
cST-ML: Continuous Spatial-Temporal
Meta-Learning for Traffic Dynamics Prediction

Yingxue Zhang∗, Yanhua Li∗, Xun Zhou†, Jun Luo‡
∗Worcester Polytechnic Institute

†University of Iowa
‡Lenovo Group Limited

yzhang31@wpi.edu; yli15@wpi.edu; xun-zhou@uiowa.edu; jluo1@lenovo.com

Abstract—Urban traffic status (e.g., traffic speed and volume)
is highly dynamic in nature, namely, varying across space and
evolving over time. Thus, predicting such traffic dynamics is
of great importance to urban development and transportation
management. However, it is very challenging to solve this problem
due to spatial-temporal dependencies and traffic uncertainties.
In this paper, we solve the traffic dynamics prediction problem
from Bayesian meta-learning perspective and propose a novel
continuous spatial-temporal meta-learner (cST-ML), which is
trained on a distribution of traffic prediction tasks segmented
by historical traffic data with the goal of learning a strategy that
can be quickly adapted to related but unseen traffic prediction
tasks. cST-ML tackles the traffic dynamics prediction challenges
by advancing the Bayesian black-box meta-learning framework
through the following new points: 1) cST-ML captures the
dynamics of traffic prediction tasks using variational inference; 2)
cST-ML has novel designs in architecture, where CNN and LSTM
are embedded to capture the spatial-temporal dependencies
between traffic status and traffic related features; 3) novel
training and testing algorithms for cST-ML are designed. We
also conduct experiments on two real-world traffic datasets (taxi
inflow and traffic speed) to evaluate our proposed cST-ML. The
experimental results verify that cST-ML can significantly improve
the urban traffic prediction performance and outperform all
baseline models.

Index Terms—traffic dynamics prediction, Bayesian meta-
learning, spatial-temporal data.

I. INTRODUCTION

Over past a few decades, the rapid population growth has
accelerated the process of urbanization, which in turn brings
huge impacts on the urban traffic including the increasing
traffic volume, worse traffic condition and the overload of the
transportation infrastructures. As a result, accurately predicting
the highly dynamic traffic status (e.g., traffic volume, speed
and inflow) has become a crucial work for urban development
aiming to reduce congestion and increase mobility, since it can
not only provide insights for urban planning, help to improve
the efficiency of public transportation, but also guarantee the
public safety [20].

Given the underlying road network and the historical traffic
observations, the problem of traffic dynamics prediction aims
at forecasting short-term traffic status in consecutive time slots.
However, there are many practical challenges before solving
this problem:
1) Spatial-temporal dependencies. It is the most common chal-
lenge when dealing with traffic dynamics prediction problem,

Fig. 1: Illustration of traffic dynamics.

since the traffic status would be influenced by the nearby
environments, road networks and its previous traffic status.
2) Traffic dynamics and temporal uncertainties. In traffic
dynamics prediction, the most difficult part is to capture and
model the dynamics of traffic status, since urban traffic always
contains temporal uncertainties due to sudden travel demand
changes, unexpected events or extreme weather. For example,
Figure 1 is an illustration of traffic dynamics, where it is
possible that the traffic patterns are almost consistent in the
first two days but show obvious fluctuations and temporal
uncertainties in the next few days. The reasons of such
considerable changes in traffic patterns could be a thunder
storm, a large sports event or a car crash. In general, irregular
and drastic traffic changes caused by these factors are hard
to capture using traditional time series models due to their
non-periodicity and rareness (i.e., lacking training samples).

A lot of research efforts have been put into the traffic
dynamics prediction area. Some works use traditional machine
learning methods and time series models to predict urban
traffic. Works such as [2], [14] and [3] use support vector
regression (SVR) to capture the relationships between traffic
and environmental features. Another work [9] presents a traffic
prediction method which combines the SARIMA model and
multi-input autoregressive (AR) model with genetic algorithm
(GA) optimization. In addition, deep neural networks are also
widely used in urban traffic prediction works. For example,
works [10] and [18] predict travel demands and traffic acci-
dents using autoencoders and ConvLSTM, respectively. Other
works including [17] and [4] combine CNN and LSTM to
predict the traffic speed and crowd flows. However, these
models do not consider the situation where the traffic shows

Fig. 2: Problem illustration.
strong non-stationarity.

In this paper, we try to solve the short-term traffic dynamics
prediction problem and tackle the unique challenges men-
tioned before from the Bayesian meta-learning perspective.
A novel continuous spatial-temporal meta-learner (cST-ML) is
proposed, which is trained on a distribution of traffic prediction
tasks generated by traffic time series data with the goal of
learning a strategy that can be quickly generalized to related
but unseen traffic prediction tasks from the same task dis-
tribution. cST-ML captures the spatial-temporal dependencies
of traffic as well as the temporal uncertainties and dynamics
through variational inference. Our main contributions are
summarized as follows:
• We are the first to solve the traffic dynamics prediction

problem from the Bayesian meta-learning perspective and
propose a novel continuous spatial-temporal meta-learner
cST-ML. cST-ML advances the Bayesian black-box meta-
learning framework to capture traffic dynamics and temporal
uncertainties. (See Sec III-A.)

• cST-ML features some novel designs in the architecture.
cST-ML is composed of an inference network and a de-
coder, where CNN and LSTM are embedded to realize
the goal of capturing traffic spatial-temporal dependencies.
Novel algorithms are also designed for cST-ML training and
testing. During meta-training and testing. (See Sec III-B and
Sec III-C.)

• We conduct extensive experiments on two real-world traffic
datasets (taxi inflow and traffic speed) to evaluate our
proposed cST-ML. The experimental results verify that cST-
ML can significantly improve the urban traffic prediction
performance and outperform all existing baseline methods
on both datasets. (See Sec IV.)

II. OVERVIEW

In this section, we define the traffic dynamics prediction
problem, and outline our solution framework.

A. Problem definition

In a city, urban traffic status can be characterized by many
statistics, such as traffic volumes, speed, inflow/outflow, etc,
which are of great interests to urban planners and researchers
for transportation planning, traffic evaluation and more. These
statistics are dynamic in nature, namely, varying across space
and evolving over time. Hence, we divide an urban area into

grid cells as defined below. Each grid cell represents a target
area for urban dynamics prediction.
Definition 1 (Grid cells). We divide a city into I×J grid cells
with equal side-length (e.g., 1× 1km), denoted as S = {sij},
where 1 ≤ i ≤ I, 1 ≤ j ≤ J .
Definition 2 (Target region for a target grid cell). For a
target grid cell sij , its target region is a square geographic
region with sij in center, formed by `× ` grid cells, denoted
with Rij = 〈sij , `〉.

In our study, we assume the traffic status in a target grid
cell sij has high spatial correlations with the other grid cells
within its target region.
Definition 3 (Traffic related features). All features that will
influence the traffic status are traffic related features, e.g., time
of the day, travel demand, etc. For a grid cell s, we denote
xt as one feature of s in time slot t. For a target region R,
we denote Xt as one feature map of R in time slot t, where
Xt is a ` × ` matrix. Since there could be multiple features,
all the feature maps in region R in time slot t can be denoted
with a tensor Xt = {Xt

1, . . . , X
t
n} ∈ Rn×`×`, where n ∈ N+

is the number of features.
Definition 4 (Traffic status). Traffic status indicates the qual-
ity of traffic, which can be measured by traffic inflow/outflow,
average driving speed, etc. We denote yt as the average traffic
status of grid cell s in time slot t.

In this paper, we choose one specific measure of traffic
status as the target of prediction, other measures if available
can be treated as traffic related features during prediction.
Definition 5 (Traffic prediction task.) A traffic prediction
task Ti is composed of a set of paired (Xt, yt) in Nt
consecutive time slots, which is divided into a training set Dtr

i

and a testing setDts
i , i.e., Ti = {(X1

i , y
1
i), . . . , (X

Nt
i , yNt

i)} =
{Dtri ,Dtsi }.
Problem Definition. For a specific target grid cell s, given all
the historical traffic data, we aim to predict the traffic status
{ŷt} in consecutive time slots based on the available traffic
related features {Xt}. Since our goal is using meta-learning
to solve this problem, the problem is transformed as follows:
in meta-learning setup, the historical time series traffic data is
segmented into τ tasks, we assume all the tasks are sampled
from the same distribution, Ti ∼ p(T). During meta-training,
we aim to train a meta-learner (with parameters θ) whose
objective is to minimize the expected loss with respect to θ
over all training tasks sampled from p(T):

θ? = argmin
θ

ETi∼p(T)L
(
φi,Dts

i

)
, and φi = fθ

(
Dtr
i

)
. (1)

During meta-testing, the meta-learner is evaluated on unseen
testing tasks from the same task distribution. When predicting
the future traffic, which can be view as a new testing task, we
have:

ŷt = fθ?
(
Dtr,Xt

)
, (2)

where Dtr = {(X1, y1), . . . , (Xt−1, yt−1)} includes a few
training data in the current task. The problem is illustrated in
Figure 2.

Fig. 3: cST-ML structure.
III. METHODOLOGIES

In this section, we introduce our continuous spatial-temporal
meta-learning framework.

A. cST-ML Modeling

To capture the spatial-temporal dependencies and temporal
uncertainties of tasks, now we are in a position to develop
continuous spatial-temporal meta-learning (cST-ML) frame-
work, which advances the Baysian black-box meta-learning
framework and design unique structures for meta-learner.

Following the original Bayesian black-box meta-
learning [5], to deal with the uncertainties in task adaptation,
we treat the adapted parameters as a latent variable. We
approximate the likelihood with variational lower bound
(ELBO), the ELBO is derived in Eq. 3.

log p(x) ≥ Eq(z|x)[log p(x, z)] +H(q(z|x))
= Eq(z|x)[log p(x|z)]−DKL(q(z|x)‖p(z)),

(3)

where z is the latent variable and x is the real data, DKL is
the Kullback-Leibler divergence, p(x|z) can be treated as an
decoder and q(z|x) is the inference network, p(z) ∼ N(0, 1).

In traffic dynamics prediction, to advance the Bayesian
black-box meta-learning framework and take uncertainties
within tasks into consideration, we first segment the historical
traffic data into τ tasks, each task is directly divided into Dtr

i

and Dts
i and applying cST-ML only once.

In this situation, for task Ti, we have specific Dtr
i and Dts

i .
Eq.4 is the log likelihood lower bound of the task Ti:

Lθ(Ti) = Lθ(φi,Dts
i) = Eq(φi|Dtr

i ,θ)

[
log p

(
ytsi |Xts

i , φ
)]

−DKL

(
q
(
φi|Dtr

i , θ
)
‖p(φi|θ)

)
,
(4)

where q is the inference network and parameterizes the mean
and log-variance diagonal of a Gaussian distribution, and φi
is sampled from this distribution for each rolling window,
the Kullback-Leibler divergence can be approximated using
the reparameterization trick (see more information in [8]).
Compared with Eq.3, the latent variable corresponds to the
adapted parameter φi, and the information we use to infer φi
includes Dtr

i and θ.
Thus, in traffic dynamics prediction problem, the final

objective is to maximize the log likelihood lower bound across
all meta-training tasks:

max
θ

ETi [Lθ(Ti)]. (5)

Algorithm 1 Meta-Training

Input: Task distribution p(T), initialized cST-ML fθ0 .
Output: Well trained cST-ML.
1: while not done do
2: Sample a batch of tasks from p(T).
3: for for each task Ti in the batch do
4: Prepare Dtr

i and Dts
i for each task in Ti.

5: Sample φi from q (φi|Dtr
i , θ).

6: Compute log likelihood using Eq.4.
7: end for
8: Update θ with Adam [7] to maximize Eq.5.
9: end while

Algorithm 2 Meta-Testing

Input: A new task T = {(X1, y1), . . . , (Xt−1, yt−1)} with
available Xt, . . . ,XNt , well-trained cST-ML fθ? .

Output: Predicted values {ŷt, . . . , ŷNt}.
1: Define Dtr = {(X1, y1), . . . , (Xt−1, yt−1)} and Dts =
{Xt, . . . ,XNt}

2: for each Xt in Dts do
3: ŷt = fθ? (Dtr,Xt).
4: end for

B. cST-ML Architecture

We also design unique structures for cST-ML to tackle the
complex spatial-temporal traffic dependencies. The structure
of our cST-ML is composed of an inference network and a
decoder. The inference network tries to encode the training
data within a task into a latent distribution which captures
the spatial patterns of the current location and also learns
the temporal dependencies and uncertainties, the decoder is
responsible for the prediction using the testing data within the
same task. Figure 3 shows the overall structure of cST-ML.

The Inference Network is CNN and LSTM based and is
actually the adaptation process of a task, which takes in the
Dtr
i and extracts information from Dtr

i , aiming to output a
latent distribution which captures uncertainties of Ti. The input
of the inference network is Dtr

i = {(X1
i , y

1
i), . . . , (X

t
i , y

t
i)},

where t < Nt.
Since Xt is a tensor for each time slot, yt is first enlarged

to an ` × ` matrix and concatenates with Xt, and then
the concatenated tensor goes through a few layers of CNN
activated by ReLU which can capture the spatial dependencies
of local traffic. The output sequence is then fed into the LSTM,
the hidden state of LSTM in the last time slot t goes through
fully-connected layers and produces the mean and log variance
of a Gaussian distribution q (φi|Dtr

i , θ).
The Decoder aims to produce the prediction ŷts based on

Xts where (Xts, yts) ∈ Dts
i , the prediction loss is calculated

using yts and ŷts. Decoder takes two inputs, i) the adapted
information φi sampled from q (φi|Dtr

i , θ) and ii) Xts. Xts

first goes through a few layers of CNN activated by ReLU
and then concatenates with φi, the results pass fully-connected
layers activated by Sigmoid function and we get the final

prediction ŷts. The detailed structure of the inference network
and decoder are illustrated in Figure 3.

C. cST-ML Training and Testing

The detailed meta-training process is shown in Algorithm 1.
We repeatedly sample tasks from the task distribution, for one
batch tasks, we compute the total log likelihood and update θ
once.

After training, the well-trained meta-learner θ can fast adapt
to any new tasks. The meta-testing algorithm is shown in
Algorithm 2. In meta-testing, to predict the future traffic, we
define a new testing task T = {(X1, y1), . . . , (Xt−1, yt−1)},
we use T as training data to get future predictions of ŷt.

IV. EVALUATION

In this section, we conduct extensive experiments on real-
world traffic datasets to evaluate our cST-ML. We first describe
the datasets and introduce experiments, then we present base-
lines compared with our model and the evaluation metrics.
Finally, the experiment results are presented and analyzed in
detail.

A. Dataset Descriptions

Preprocessing of Dataset
We evaluate our model on the real-world datasets including
(1) traffic speed, (2) taxi inflow and (3) travel demand, all of
which are extracted from Shenzhen, China from Jul 1st to Dec
31st. In the preprocessing step, we first apply map gridding
to the whole Shenzhen City, where the city is partitioned into
40 × 50 grid cells, for each target grid cell, its target region
is the 5 × 5 matrix with the target grid cell in center. Thus,
there are in total 1, 656 possible target grid cells.

Traffic speed, taxi inflow and travel demand are all extracted
from taxi GPS records collected in Shenzhen, China from Jul
1st to Dec 31st, 2016. In each time slot (i.e., one hour) of each
day, taxi inflow is the number of taxis that stay or arrive at a
target grid cell, travel demand is the number of taxi pickups
within a target grid cell. In effect, it is hard to obtain the travel
demands of all transport modes in a target grid cell, thus,
we use taxi demands to represent travel demands, and many
studies have shown that taxi demand is a very representative
measure of travel demand [6], [13].
Experiment Descriptions
Next, we describe our two traffic prediction experiments we
will perform in detail.
• Traffic speed prediction. In speed prediction, the traffic

status in each grid cell is measured by average traffic speed,
and there are 12 time slots per task, i.e., Nt = 12, and thus
184 tasks over 6 months. All the tasks are divided into meta-
training tasks (the first 80% of all tasks) and meta-testing
tasks (the rest of 20%). We treat travel demands, traffic
inflow and the time of the day as traffic related features,
and use meta-training tasks to train the model and use meta-
testing tasks to do evaluations. The goal of this task is to
predict the traffic speed of a target grid cell s based on the
historical available features.

• Taxi inflow prediction. Similar to traffic speed prediction,
in the taxi inflow prediction, the traffic status in each grid
cell is measured by taxi inflow. We view travel demands,
traffic speed and the time of the day as traffic related
features. There are also 12 time slots per task, i.e., Nt = 12,
and 184 tasks over 6 months. All the tasks are divided into
meta-training tasks (the first 80% of all tasks) and meta-
testing tasks (the rest of 20%). We aim to train the model
with meta-training tasks and evaluate the model using meta-
testing tasks.

B. Baselines

• HA [16] For each grid cell, Historical Average method (HA)
predicts the traffic status for a target grid cell based on its
average status of the previous time slots.

• Regression [1]. This method applies ridge regression to
predict the future traffic status, the predictors are the corre-
sponding traffic related features. The training data are used
to train the regression model and the testing data are used
for evaluations.

• ARIMA [15]. Auto-Regressive Integrated Moving Average
(ARIMA) is a conventional parametric based time-series
model. Here we view the historical traffic status as time-
series data and apply ARIMA to predict the future traffic
status.

• LSTM [12], [19]. This method uses LSTM to predict the
future traffic status using traffic related features as input.
The daily traffic related features can be viewed as an input
sequence, which goes through CNNs first and then passes
LSTM to get the predicted traffic status sequence.

• SNAIL [11]. It is an state-of-the-art deterministic black-box
meta-learning method. SNAIL utilizes attention layers to get
the deterministic adapted parameters for each task instead
of sampling from a distribution, where the task uncertainties
are not considered.

C. Evaluation Metrics

We use mean absolute percentage error (MAPE) and rooted
mean square error (RMSE) for evaluations:

MAPE =
1

T

T∑
t=1

|yt − ŷt| /yt, (6)

RMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2, (7)

where yt is the ground-truth traffic status observed in the target
grid cell s in the t-th time slot, and ŷt is the corresponding
prediction, T is the total number of time slots to perform
prediction.

D. Experimental Settings

The whole Shenzhen city is divided into 40× 50 grid cells
with a side-length l1 = 0.0084◦ in latitude and l2 = 0.0126◦

in longitude. The target region for a target grid cell is of size
5×5, i.e., ` = 5. Thus, there are in total 1, 656 possible target

TABLE I: Performance on traffic speed prediction and taxi inflow prediction.
Methods HA Regression ARIMA LSTM SNAIL cST-ML

Traffic speed
1h RMSE 2.993 2.224 2.160 2.923 2.405 0.981

MAPE 0.170 0.124 0.124 0.156 0.142 0.075

2h RMSE 1.389 1.115 2.188 1.853 2.278 0.915
MAPE 0.107 0.082 0.147 0.100 0.114 0.070

Taxi inflow
1h RMSE 56.833 37.356 26.902 37.501 29.715 24.376

MAPE 0.239 0.159 0.120 0.160 0.116 0.099

2h RMSE 79.37 35.496 27.259 31.992 26.179 19.130
MAPE 0.327 0.119 0.108 0.121 0.102 0.074

Fig. 4: Comparisons of models in 2 consecutive hours in traffic speed prediction.

Fig. 5: Comparisons of models in 2 consecutive hours in taxi inflow prediction.
grid cells in Shenzhen city. In the experiment, we can select
any possible target grid cell to perform traffic predictions.

The time interval for each task used to train the cST-ML are
from 7:00am to 7:00pm, where each hour is a time slot and
we have 12 time slots per day/task, i.e., Nt = 12. Thus, we
have Ti = {(X1

i , y
1
i), . . . , (X

12
i , y

12
i)}. In experiment, Dtr

i =
{(X1

i , y
1
i), . . . , (X

1
i , y

10
i)}, Dts

i = {(X11
i , y

11
i), (X12

i , y
12
i)}

The structure of cST-ML is as follows: two layers of CNN
are utilized before LSTM in the inference network, the input
channel of the first CNN is 4, the output channel is 64, the
kernel size is 3, stride is 1 and padding is 1; for the second
CNN layer, the input channel is 64, the output channel is
128, the kernel size is 5, stride is 1 and padding is 0. In
decoder, we still use two layers of CNN combined with a linear
transformation. cST-ML is trained using Adam optimizer [7]
with β1 = 0.5 and β2 = 0.999, and a learning rate of 2×10−4
for 2000 times task samplings.

E. Evaluation Results

1) Average prediction performance: First, we conduct ex-
periments to compare the average prediction performance of
our proposed cST-ML and five competing baseline models.
The results are shown in Table I. In the table, for a specific

target grid cell, we present the RMSE and MAPE results for
one-hour and two-hour traffic speed prediction and taxi inflow
prediction. For meta-based models (including cST-ML and
SNAIL), we randomly pick 5 meta-testing tasks in both of
the traffic speed and taxi inflow predictions, compute the one-
hour and two-hour RMSE and MAPE for each testing task
and report the average results in the table. For other models,
we use the same testing data to compute the statistics.

In traffic speed prediction, according to the average RMSE
and MAPE in one-hour and two-hour predictions, cST-ML
outperforms all the baseline models.

SNAIL is a deterministic black-box meta-learning method
which does not consider any uncertainties of tasks, but it
achieves competitive performance in some cases (i.e., two-
hour traffic speed and taxi inflow predictions), the reason
is that we view daily traffic as one task in meta-training
and meta-testing, for one specific target grid cell, in most
of cases, the everyday traffic is similar which means there is
less task uncertainties, and thus SNAIL can achieve competing
prediction performance sometimes.

LSTM is used as a seq2seq model in traffic prediction,
which utilizes the traffic related features to predict the traffic
status, so it does not rely on the previous traffic status in testing

or prediction process which could result in larger prediction
errors.

Compared with the traditional traffic prediction baseline
models including HA, Regression and ARIMA, cST-ML
achieves significant improvements since it not only captures
the traffic spatial-temporal dependencies but also the temporal
uncertainties. On the contrary, these traditional models only
consider either the temporal dependencies or the relationships
between traffic status and features, and they cannot deal with
the traffic uncertainties very well.

In taxi inflow prediction, we get similar prediction results.
SNAIL is the most competitive baselines compared with other
baseline models, which indicates they can better learns the
spatial-temporal patterns of traffic, and thus obtain lower
errors. However, cST-ML is more powerful due to its novel
designs.

2) Detailed performance in consecutive time slots: In this
part, we are aiming to prove the effectiveness of our cST-
ML in traffic predictions in each time slot (e.g., one hour). In
urban traffic prediction problem, the good average prediction
performance is not enough, since we expect to get more accu-
rate prediction for each specific time slot. Thus, we conduct
experiments and provide detailed prediction performance for
each time slot (i.e., one hour). The statistics are calculated
based on 5 meta-testing tasks in both of the traffic speed and
taxi inflow predictions, in each time slot, we report the average
RMSE and MAPE of all 5 testing tasks.

In traffic speed prediction, the detailed performance is
presented in Figure 4. As shown in Figure 4(a) and Figure 4(b),
our cST-ML achieves the best prediction performance, the per-
formance of baselines including ARIMA and SNAIL presents
higher volatilities and thus the prediction performance is much
more unstable.

In taxi inflow prediction, as shown in Figure 5(a) and
Figure 5(b), our cST-ML also achieves the best prediction
performance, similar to Figure 4, the performance of all base-
line models still presents much higher volatilities in prediction
performance, in contrast, cST-ML displays more stable and
accurate predictions in general, which also proves that cST-
ML can better capture the traffic uncertainties and complex
spatial-temporal dependencies, therefore, cST-ML provides
more accurate and stable traffic prediction in consecutive time
slots.

V. CONCLUSION

In this paper, we solved the traffic dynamics prediction prob-
lem using Bayesian meta-learning framework. We proposed
a novel continuous spatial-temporal meta-learner (cST-ML),
which learned a general traffic dynamics prediction strategy
from historical traffic data (segmented into tasks) and could
be quickly adapted to new prediction tasks containing just a
few samples and exhibited excellent prediction performance.
cST-ML captured the traffic spatial-temporal dependencies and
the traffic uncertainties through new features in both objective
and architecture beyond the original Bayesian black-box meta-
learning. We conduct experiments on real-world traffic datasets

(taxi inflow and traffic speed) to evaluate our proposed cST-
ML. The experiment results verify that cST-ML can signifi-
cantly improve the urban traffic prediction performance and
outperforms all baseline models.

ACKNOWLEDGMENT

Yingxue Zhang and Yanhua Li were supported in part by
NSF grants IIS-1942680 (CAREER), CNS-1952085, CMMI-
1831140, and DGE-2021871. Xun Zhou is funded partially
by Safety Research using Simulation University Transportation
Center (SAFER-SIM). SAFER-SIM is funded by a grant from
the U.S. Department of Transportation’s University Trans-
portation Centers Program (69A3551747131). However, the
U.S. Government assumes no liability for the contents or use
thereof.

REFERENCES

[1] I. Alam, D. M. Farid, and R. J. F. Rossetti. The prediction of traffic
flow with regression analysis. In IEMIS, pages 661–671, 2019.

[2] M. Castro-Neto, Y.-S. Jeong, M.-K. Jeong, and L. Han. Online-svr
for short-term traffic flow prediction under typical and atypical traffic
conditions. Expert Systems with Applications, 36:6164–6173, 2009.

[3] Y. Cong, J. Wang, and X. Li. Traffic flow forecasting by a least squares
support vector machine with a fruit fly optimization algorithm. Procedia
Engineering, 137:59 – 68, 2016.

[4] Z. Cui, R. Ke, and Y. Wang. Deep stacked bidirectional and unidi-
rectional lstm recurrent neural network for network-wide traffic speed
prediction. In 6th International Workshop on Urban Computing, 2017.

[5] C. Finn. Bayesian meta-learning. https://cs330.stanford.edu/slides/
cs330 bayesian metalearning.pdf, 2019. [Online].

[6] E. J. Gonzales, C. J. Yang, E. F. Morgul, and K. Ozbay. Modeling taxi
demand with gps data from taxis and transit. Technical report, Mineta
National Transit Research Consortium, 2014.

[7] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
In ICLR, 2015.

[8] D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2013.
[9] X. Luo, L. Niu, and S. Zhang. An algorithm for traffic flow prediction

based on improved sarima and ga. KSCE Journal of Civil Engineering,
22:1–9, 05 2018.

[10] Y. Lv, Y. Duan, W. Kang, Z. Li, F.-Y. Wang, et al. Traffic flow
prediction with big data: A deep learning approach. IEEE Transactions
on Intelligent Transportation Systems, 16(2):865 – 873, 2015.

[11] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. A simple
neural attentive meta-learner. In International Conference on Learning
Representations, 2018.

[12] O. Mogren. C-RNN-GAN: continuous recurrent neural networks with
adversarial training. CoRR, 2016.

[13] N. Mukai and N. Yoden. Taxi demand forecasting based on taxi probe
data by neural network. In IIMSS, pages 589–597, 2012.

[14] Y. Sun, B. Leng, and G. Wei. A novel wavelet-svm short-time passenger
flow prediction in beijing subway system. Neurocomputing, 166, 04
2015.

[15] M. Tan, S. C. Wong, J. Xu, Z. Guan, and P. Zhang. An aggregation
approach to short-term traffic flow prediction. IEEE Transactions on
Intelligent Transportation Systems, pages 60–69, 2009.

[16] H. Yao, Y. Liu, Y. Wei, X. Tang, and Z. Li. Learning from multiple
cities: A meta-learning approach for spatial-temporal prediction. In The
World Wide Web Conference, page 2181–2191, 2019.

[17] H. Yu, Z. Wu, S. Wang, Y. Wang, and X. Ma. Spatiotemporal recurrent
convolutional networks for traffic prediction in transportation networks.
Sensors, 17(7), 2017.

[18] Z. Yuan, X. Zhou, and T. Yang. Hetero-ConvLSTM: A deep learning
approach to traffic accident prediction on heterogeneous spatio-temporal
data. In KDD, pages 984–992, 2018.

[19] J. Zhao, F. Deng, Y. Cai, and J. Chen. Long short-term memory - fully
connected (lstm-fc) neural network for pm2.5 concentration prediction.
Chemosphere, 2019.

[20] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban computing:
concepts, methodologies, and applications. TIST, 2014.

https://cs330.stanford.edu/slides/cs330_bayesian_metalearning.pdf
https://cs330.stanford.edu/slides/cs330_bayesian_metalearning.pdf

	Introduction
	Overview
	Problem definition

	Methodologies
	cST-ML Modeling
	cST-ML Architecture
	cST-ML Training and Testing

	Evaluation
	Dataset Descriptions
	Baselines
	Evaluation Metrics
	Experimental Settings
	Evaluation Results
	Average prediction performance
	Detailed performance in consecutive time slots

	Conclusion
	References

