
A Joint Inverse Reinforcement Learning and Deep Learning
Model for Drivers’ Behavioral Prediction

Guojun Wu, Yanhua Li
∗

{gwu,yli15}@wpi.edu

Worcester Polytechnic Institute

Worcester, USA

Shikai Luo, Ge Song, Qichao Wang, Jing He,

Jieping Ye, Xiaohu Qie and Hongtu Zhu
†

{luoshikai,songge,davidwangqichao}@didiglobal.com

{hejing,yejieping,tiger.qie,zhuhongtu}@didiglobal.com

DiDi

Beijing, China

ABSTRACT
Users’ behavioral predictions are crucially important for many

domains including major e-commerce companies, ride-hailing plat-

forms, social networking, and education. The success of such pre-

diction strongly depends on the development of representation

learning that can effectively model the dynamic evolution of user’s

behavior. This paper aims to develop a joint framework of combin-

ing inverse reinforcement learning (IRL) with deep learning (DL)

regression model, called IRL-DL, to predict drivers’ future behavior

in ride-hailing platforms. Specifically, we formulate the dynamic

evolution of each driver as a sequential decision-making problem

and then employ IRL as representation learning to learn the prefer-

ence vector of each driver. Then, we integrate drivers’ preference

vector with their static features (e.g., age, gender) and other at-

tributes to build a regression model (e.g., LTSM-neural network) to

predict drivers’ future behavior. We use an extensive driver data

set obtained from a ride-sharing platform to verify the effective-

ness and efficiency of our IRL-DL framework, and results show

that our IRL-DL framework can achieve consistent and remarkable

improvements over models without drivers’ preference vectors.

KEYWORDS
Drivers’ Behavioral Prediction, Inverse Reinforcement Learning,

User Modelling

ACM Reference Format:
Guojun Wu, Yanhua Li and Shikai Luo, Ge Song, Qichao Wang, Jing He,

Jieping Ye, Xiaohu Qie and Hongtu Zhu. 2020. A Joint Inverse Reinforcement

Learning and Deep Learning Model for Drivers’ Behavioral Prediction.

In The 29th ACM International Conference on Information and Knowledge
Management (CIKM ’20), October 19–23, 2020, Virtual Event, Ireland. ACM,

New York, NY, USA, 8 pages. https://doi.org/10.1145/3340531.3412682

1 INTRODUCTION
Accurately predicting users’ behavior based on their history and

short-term features plays a critical role in many domains, such

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00

https://doi.org/10.1145/3340531.3412682

as major e-commerce companies, ride-hailing platform, social net-

working, and education. As an illustration, we consider an impor-

tant problem of predicting drivers’ behavior, such as working hours

or income per day, in some ride-hailing platforms, such as Uber

and Lyft. We call such a problem as Drivers’ Behavioral Predic-
tion. Solving such driver prediction problem usually requires the

integration of drivers’ history with some ’static’ features including

personal characteristics (e.g., age or gender), non-platform envi-

ronment variables (e.g., government policy), and platform policies

(e.g., dispatching policy) to predict drivers’ future behaviors. Im-

proving the accuracy of such prediction may allow the ride-hailing

platform to achieve a healthy equilibrium between dynamic supply

and demand systems.

However, most existing predictive models focus on the use of

static features and some summary statistics of users’ history, such

as Recency, Frequency, and Monetary (RFM) value [3]. For instance,

RFM analysis as a marketing technique has been widely used to

analyze customer’s behavior including how recently a customer

has purchased (recency), how often the customer purchases (fre-

quency), and how much the customer spends (monetary). It is ben-

eficial to improve customer segmentation by dividing customers

into various groups for future personalized services and for identi-

fying customers who are more likely to respond to promotions [9].

However, those summary statistics may have minimal predictive

power in some problems, such as driver’s behavioral prediction.

For instance, as shown in Table 2, the inclusion of RFM gains little

improvement in prediction accuracy.

A significant challenge associated with moving beyond the sim-

ple summary statistics of users’ history is how to use representation

learning to learn an effective embedding vector of the evolution of

users’ properties. In many cases, such evolution can be very com-

plicated due to its considerable heterogeneity across users and/or

time intervals. For instance, in the driver’s behavioral prediction

problem, we consider a working cycle model such that each dri-

ver makes a sequence of decisions ordered by time, such as being

idle, taking orders, and logging off every day. Even within each

driver, such a sequence pattern may vary dramatically across days.

Moreover, since the working cycle model is a sequential decision

problem, it may be solved by using reinforcement learning (RL) [17].

Different from normal sequential problem, which can be solved

using RNN or LSTM, the original idea of RL is to find an optimal

policy mapping from states to actions to maximize user’s long-term

rewards, rather than learning his/her embedding vector. Instead,

we consider Inverse Reinforcement Learning (IRL) algorithm for

Applied Research Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

2805

https://doi.org/10.1145/3340531.3412682
https://doi.org/10.1145/3340531.3412682

learning the user’s embedding vector based on his/her preference

vector.

The IRL problems arise naturally when one is interested in pre-

dicting future behavior of agents based on the observations of

his/her past behavior. The key idea of IRL is to find a reward func-

tion such that the distribution of state and action sequences under a

(near-)optimal policy with respect to the reward function matches

the demonstrated trajectories from an agent [13, 18]. Various es-

timation methods for IRL including apprenticeship learning [1],

maximum entropy IRL [18], Bayesian IRL [14], relative entropy

IRL [5], and maximum causal entropy IRL [4], have been devel-

oped in the literature. For instance, a broadly used solution to IRL

problem [5] proposes a model-free method to find the policy, while

neural-network-based reward function [7] can represent more com-

plex expert behaviors. Moreover, IRL can also be viewed as a special

case of Generative Adversarial Networks (GANs) [6, 8].

Motivated by solving the drivers’ behavioral prediction problem,

we develop a joint IRL-DL framework of integrating drivers’ history

and static features to predict drivers’ future behavior. We use RL to

formulate each driver’s working cycle in a day sorted by time as

a sequential decision-making process. The working cycle of each

driver consists of different decisions when the driver maximizes

his/her total inherent rewards weighted by income and other as-

pects. Then, we use IRL to learn each driver’s decision-making

preference vector. Finally, we combine each driver’s preference vec-

tor with other attributes to build a deep learning regression model

(e.g., LTSM-neural network) for prediction. Our contributions can

be summarized as follows.

• We are the first to propose a general prediction framework

of combining drivers’ static features and decision-making

preference vector together for prediction.

• By modeling a driver’s daily working cycle process as a

sequential decision-making problem, we use IRL to learn the

driver’s preference vector.

• We use a large-scale real-world data set obtained from a ride-

sharing platform to show that the use of a preference vector

can achieve up to 13% improvement than baseline models in

terms of the prediction accuracy on different tasks.

The rest of this paper is organized as follows. We introduce

the driver’s behavioral prediction problem and provide a brief

overview of data and the architecture of IRL-DL in Section 2. The

data-preprocessing part is elaborated in Section 3. Section 4 is to

model the driver’s working cycle as a Markov Decision Problem,

and in Section 5, we show how to learn a driver’s preference vec-

tor. Details of experiments and evaluations are given in Section 6,

followed by a brief discussion of related works in Section 7. We

conclude our paper in Section 8.

2 OVERVIEW
In this section, we introduce the drivers’ behavioral prediction

problem, provide a description of the data set we use, and outline

the IRL-DL framework.

2.1 Drivers’ Behavioral Prediction Problem
Definition 1 (Working Cycle). Each driver in a ride-hailing

platform can decide when to start to work and when to stop working

Figure 1: Illustration of an order being processed.

every day. We define a complete working cycle of every driver at a
given day as the time interval from the starting time, denoted as
𝑇𝑖𝑚𝑒𝑖𝑛 , to the ending time, denoted as 𝑇𝑖𝑚𝑒𝑜 𝑓 𝑓 .

We introduce an inter-cycle trajectory as a working static se-

quence of multiple working cycles. The inter-cycle trajectory is

used to model the long-term behaviors of a driver.

Definition 2 (Inter-cycle trajectory). The inter-cycle tra-
jectory of a driver is an ordered sequence, denoted as 𝑇𝑟𝑖𝑛𝑡𝑒𝑟 =

(𝑊1, . . . ,𝑊𝑁), where 𝑁 is the total number of working cycles and
𝑊𝑖 = {𝑡𝑠𝑡𝑎𝑟𝑡,𝑖 , 𝑡𝑒𝑛𝑑,𝑖 , 𝑓𝑊𝑖

} represents the 𝑖−th working cycle, in which
𝑡𝑠𝑡𝑎𝑟𝑡,𝑖 is the start time of𝑊𝑖 , 𝑡𝑒𝑛𝑑,𝑖 is the end time of𝑊𝑖 , and 𝑓𝑊𝑖

is
the feature vector of𝑊𝑖 for 𝑖 = 1, . . . , 𝑁 .

Furthermore, we introduce an intra-cycle trajectory consisting of

a sequence of all orders that each driver finishes within the same

working cycle. We use intra-cycle trajectories to characterize the

short-term behaviors of a driver.

Definition 3 (Intra-cycle trajectory). The intra-cycle trajec-
tory of a driver’s 𝑖−th working cycle is an ordered sequence of

𝑇𝑟𝑖,𝑖𝑛𝑡𝑟𝑎 = (𝑂𝑖,1,𝑂𝑖,2, . . . ,𝑂𝑖,𝑁𝑖
),

where 𝑁𝑖 is the total number of orders in the 𝑖−th working cycle, and
𝑂𝑖,𝑘 = {𝑡𝑘 ;𝑠𝑡𝑎𝑟𝑡,𝑖 , 𝑡𝑘 ;𝑒𝑛𝑑,𝑖 , 𝑓𝑂𝑖,𝑘

} represents an order with 𝑡𝑘 ;𝑠𝑡𝑎𝑟𝑡,𝑖
being the start time of order 𝑂𝑖,𝑘 , 𝑡𝑘 ;𝑒𝑛𝑑,𝑖 being the end time of 𝑂𝑖,𝑘 ,
and 𝑓𝑂𝑖,𝑘

being the feature vector of 𝑂𝑖,𝑘 for 𝑘 = 1, . . . , 𝑁𝑖 .

We use 𝑋 to denote the vector of all features other than intra-

cycle and inter-cycle trajectories. We now formally define the dri-

vers’ behavioral prediction problem.

Drivers’ Behavioral Prediction Problem Definition Given

a driver’s other features in 𝑋 , intra-cycle trajectory 𝑇𝑅𝑖𝑛𝑡𝑟𝑎 , and

inter-cycle trajectory 𝑇𝑅𝑖𝑛𝑡𝑒𝑟 , we want to predict his/her future

behavior (e.g., total online time, income, or finished orders), denoted

as 𝐺 , in the next period 𝑇 .

2.2 Data Description
We use four data types in the data set obtained from a ride-hailing

platform including (i) order data; (ii) finance data; (iii) customer

service worksheet data; and (iv) driver log data. For consistency,

all these data types are aligned with the same time period starting

from March 2018 to July 2018.

Order Data. Figure 1 shows a typical order in a ride-hailing plat-

form consisting of three key stages including pick-up stage(driving

to the origin), waiting stage(waiting for the passenger), and serving

stage(sending the passenger to the destination).

Applied Research Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

2806

Figure 2: The IRL-DL framework for the driver predic-
tion problem

Finance Data.We consider various charging variables of each

order including customer’s payment, driver’s cut, driver’s incen-

tives, time rate, distance rate, and sometimes long-distance rate.

Customer Service Worksheet Data. We extract some vari-

ables from customer service worksheet, such as the number of

complaints of each driver received from passengers since drivers

with more complaints are more likely to leave the platform.

Driver Log Data.We extract the inter- and intra-cycle trajecto-

ries of each driver.

2.3 IRL-DL Framework
Figure 2 provides an overview of our proposed IRL-DL framework

consisting of three main components including data preprocessing,

preference learning, and driver prediction.

• Data Preprocessing. We first extract drivers’ working cy-

cles from their log data. Then, we align order data, finance

data, and customer service data together at the order level.

Subsequently, we generate the intra-cycle trajectories, inter-

cycle trajectories, and additional features of all drivers.

• Preference Learning. For each driver, we model the whole

working cycle as a Markov Decision Process (MDP) and

use IRL to learn a reward function that a driver uses to

make various decisions based on intra-cycle trajectories. The

reward function represents the preference function that each

driver would decide to keep working or log off based on

current and future expected rewards.

• Driver Prediction. We integrate the preference vector of

each driver with all other features to build a predictive model

to predict a driver’s status.

3 DATA PREPROCESSING
In this section, we introduce three key preprocessing steps to gen-

erate various features and trajectories.

3.1 Working Cycle Detection
Actions of each driver can be viewed as a sequence of actions

ordered by time. Table 1 illustrates an example of one driver’s

action log.

Table 1: Example of Driver Log

Driver Time Action

0001 2018-03-20 08:00:35 Log in

0001 2018-03-20 08:03:04 Assigned Order

0001 2018-03-20 08:45:13 Finish Order

...

0001 2018-03-20 18:54:29 Log off

Figure 3: An illustration of data preparation process. The
process contains 3 parts. The upper time axis indicates
two consecutive days. There are two valid log-in/log-off
pairs. The first one is from 9am to 19pm in the first day
and the second pair is from 5am to 12am in the second
day. Then, we generate features for each order and ag-
gregate them by working cycle. The outputs of this pro-
cess contain both inter-day and intra-day trajectories.
For intra-day trajectories, we have 2 trajectories since we
have two working cycles.

The working cycle should start with a log-in action and end with

the following log-off action. We show an example in Figure 3. As

we have stated, we split those working cycles based on the driver’s

log-in/log-off actions.

3.2 Order Aggregation
In the order aggregation process, we mainly have two tasks. The

first task is to aggregate features of the same order sitting in dif-

ferent data sources. The second task is to aggregate ExpressPool

orders based on which trip they belong to. ExpressPool is a carpool

product, whose details will be given later.

Features of one order are in different data sources. Features,

such as pick-up distance, driving distance, and other trip-related

features are in the ordered dataset. Financial features also include

subsidies of drivers in the financial dataset, and one order may have

multiple records for different subsidies, such as passenger’s coupon

and driver’s incentive. Other features including customer service

features like rating and complaints are in a separate data source,

and we align them using order IDs. For some complaints without a

particular order ID, we use driver ID and passenger ID to identify,

which order those complaints belong to.

The second task is to process ExpressPool orders. Each passenger

would pay fixed fees based on the ExpressPool pricing model. As for

the driver, he/she would still get his/her share based on the distance

and time he/she drove. In this case, the income of the driver was

calculated based on the travel distance and travel time from picking

up the first passenger to dropping off the last passenger. We then

Applied Research Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

2807

Figure 4: An illustration of MDP model for driver work-
ing problems: 𝑠0, . . . , 𝑠𝑀 are states and each state has two
actions including work and log-off. We use intra-day tra-
jectories to build MDP and learn the preference of each
driver using IRL. The output of this process is a prefer-
ence vector 𝑍 for each driver.

should aggregate ExpressPool orders to their corresponding trips.

Some features, such as subsidy and income can be added together.

For example, in Working Cycle A of Figure 3, orders 2 and 3 are

ExpressPool Orders, so we have to aggregate their features together.

3.3 Working Cycle Alignment
Finally, we can then use working cycles and aggregated orders

to generate both intra-cycle and inter-cycle trajectories. For intra-

cycle trajectories, we fit aggregated order data into different work-

ing cycles of each driver and then sort all orders by using its assign-

ment time. For inter-cycle trajectories, we can calculate features

for each working cycle. The features that we used in intra-cycle

and inter-cycle trajectories includeWorking Status such as Total
Finished Orders and Last Order Feature like the total income

of last order. Just like the example in Figure 3, for the two working

cycles, we can generate one intra-day trajectory for each working

cycle and one inter-day trajectory for all cycles.

4 MDP FORWORKING CYCLE MODELING
We explain how to useMDP tomodel the decision-making processes

of a driver’s working cycle.

We regard each driver as an independent "agent" since each

driver has his/her own preference. Each driver uses individual pref-

erence to evaluate various decision-making features associated with

the current state and each possible action, such as income, working

hours, and personal experience [10]. The reward function indicates

the driver’s preference for different features, and each driver makes

his/her own decision to maximize a total inherent reward during

the whole working cycle other than only maximizing his/her real

income. For example, if a driver could have an unpleasant day, then

he/she might decide to stop working. Thus, for long term reward

maximization problem, it is natural to use MDP to model driver’s

decision-making process. Below, we explain how to build an MDP

model based on the preprocessed data in Section 3.

Agent: We use each driver as a single agent and then collect a cer-

tain amount of intra-cycle trajectories, e.g., 3-month data. However,

for some part-time drivers, we may not have enough trajectories to

learn a robust preference function, so we collect more trajectories

until there are at least 𝑁 intra-cycle trajectories. We set 𝑁 to be 30,

and thus we have at least 30 trajectories for each driver. However,

for simplicity, we only draw two trajectories in Figure 4.

Action set 𝐴: Let 𝑇𝑚 be a predefined time interval associated with

𝑆𝑚 for𝑚 = 0, 1, . . . , 𝑀 . As illustrated in Figure 4, a driver always

has two actions during the idle stage including continuing to work

and logging off, forming an action set𝐴 in our problem. For logging

off, we omit temporal log-offs. Naturally, one intra-cycle trajectory

would have one log-off action in the end and multiple working

actions.

State set 𝑆 : As shown in Figure 4, we divide each day into fixed-

length time slots, for example, 10 minutes per time slot. Thus, we

have 1, 440 states in total and 𝑀 = 1440. However, since drivers

usually have their own pattern and they can work at most 12 hours

per working cycle, the state space is not very large.

Transition probability function 𝑃 : 𝑆 × 𝐴 × 𝑆 → [0, 1]. There
are two actions in 𝐴 for each driver. If a driver would decide to log

off, then the driver could finish the trajectory. If the driver would

continue to work, then it could lead to different result states. Specif-

ically, if the platform does not assign any order to the driver, then

it would result in an idle state. Otherwise, the driver transfers to

the state represented by the end time of an order. Thus, the transi-

tion probability contains two parts including the probability to be

assigned an order, denoted as 𝑃𝑜 (𝑠), and the distribution of driving

time, denoted as 𝑃𝑑 (𝑠 ′ |𝑠, 𝑎). By combining those two probabilities

together, we have 𝑃 (𝑠 ′ |𝑠, 𝑎) = {1 − 𝑃𝑜 (𝑠)} + 𝑃𝑜 (𝑠)𝑃𝑑 (𝑠 ′ |𝑠, 𝑎) . For
example, in Figure 4, if the driver logs in at state 𝑆0 and does not

get any order assigned to him or her, then the driver will transit

to state 𝑆1. Otherwise, the driver will transit to 𝑆2 or other states

based on how it takes the driver to finish the order. However, for

some complicated dispatching strategy, 𝑃 (𝑠 ′ |𝑠, 𝑎) may be different

across subjects, which makes it very difficult to estimate 𝑃𝑜 (𝑠) and
𝑃𝑑 (𝑠 ′ |𝑠, 𝑎). Therefore, we employ a model-free method to learn the

reward function elaborated in Section 5.

Reward 𝑅: When drivers make decisions on whether to log off,

they consider various decision-making features, such as working

hours, income, and experience. We will give these decision-making

features in the following subsection for more details.

In MDP, 𝑅 : 𝑆 ×𝐴 → R captures the unique personal preference

of an agent, which maps decision-making features (at a state 𝑠 while

taking action 𝑎) to reward value. These decision-making features

include working hours, income, and experience, among others.

Such reward function 𝑅(𝑠, 𝑎) can be inversely learned from intra-

cycle trajectory data. In our problem, we assume 𝑅(𝑠, 𝑎𝑜 𝑓 𝑓) = 0,

indicating that the immediate reward is 0 when a driver decides to

log off.

5 IRL-DL
In this section, we introduce IRL, describe how to learn driver’s

preference based on the MDP of driver’s working cycle, and inte-

grate driver’s preference with other attributes to predict driver’s

future behavior.

Applied Research Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

2808

5.1 Inverse Reinforcement Learning
Inverse Reinforcement Learning (IRL) has been widely used to learn

a reward function 𝑅(𝑠, 𝑎) of an MDP in the past decade. The IRL is

to find a reward function 𝑅(𝑠, 𝑎) such that the distribution of action

and state sequences under a (near-)optimal policy with respect

to 𝑅(𝑠, 𝑎) matches with the demonstrated trajectories observed

from an agent [13, 18]. A broadly used solution to IRL problem [5]

proposes a model-free method to find the policy, which best rep-

resents demonstrated behaviors with the highest entropy, subject

to the constraint of matching feature expectations to the distri-

bution of demonstrated trajectories. The reward function 𝑅(𝑠, 𝑎)
is assumed to be a linear function of observed feature 𝑓 (𝑠, 𝑎) at
state-action pair (𝑠, 𝑎), that is 𝑅(𝑠, 𝑎) = 𝜃𝑇 · 𝑓 (𝑠, 𝑎), where 𝜃 is

a preference vector. Thus, the reward of a trajectory is given by

𝑅(𝜁) = 𝜃𝑇 𝑓 (𝜁), where 𝜁 represents a trajectory from MDP and

𝑓 (𝜁) = ∑
(𝑠,𝑎) ∈𝜁 𝑓 (𝑠, 𝑎). Then, if some trajectories are collected, we

have

∑
𝜁 ∈𝑇𝑅 𝑃 (𝜁) 𝑓 (𝜁) = 𝑓 ,where𝑇𝑅 is the set of all possible trajec-

tories, 𝑃 (𝜁) is the probability of 𝜁 being generated by the MDP and

𝑓 is an empirical feature expectation based on collected trajectories.

We can then calculate the preference vector 𝜃 by solving a maxi-

mum entropy problem and have 𝑃 (𝜁) = 𝑒𝜃
𝑇 𝑓 (𝜁)/∑𝜁 ∈𝑇𝑅 𝑒

𝜃𝑇 𝑓 (𝜁)
.

We may calculate the maximum likelihood estimate of 𝜃 by us-

ing standard gradient decent method with the gradient given by

𝑓 −∑
𝜁 ∈𝑇𝑅 𝑃 (𝜁) 𝑓 (𝜁), where 𝑇𝑅 is the set of observed drivers’ tra-

jectories.

5.2 Driver’s Preference Learning
In our problem, 𝑓 and 𝑓 (𝜁) can be easily calculated from observed

data. However, it remains an open question how to calculate the

probability of trajectory being generated by theMDP constructed by

using method mentioned in Section 4, namely 𝑃 (𝜁). From the defini-

tion of 𝑃 (𝜁), we know that,𝑃 (𝜁) = 𝑃0 (𝑠0)
∑𝑇
𝑡=1 𝜋 (𝑠𝑡 , 𝑎𝑡)𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡),

where 𝑃0 (𝑠0) is the initial start distribution, 𝜋 (𝑠𝑡 , 𝑎𝑡) is the prob-
ability from policy, and 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) is the transition probability,

in which 𝑠𝑡+1 is the next state in 𝜁 . It follows that the transition

probability contains two parts including 𝑃𝑜 (𝑠𝑡) and 𝑃𝑑 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡).
However, it is difficult to estimate the two parts of the transition

probability by using observed data. The travel time distribution

𝑃𝑑 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) is long-tailed and quite wide due to the presence of

occasionally long orders, such as orders to airport or even some-

times to another city. It brings difficulties that wide distribution

would increase computational complexity and the long-tailed part

of 𝑃𝑑 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) would not be robust to noise. Moreover, the prob-

ability of getting an order 𝑃𝑜 (𝑠𝑡) is more difficult to estimate due to

dispatching strategy and environment. Thus, model-based methods

based on transition probability do not work well for our problem.

We employ Relative Entropy Inverse Reinforcement Learning

(REIRL) to learn the preference vector. The REIRL is a model-free

method and uses importance sampling to estimate 𝐹 =
∑
𝜁 ∈𝑇𝑅 𝑃 (𝜁) 𝑓 (𝜁)

as follows:

𝐹 =
∑
𝜁 ∈𝑇𝑅

𝑈 (𝜁)𝜙 (𝜁)−1𝑒𝜃𝑇 𝑓 (𝜁)∑
𝜁 ′∈𝑇𝑅 𝑈 (𝜁 ′)𝜙 (𝜁 ′)−1𝑒𝜃𝑇 𝑓 (𝜁 ′)

𝑓 (𝜁), (1)

Figure 5: Illustration of the network structure of IRL-DL.
The left component takes inter-day trajectory as input
to feed into a sequential layer and the output is r ℎ′. The
right part takes driver preference 𝑍 as input and the out-
put is denoted as 𝑧′.

where 𝑈 (𝜁) is a uniform distribution and 𝜙 (𝜁) is the trajectory

distribution from a sample policy 𝜙 , where 𝜙 (𝜁) = Π (𝑠,𝑎) ∈𝜁𝜙 (𝑠, 𝑎) .
The brief derivation and the proof of (1) can be found in [5].

The gradient 𝑓 −∑
𝜁 ∈𝑇𝑅 𝑃 (𝜁) 𝑓 (𝜁) can be estimated by

∇𝜃𝐿(𝜃) =𝑓 −
∑
𝜁 ∈𝑇𝑅

𝑃 (𝜁) 𝑓 (𝜁)

=𝑓 −
∑
𝜁 ∈𝑇𝑅

𝑈 (𝜁)𝜙 (𝜁)−1𝑒𝜃𝑇 𝑓 (𝜁)∑
𝜁 ′∈𝑇𝑅 𝑈 (𝜁 ′)𝜙 (𝜁 ′)−1𝑒𝜃𝑇 𝑓 (𝜁 ′)

𝑓 (𝜁).
(2)

Applying the IRL algorithm, we can learn the preference vector 𝜃 .

To make preferences across models of different drivers compa-

rable, we use z-score [11] normalization. Higher/lower z-score on

the 𝑘-th feature, denoted as 𝑧𝑖𝑘 , means that driver 𝑖 has strong pref-

erence on the 𝑘-th feature. The use of z-score in our problem has

two major advantages. First, we can compare different drivers’ pref-

erences via their z-scores. Second, the elements of 𝑧𝑖 would most

likely lie between [−3, 3], but those of 𝜃𝑖 could be any real value.

This shows the advantage of training neural networks. The z-score

can be calculated as 𝑧𝑖 = diag(𝐻− 1

2

𝑖
) ⊙ 𝜃𝑖 , where 𝑖 indicates the 𝑖-th

driver, 𝐻−1
𝑖

is the inverse of Hessian Matrix of 𝜃𝑖 , diag(·) means

diagonal elements of a matrix, and we use ⊙ to denote element-wise

multiplication. Furthermore, we have

𝐻𝑖 =
𝜕2𝐿(𝜃𝑖)
𝜕2𝜃𝑖

=

[∑
𝜁

𝑃 (𝜁) 𝑓𝑖 (𝜁)
(
𝑓𝑗 (𝜁) −

∑
𝜁 ′

𝑃 (𝜁 ′) 𝑓𝑗 (𝜁 ′)
)]
,

(3)

where 𝑓𝑖 (𝜁) and 𝑓𝑗 (𝜁) means the 𝑖-th and 𝑗-th elements of 𝑓 (𝜁),
respectively. And 𝑃 (𝜁) can be estimated using importance sampling.

After acquiring the z-score 𝑧𝑖 of each driver, we can then build up

a model to predict drivers’ future behavior.

Applied Research Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

2809

Algorithm 1 Driver Prediction

1: INPUT: Driver ID 𝐷𝑖 ;

2: OUTPUT: Some predicted status of 𝐷𝑖 , denoted as𝐺𝑖 ;

3: Collect intra-cycle trajectory set𝑇𝑅𝑖𝑛𝑡𝑟𝑎 of 𝐷𝑖 ;

4: Build Markov Decision Process using𝑇𝑅𝑖𝑛𝑡𝑟𝑎 ;

5: Learn the preference vector 𝜃𝑖 via Relative Entropy Inverse Reinforce-

ment Learning;

6: Extract inter-cycle trajectory set 𝑇𝑅𝑖𝑛𝑡𝑒𝑟 for driver 𝐷𝑖 ’s historical

behaviors;

7: Use trained PhasedLSTM model to predict𝐺𝑖 based on the input of 𝜃𝑖

and𝑇𝑅𝑖𝑛𝑡𝑒𝑟 using the LatentCross Framework in Figure 5;

8: Return𝐺𝑖

5.3 Regression Models for Drivers’ Behavioral
Prediction

We elaborate more on regression models and features that we use

to predict drivers’ behavior, such as total online time, income and

finished orders. Figure 5 illustrates the general LatentCross [2]

framework of the neural network for doing driver’s prediction. It

is the Driver Prediction part in Figure 2. The first component is the

trajectory embedding model, which in our case we use PhasedL-

STM [12] as an example, but any model dealing with sequential

data can be plugged in the sequential layer. As shown in Figures 2

and 5, this part takes Inter-day trajectories, which are the output

of data preparation process demonstrated in Figure 3, as input and

produces an trajectory embedding. The right component of Figure

2 is to take the driver preference that we learn in the preference

learning phase as input. Then, we apply several dense layers to add

non-linearity. As stated above, the input is 𝑧𝑖 rather than the raw

preference vector 𝜃𝑖 . Then, we use the element-wise product layer

to combine trajectory embedding and driver’s preference, which is

the same as LatentCross, in order to capture two-way relationship

between the hidden state and each context feature [2]. Finally, a

dense layer is added to produce final prediction.

Algorithm 1 shows how to predict a driver’s behavior for a

trained prediction model. First, we collect intra-cycle trajectories

from multiple data sources that we described in Section 2. Then,

we construct a working-cycle MDP based on the observed intra-

cycle trajectories and we can use MDP and IRL to learn driver’s

preference vector. Finally, we combine the inter-cycle trajectory,

driver’s preference vector, and other attributes to predict driver’s

behavior. Furthermore, for a new driver, without historical behavior

data, we return the mean prediction of all drivers as predictive value.

6 EVALUATION
In this section, we use extensive experiments to verify the effective-

ness and efficiency of our proposed IRL-DL for drivers’ income.

6.1 Experiments Setting
We extracted data from 58, 160 drivers starting from March, 2018

to July, 2018 in a city. Data from March to May were used to train,

and data in June and July were used as test data. First, we collected

drivers’ two-month intra-cycle trajectories to learn drivers’ prefer-

ence and then used 30-day long inter-cycle trajectories and drivers’

preference to build prediction models, in which the target value

is driver’s total income in the next 30 days. To predict income, we

use driver’s total income in the 30 days of July as the ground truth.

Then, intra-cycle trajectories generated in June were used to learn

driver’s individual preference and the prediction wasmade based on

driver’s preference and 30-day long inter-cycle trajectories. Since

the accurate prediction of when a driver would log off indicates

that the learned preference vector may indicate how drivers make

his/her log-off decision, we used AUC score to evaluate the accuracy

of log-off action prediction accuracy for preference learning.

As for driver’s income prediction, Mean Absolute Error (MAE) is

used as the evaluation metric. For information safety, we normalize

the actual response by dividing by their average. We compare our

model with three sets of baseline models.

• Shallow Models. We compare our method with two types

of models. The first one is the BG-NBD model, in which

we denote drivers’ working days as "purchase" and their

earnings as "monetary value" and build a RFM model to do

drivers’ behavioral prediction. Moreover, instead of using

LSTM and neural network, we generate statistical features in

various time intervals and feed those features into a shallow

model, such as XGBoost, to predict each driver’s income.

• ModelsWithout Driver Preference. In those models, we

omit driver’s preference and only use driver’s historical be-

haviors to predict driver’s income. We also use RFM features

extracted from the BG-NBD model to train those models.

• Trajectory Embedding Component. We also compare

multiple sequential models including RNN, LSTM, and Phased-

LSTM. Moreover, any other sequential model can be added

into our IRL-DL framework since the goal of this paper is

that the inclusion of additional decision-making preference

can be combined with any trajectory embedding models in

order to achieve better prediction accuracy.

6.2 Preference Learning
We evaluate the effectiveness of our preference learning model.

Figure 6 shows the distribution of AUC scores with the y-axis being

the number of driver. It indicates that for most drivers, preference

vector learned can accurately predict whether a driver would log-

off. However, for a few number of drivers, we do not have accurate

prediction due to the lack of sufficient records. See Figure 7 for

the relationship between AUC score and the size of records. Each

point in Figure 7 indicates one individual driver. We also verify that

the preference vector we learn is correlated with driver’s future

behavior. Specifically, we use the K-Means algorithm to split drivers

into five different clusters based on their preferences. Figure 8

shows the distribution of future online time in the next 30 days

for each cluster, revealing that different clusters correspond to

different online time distributions. It may further indicate that

drivers’ preferences define their working patterns, contributing

to their future performance. In summary, driver’s preference is

accurate and of great potential value for the drivers’ behavioral

prediction problem.

6.3 Drivers’ Behavioral Prediction
We conduct experiments to show that our proposed framework can

increase the prediction performance in a variety of tasks.

Applied Research Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

2810

Figure 6: Number of drivers vs AUC
score.

Figure 7: AUC score vs number of
(𝑠, 𝑎) pairs collected

Figure 8: Online time distribution of differ-
ent group of driver

Figure 9: MAE on different tasks. Figure 10: MAE vs amount of data.
Figure 11: Prediction distribution of
Task A.

Table 2: Online time prediction error (MAE)

w/o RFM w RFM w/o RFM w RFM

w/o Pref. w/o Pref. w Pref. w Pref.

BG-NBD N/A 0.5953 N/A N/A

XGB 0.4532 0.4166 0.3898 0.3890

RNN-30 0.3883 0.3703 0.3258 0.3257

RNN-60 0.3681 0.3642 0.3146 0.3140

LSTM-30 0.3574 0.3510 0.3105 0.3103

LSTM-60 0.3430 0.3413 0.2957 0.2956

PLSTM-30 0.3502 0.3419 0.3004 0.2993

PLSTM-60 0.3483 0.3371 0.2933 0.2930

Algorithm Efficiency. We show the computational effective-

ness of our proposed framework. Table 2 shows 29 different models

that we used. The first one is the BG-NBD model, which has the

poorest performance. The second four models are based on XG-

Boost. We also consider RNN, LSTM and PhasedLSTM models with

different numbers of output size in the trajectory embedding layer

as well as the output dimension of preference layer.

We have the following observations. First, the use of driver’s

preference can reduce prediction error for more than 10%. Second,

deep models, such as RNN and LSTM, outperform the XGBoost

model. Third, the benefit of increasing network complexity from 30

to 60 is not significant enough. Therefore, without loss generality,

we fix output size at 30. Fourth, the RNN model without driver

preference can outperform XGBoost even with the use of driver

preference. Fifth, among all models, PhasedLSTM with the use of

driver preference can achieve the best performance since Phas-

edLSTM can capture the long-term effect of temporal sequences.

Therefore, PhasedLSTM would be used as a default option in the

following evaluation. Also, for shallow models, RFM features can

slightly improve prediction accuracy solely. Also, for deep models

like LSTM and PhasedLSTM, the contribution of using recency,

frequency and monetary values is pretty marginal, since the RFM

related pattern can be learned by sequential models.

Different Tasks.We consider additional tasks including predict-

ing total online time, driver’s average income per day, and driver’s

worked days in the next month. The results in Figure 9 indicate

that our model performs well in all tasks. Therefore, preference

vector may represent driver’s behavior in different aspects.

Amount of Data. We investigate the amount of data that we

need. In this experiment, we choose drivers’ total online time in the

following 30 days as target response. The result in Figure 10 shows

the prediction error (MAE) versus the number of working cycles

that we used to train the model. The results indicate that MAE is

essentially the same even with more than 23working cycles. We can

also reduce the randomness of data by including more observations.

This randomness may come from two resources. The first one is

the environment randomness and the second one is that drivers

may exhibit certain randomness.

Prediction Illustration. We choose one task to illustrate the

prediction result obtained from the proposed framework. Figure 11

presents the actual distribution of driver’s online time and the

predictive distribution. We have the following observations. First,

the two distributions are very similar to each other. Specifically,

the KL-divergence of those two distributions is equal to 0.1503.

However, if we aggregate all drivers together, then their behaviors

would be more predictable and the prediction performance is better.

Second, the true distribution of A is more long-tailed compared

with the prediction distribution of A. It indicates that our prediction

Applied Research Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

2811

model may make a few conservative predictions since the long-

tailed part is often caused by rare cases.

7 RELATEDWORK
In this section, we summarize the literature works in two related

areas to our study: 1) inverse reinforcement learning, and 2) user

choice modeling. Learning reward function 𝑅(𝑠, 𝑎) of an MDP is a

problem which has been broadly studied in the past decade, which

is called Inverse Reinforcement Learning. The inverse reinforce-

ment learning problem (IRL) is to find a reward function 𝑅(𝑠, 𝑎),
such that the distribution of action and state sequences under a

(near-)optimal policy with respect to 𝑅(𝑠, 𝑎) matches the demon-

strated trajectories from an agent [13, 18]. A broadly used solution

to IRL problem [5] proposes a model-free method to find the policy.

Besides, neural-network-based reward function [7] is considered,

which can represents more complex expert behaviors. And the

Inverse Reinforcement Learning can be viewed as a special applica-

tion of GAN [6, 8]. Also, IRL is used to model human’s sequential

decision-making process and is used to predict human behaviors

in urban transit system [16]. Inspiring by these work, we also use

Inverse Reinforcement Learning algorithm to extract driver’s pref-

erence vector. User choice modeling has been extensively studied in

the literature with applications, which investigate how users make

decisions in various application scenarios. For examples, in [15],

they use random utility maximization and random regret mini-

mization to analyze users’ choice on park-and-ride lots. In [18],

the authors propose a probabilistic approach to discover reward

function for which a near-optimal policy closely mimics observed

behaviors. However, differing from these works, we employ data-

driven approaches to study the unique decision-making process of

urban public transit passengers.

8 CONCLUSION
In this paper, we introduce a novel drivers’ behavioral prediction

framework that can make accurate prediction of driver’s future

behavior. In this framework, we use driver’s historical intra-cycle

behaviors to learn driver’s preference on his/her decision-making

process and then combine the learned preference with inter-cycle

features to predict driver’s behavior in the future. Our extensive

evaluation results based real-world data sets demonstrate that our

framework can achieve the prediction accuracy of 𝑀𝐴𝐸 = 0.29,

which is on average 13% lower than existing state-of-the-art ap-

proaches without using driver’s preference. We believe that the idea

can benefit domains where both micro (i.e., intra-cycle) and macro

(i.e., inter-cycle) decision making process are involved. For example,

e-commerce platforms, like Amazon, Alibaba and etc, may apply

this methodology to improve the prediction of customers’ life time

value. This paper gives a simple framework to capture customers’

intrinsic preference from the decision making process (search, click,

add to cart, ..., search, etc) of each visit, and to combine the learned

preference with features aggregated (LSTM, etc) from recent visits.

9 DEPLOYMENT
The driver behavioral prediction algorithm has already been de-

ployed in the production system, used in various applications. For

example, if a driver is predicted to be less effective in the next 30

days (less finished orders), we can define a user-specific incentive

strategy to increase his willingness to work, based on certain root

cause analysis on this driver’s recent behavior. We also rely on the

prediction system to help evaluate a new pricing strategy, when

randomized controlled experiments are restricted by law in the

scenario. We apply the new pricing strategy on all the drivers for a

couple of days, and the difference between the new pricing strategy

versus the old is simply the mean of the observed metrics minus

that of the predicted metrics.

The driver behavioral prediction system protects the privacy

rights of drivers from three aspects. 1) We avoid using any person-

ally identifiable feature, like social security number, in any of our

algorithm. Only features like age or gender that may be attributable

to more than one individual are included in the static features of our

prediction algorithm. 2) The data are only available to a small group

of people who are working on this project, and any one sharing

drivers’ personal information will break the law. 3) The behavior

prediction system only returns the prediction results and related

diagnostic information to related users of the system.

REFERENCES
[1] Pieter Abbeel and Andrew Y Ng. 2004. Apprenticeship learning via inverse

reinforcement learning. In ICML. 1.
[2] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Li Jia, Vince Gatto, and Ed H.

Chi. 2018. Latent Cross: Making Use of Context in Recurrent Recommender

Systems. In Eleventh Acm International Conference.
[3] Derya Birant. 2011. Data mining using RFM analysis. In Knowledge-oriented

applications in data mining. IntechOpen.
[4] Michael Bloem andNicholas Bambos. 2014. Infinite time horizonmaximum causal

entropy inverse reinforcement learning. In 53rd IEEE Conference on Decision and
Control. IEEE, 4911–4916.

[5] Abdeslam Boularias, Jens Kober, and Jan Peters. 2011. Relative entropy inverse

reinforcement learning. In Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics. 182–189.

[6] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. 2016. A connec-

tion between generative adversarial networks, inverse reinforcement learning,

and energy-based models. arXiv preprint arXiv:1611.03852 (2016).
[7] Chelsea Finn, Sergey Levine, and Pieter Abbeel. 2016. Guided cost learning: Deep

inverse optimal control via policy optimization. In International Conference on
Machine Learning. 49–58.

[8] Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning.

In Advances in Neural Information Processing Systems. 4565–4573.
[9] Su-Yeon Kim, Tae-Soo Jung, Eui-Ho Suh, and Hyun-Seok Hwang. 2006. Customer

segmentation and strategy development based on customer lifetime value: A case

study. Expert systems with applications 31, 1 (2006), 101–107.
[10] Ugo Lachapelle, Larry Frank, Brian E Saelens, James F Sallis, and Terry L Conway.

2011. Commuting by public transit and physical activity: where you live, where

you work, and how you get there. Journal of Physical Activity and Health (2011).

[11] Erich L Lehmann and George Casella. 2006. Theory of point estimation. Springer
Science & Business Media.

[12] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. 2016. Phased lstm: Accelerating

recurrent network training for long or event-based sequences. In Advances in
neural information processing systems. 3882–3890.

[13] Andrew Y Ng, Stuart J Russell, et al. 2000. Algorithms for inverse reinforcement

learning.. In ICML.
[14] Deepak Ramachandran and Eyal Amir. 2007. Bayesian Inverse Reinforcement

Learning.. In 29th International Joint Conferences on Artificial Intelligence, Vol. 7.
2586–2591.

[15] Bibhuti Sharma, Mark Hickman, and Neema Nassir. 2017. Park-and-ride lot

choice model using random utility maximization and random regret minimization.

Transportation (2017).

[16] Pengfei Wang, Yanjie Fu, Guannan Liu, Wenqing Hu, and Charu Aggarwal. 2017.

Human mobility synchronization and trip purpose detection with mixture of

hawkes processes. In KDD.
[17] Jiangchuan Zheng and Lionel M Ni. 2014. Modeling heterogeneous routing

decisions in trajectories for driving experience learning. In Proceedings of the
2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing.
ACM, 951–961.

[18] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. 2008.

Maximum Entropy Inverse Reinforcement Learning.. In AAAI.

Applied Research Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

2812

	Abstract
	1 introduction
	2 Overview
	2.1 Drivers' Behavioral Prediction Problem
	2.2 Data Description
	2.3 IRL-DL Framework

	3 Data Preprocessing
	3.1 Working Cycle Detection
	3.2 Order Aggregation
	3.3 Working Cycle Alignment

	4 MDP for Working Cycle Modeling
	5 IRL-DL
	5.1 Inverse Reinforcement Learning
	5.2 Driver's Preference Learning
	5.3 Regression Models for Drivers' Behavioral Prediction

	6 Evaluation
	6.1 Experiments Setting
	6.2 Preference Learning
	6.3 Drivers' Behavioral Prediction

	7 Related Work
	8 Conclusion
	9 Deployment
	References

