which are listed in Table 2 for different time intervals in a day.
Service pattern analysis. As shown in Fig.3, the service time
of an AV include three time intervals. The first part is pickup
time, namely, the passenger sends a request to the cloud servers
to request a trip service. The cloud servers arrange a vehicle
to pick the passenger up, if there is an available vehicle in the
depot, otherwise, the passenger would wait in the queue. After
the vehicle picked up the passenger, it will take the customer to
the destination, during which the passenger experiences in-vehicle
time. When the trip is completed, the vehicle returns to the nearest
depot to the passenger dropoff location, which is the return time.

Note that a complete service time include all three time inter-
vals, i.e., pickup, in-vehicle, and return times. Though passenger
does not experience the return time, it is counted, because the
vehicle is still “reserved” and cannot serve other passengers (on
the trip back to the depot)3.

Since each request will be served by a vehicle from the depot
in the source region, and the destination of the demand may be
in a different region, a vehicle balancing approach is required. We
adopt a simple schedule-based approach for vehicle rebalancing:
Every 12 hours, the vehicles will be rebalanced to the initial
numbers of vehicles. Moreover, the on-road travel time can be
estimated by OSRM API [2] from one place to another. Thus, the
picking up time and the returning time of each demand can be
estimated by the API.

To extract the service time pattern from the demand data,
we choose the unit time as minute. Taking k = 12000 as an
example, Fig.13 show the distributions of service time given
different number of depots: 1,2,3,4,8,16 depots, in the 12pm-6pm
time slot on March 5th in 2014. The x-axis represents the service
time and the y-axis is the percentage of demands. The black
dots are from the raw demand data, which cannot be fitted by

3. Note that the system can be further designed to allow vehicles to direct
pick up the next passengers without going back to depot, which require more
complex system design model. To simplify our feasibility and performance
gain analysis, we adopt this simple model, and leave it for our future work to
evaluate more complex system design.
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Fig. 11: Depot placement in Shenzhen

(a) 12am-6am (b) 6am-12pm

(c) 12pm-6pm (d) 6pm-12am

Fig. 12: Arrival rate ( #requests/s )
TABLE 3: Average service time

# Depots 1 2 3 4 8 16
S(min) 58.45 51.67 49.80 41.31 31.60 29.38

a simple distribution. Hence, the service pattern follows a general
distribution, denoted as G in queueing theory. The average service
times with different number of depots are listed in Table 3.

3.6 Stage 4: Estimating the system performance
Now, we are in a position to introduce our queuing theory based
approach to estimate the average waiting time in SCCS, given the
number of available vehicles k.

We have shown that the trip demands arrival rate follows
a Poisson distribution, but the service pattern is general. When
k vehicles are available in SCCS, we can denote this queuing
system as an M/G/k queue. It is still an open question to exactly
quantify the features of such a queue, such as waiting time [13].
We employ the approximation algorithm [15] to estimate the
average waiting time in M/G/k queue by adjusting the mean
waiting time in a corresponding M/M/k queue. Equation (1)
shows the approximation function of the average waiting time in

M/G/k queue. where E[WM/G/k] and E[WM/M/k] are the
expected waiting times of the M/G/k and M/M/k queues,
respectively. The M/M/k queue has the same mean service time
as the M/G/k queue.

E[WM/G/k] =
C2 + 1

2
E[WM/M/k] (1)

where C is the coefficient of variation of the service time distri-
bution in M/G/k queue. In M/M/k queue, the average waiting
time can be calculated in Eq (2).

E[WM/M/k] =
Erc(k, ρ)S

k − ρ
, k > ρ (2)

where ρ is the utilization in a queuing system, which equals to λS,
and Erc(k, ρ) is the Erlang C formula(Eq (3)), which indicates
the probability that an arriving customer has to wait, which is also
the proportion of time that all k servers are busy. k > ρ ensures
the system can reach the steady state.

Erc(k, ρ) =

kρk

(k−ρ)k!∑k−1
k=0

ρn

n! + kρk

(k−ρ)k!

(3)

Finally, we can approximate the average waiting time in
M/G/k queue. Taking one depot deployment as an example,
the arrival rate in 12pm − 6pm slot is 5.0594, and the average
service time of the system is 3536.45249, so the utilization
ρ = 17876.4137, and the coefficient of variation of the service
time distribution C = 0.5563. Given the number of vehicles
k = 18000, we can first get Erc(18000, 17876) = 0.2547,
which means that 25.47% of the time when all of the servers
are busy. Finally the approximate average waiting time is 4.0134
seconds.

4 EVALUATION

In this section, we use real taxi trip data to conduct experiments
to evaluate (1) the performance of the design choices of number
of available vehicles k and the number depots d. (2) the efficiency
gain in SCCS comparing with current taxi system.
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(a) 1 depot (b) 2 depots (c) 3 depots

(d) 4 depots (e) 8 depots (f) 16 depots

Fig. 13: Service time(k = 12000)

4.1 Evaluation settings
Time intervals in a day. We observe that the trip demand arrival
and service patterns change dramatically over time intervals in
a day. In our evaluations, we divide a day into 4 time intervals,
we have the cutting-off times as [12am, 6am, 12pm, 6pm]. and
evaluate how the granularities affect the performances of our
proposes models.

Baselines. We compare the performances of our SCCS (in
different design choices) with the current taxi system. To evaluate
how our SCCS performs when serving the same set of trip
demands in our taxi data, we employ a data-driven simulation
approach as follows: The real world trip demands arrive by the
order of their starting times. If there are available vehicles in
its regional depot, the waiting time of this demand will be 0.
Otherwise, the waiting time is the time interval from the starting
time to the moment when a vehicle returns to that depot. The
results introduced below show that our SCCS can achieve several
efficiency gains comparing with the current transit system in
vehicle utilization and number of vehicles needed.

Metrics. For the design choices, we use the customer in system
time and vehicle idle rate to evaluate the performance of the
system. The efficiency gain is evaluated by the number of vehicles
needed, and the utilization of the vehicles while serving the same
amount of demands in our system and current urban taxi transit
system.

4.2 Design choices
4.2.1 Impact of k
From the passengers’ perspectives, the service process consists
of two parts: passenger waiting time and in-vehicle time. The
passenger waiting time includes the system waiting time W 4 (as

4. Note that the system waiting time is different from the passenger waiting
time, where the former is the time from the request arrival to the time a vehicle
is dispatched, and the latter includes both the system waiting time and pickup
time.

defined in Sec 2-B) and the picking up time. We denote the total
service time passenger experienced as the in-system time, namely,
the total of waiting time, pickup time, and in-vehicle time. The
in-system time is what passenger actually experiences, and is
considered as the quality of service the passenger received.

Taking 16 depots as an example, given the number of vehicles
9000, 10000, 11000, 12000, 15000, 20000, we can simulate the
whole service in our SCCS, and get the passenger in-system time,
which is shown in Fig.14. We can observe that as we increase the
number of vehicles, the passenger in-system time decreases.

Moreover, Fig. 20 shows the average in-system time and the
idle rate for different numbers of AVs. With the increase of the
total number of vehicles, the in-system time decreases, which is
because the waiting time becomes shorter. However, the idle rate,
which characterizes the portion of time that a vehicle stays idle
in the depot (Eq (4)), increases due to the increasing number of
over-deployed AVs.

Ridle =

∑k
i=1 T

i
idle

k · T
, (4)

with T as the total amount of time in a day (i.e., 24 hours), and
T iidle is the amount of time the vehicle i spent in depot during the
day.

Fig. 20 clearly indicates the trade-off between the waiting time
and the idle rate when changing the number of vehicles.

The number of depots in our system can also have effects on
the customer’s experience. Taking k = 12000 for example, Fig. 15
shows the change of the customer in-system time according to the
number of depots, when we fixed the number of AVs to be 12000.
Fig. 15(a)–(f) shows that as we increase the number of depots, the
passenger in-system time distribution evolutes from high to low
in-system time. Moreover, Fig. 16–17 indicates how the average
in-system, waiting time changes, over different numbers of depots.

The phenomena occur because the increase of the number of
depots can reduce the picking up time and the waiting time for
each service. Moreover, from Fig. 15, we can clearly observe that
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(a) 9000 vehicles (b) 10000 vehicles (c) 11000 vehicles

(d) 12000 vehicles (e) 15000 vehicles (f) 20000 vehicles

Fig. 14: the impact of total number of taxis

(a) 1 depot (b) 2 depots (c) 3 depots

(d) 4 depots (e) 8 depots (f) 16 depots

Fig. 15: The impact of number of depots (k=12,000)

4.3 System efficiency gains

By comparing our SCCS with the current taxi system, we now
show that the SCCS system can achieve efficiency gains in several
aspects, including (1) the higher vehicle utilization, (2)the less
number of vehicles needed. Here, the results presented are from
the real-world data collected in Shenzhen, China, 2014, the traffic
volume does not show significant difference over time, and similar
results of vehicle utilization and number of vehicle needed can be
obtained with data collected in different time (2016).

4.3.1 Utilization of vehicles

In Fig. 1, we show that most of the taxis are idling on the road
over days, which means the utilization of the taxis in current taxi
system is low. At each time slot, e.g., in 1 hour, we can obtain
a ratio of in-service vehicle vs the total number of vehicles. We
quantify the utilization of the vehicles as average ratio of in-serve
vehicles over all time slots, defined as follows.

U =

∑Tslots

i=1 (N busy
i /Ni)

Tslots
, (5)
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Fig. 16: Average in-system time Fig. 17: Average passenger wait-
ing time

Fig. 18: utilization of vehicles Fig. 19: Distance per demand in
SCCS and taxi system

TABLE 4: V-values

# Vehicles 7k 7.5k 8k 9k 12k 20k
V 0.465 0.426 0.429 0.462 0.586 0.801

where Tslots is the total number of time slots in a day, N busy
i and

Ni are the number of in-service and all vehicles at time slot i.
The utilization of the vehicles in our system is shown in Fig. 18

when d = 16. Taking k = 11000 as an example, the utilization is
79.1%, while the utilization of the taxis in Shenzhen was 42.02%.

4.3.2 Number of vehicles needed
We can count the number of taxis in Shenzhen taxi system from
our trajectory data, which was in total 9, 606 taxis. When using
SCCS to serve the same trip demands, the number of vehicles
would have impacts on the trade-off between the passenger in-
system time and the vehicle idle rate (see Fig. 20). We define a
measure V-value in Eq.(6) as a combination of the two measures
to quantify the system performance.

Vk = αTin−system + (1− α) ·Ridle, (6)

with α as a design trade-off parameter within [0, 1]. The smaller
V-value indicates better performance. Taking 32 depots and α =
0.01 as example, the V-values are listed in Table 4. The most
appropriate number of vehicles in 32 depots is 7500, which shows
a 22% reduction on needed vehicles.

4.4 Travel Distance Analysis
In this section, we compare the travel distances of AVs in SCCS
with those of taxis in current taxi system. Fig.19 shows the average
distance per demand for the customer in-vehicle trips and idle
trips of AVs in SCCS and taxis in current taxi system. As shown
in Fig.3, the AV idle trip includes the picking up trip and the

Fig. 20: Tradeoff

returning trip, and the distances of these trips are obtained via
the OSMnx API[6]. The taxi idle trip is the trip when the taxi
has no passengers onboard. The distance of customer in-vehicle
trip is the same in SCCS and taxi system. The distances of the
later two types of trips are extracted from the taxi GPS data. From
Fig.19, we find that, as the number of depots increase in SCCS, the
average AV idle trip distance per demand decreases, because the
distances of picking up and returning trips decreases when there
are more depots over the city. Although the average AV idle trip
distance is higher than that of taxis in current taxi system when
there are 16 depots in the city, it is safe for us to estimate that
when the number of depots is sufficiently large, the average idle
distance of AVs in SCCS will be lower than that of taxis in current
taxi system.

5 RELATED WORK

To the best of our knowledge, we are the first to propose a
Smart Cloud Commuting System (SCCS) for future smart cities
with AVs, and quantify its feasibility and efficiency gains. In this
section, we introduce two research areas that are related to our
work, including (1) mobility-on-demand system, and (2) urban
computing.

Mobility-on-demand system (MoD). MoD ([21], [4], [29],
[23], [26], [31], [20]) is an emerging concept in solving urban
transportation problems, such as unbalanced supply-demand rates
and traffic congestion. MoD aims to provide transit supplies,
such as shuttle/taxi services according to dynamic urban trip
demands. In [21], authors design a simulation platform to explore
the performance of autonomous vehicle based MoD system un-
der various vehicle dispatching models. In another work [4], a
general mathematical model is proposed, which could make real-
time assignment decision in high-capacity ride-sharing system.
This model is designed to handle a large number of passenger
demands and dynamically generate optimal assignment solution
to urban trip demands. In [29] and [23], authors propose two
spatial queueing-theoretical models, that capture salient dynamic
and stochastic features of customer demand, for Autonomous
mobility-on-demand system which has autonomous vehicles in it.
In [12], [5], [7], [8], the authors envisioned mobility systems with
AVs, and analyzed the performance of the system via simulation.
[24] provides a review of recent studies on investigating the
impacts of AVs on travel behaviour and land use. Differing
from these works with focus on the (ride-sharing) dispatching
algorithms for load balancing of vehicles, we employ real world
data (rather than simulation) to analyze the underlying trip demand
patterns with queuing theory and evaluate design trade-offs and
efficiency gains under a unifying SCCS framework.

Urban Computing is a thriving research area which integrates
urban sensing, data management and data analytic together as a

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on January 09,2021 at 01:59:49 UTC from IEEE Xplore.  Restrictions apply. 



2332-7790 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2020.3041263, IEEE
Transactions on Big Data

JOURNAL OF LATEX CLASS FILES, VOL. , NO. 10

unified process to explore, analyze and solve crucial problems
related to people’s everyday life [16], [19], [25], [10], [17], [28],
[18], [9], [27], [30], [14]. For examples, [16] presents a data-driven
optimization framework to deploy charging stations and charging
points with the goal of minimizing the seeking and waiting time
of electric vehicle drivers. [25] develops novel models to predict
future crowd flow traffic in subway stations. [27] introduces a
method to estimate the travel time in a road segment using sparse
trajectories data. [28] proposes a model to discover urban function
zones by exploring latent activity trajectory data. In [30], the
authors propose a method to diagnose the noises environment
in New York city by extracting ubiquitous data over the city.
Differing from these works, in this paper, we propose a future
smart cloud commuting system (SCCS) with shared autonomous
vehicles, and quantitatively evaluate the feasibility and efficiency
gains of SCCS.

6 CONCLUSION AND FUTURE WORK

In this paper, we advocate a Smart Cloud Commuting System
(SCCS) for future smart cities with shared AVs to meet daily
commuting demands of a large urban city. We have outlined four
aspects of system efficiencies that can potentially be attained via
the envisaged SCCS. As a first attempt at studying its feasibility,
in this paper we develop generative models to capture fundamental
trip demand arrival and service patterns, and develop a novel
framework to explore the impact of design choices on the temporal
multiplexing gains (through time-sharing of AVs) that can be
achieved by SCCS. We conducted extensive evaluations using a
large scale urban taxi trajectory dataset from Shenzhen, China.
The results demonstrate that SCCS can reduce the number of
vehicles by 22%, and improve the vehicle utilization by 37%.

As part of our future work, we plan to further incorporate
the vehicle rebalancing algorithms that allow vehicles to serve
other passengers without going back to depots in this study.
Furthermore, we will extend our current modeling framework
to investigate the other three aspects of the system efficiencies
afforded by the envisaged SCCS by the effects of ride-sharing,
smart trip scheduling and AV routing, and so forth.
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