
PULSE: A Real Time System for Crowd Flow

Prediction at Metropolitan Subway Stations⋆

Ermal Toto1, Elke A. Rundensteiner1, Yanhua Li1, Richard Jordan2, Mariya
Ishutkina2, Kajal Claypool2, Jun Luo3, and Fan Zhang3

1 Worcester Polytechnic Institute, USA
2 MIT Lincoln Laboratory, USA

3 Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, China

Abstract. The fast pace of urbanization has given rise to complex trans-
portation networks, such as subway systems, that deploy smart card
readers generating detailed transactions of mobility. Predictions of hu-
man movement based on these transaction streams represents tremen-
dous new opportunities from optimizing fleet allocation of on-demand
transportation such as UBER and LYFT to dynamic pricing of ser-
vices. However, transportation research thus far has primarily focused on
tackling other challenges from traffic congestion to network capacity. To
take on this new opportunity, we propose a real-time framework, called
PULSE (Prediction Framework For Usage Load on Subway SystEms),
that offers accurate multi-granular arrival crowd flow prediction at sub-
way stations. PULSE extracts and employs two types of features such
as streaming features and station profile features. Streaming features are
time-variant features including time, weather, and historical traffic at
subway stations (as time-series of arrival/departure streams), where sta-
tion profile features capture the time-invariant unique characteristics of
stations, including each station’s peak hour crowd flow, remoteness from
the downtown area, and mean flow, etc. Then, given a future prediction
interval, we design novel stream feature selection and model selection al-
gorithms to select the most appropriate machine learning technique for
each target station and tune that model by choosing an optimal subset
of stream traffic features from other stations. We evaluate our PULSE
framework using real transaction data of 11 million passengers from a
subway system in Shenzhen, China. The results demonstrate that PULSE
greatly improves the accuracy of predictions at all subway stations by
up to 49% over baseline algorithms.

1 Introduction

Subway systems provide unobstructed transit throughout an urban area. Start-
ing in the early 90s, in order to streamline fare collection, subway authorities
have implemented smart card enabled entry and exit systems [20]. These widely
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2 PULSE Framework
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Fig. 1: ( 1a) Time series of passenger arrivals at 3 stations during a Monday.
( 1b) System wide traffic during three consecutive days.

adopted systems generate a large amount of fine grain data about passengers’
mobility throughout the transportation network. Offering new opportunities in
gaining in-depth insights into the performance and effectiveness of the system as
well as the passenger mobility patterns. However a recent survey of smart card
transaction usage [20] found that current research is limited to simple post-hoc
analysis of generalized mobility patterns, thus risks missing potentially valuable
opportunities for new mobility-related services. Predictions of crowd flow arriv-
ing at subway stations based on fine grain smart card transaction streams is
with foremost importance and opens tremendous new opportunities for novel
services, including optimizing fleet allocation and introducing dynamic fares in
on-demand systems. In addition, traditional transportation modes such as buses
would also benefit from mobility prediction capabilities that would allow them
to dynamically adjust stop frequency and routes [9, 11]. These new classes of
services increase quality of service and reduce emissions. In the literature, traffic
prediction on road networks has been studied extensively, and many prediction
models have been applied and developed [24, 7, 23, 14, 26, 29, 12]. However, when
applying these methods directly on solving the arrival crowd flow prediction at
subway stations, they fail to achieve high prediction accuracy, because these
(general) methods do not explicitly take into account the unique features and
characteristics of subways systems, such as the pairwise crowd flow between sta-
tions, attrition rate of subway stations, etc. Such arrival crowd flow prediction
problem is challenging in practice. Figure 1(a) shows that the arrival crowd flow
at different stations exhibit completely different time-series patterns, while Fig-
ure 1(b) shows that for the same station, the arrival crowd flow are with different
patterns over days.

Given these challenges, in this paper, we make the first attempt to study the
crowd flow prediction problem at subway stations. We propose a novel real-time
framework, called PULSE ( Prediction Framework For Usage Load on Subway
SystEms), that offers accurate multi-granular arrival crowd flow prediction at
subway stations. Below, we summarize our main contributions in this paper.

• PULSE extracts two types of features for the arrival crowd flow prediction,
i.e., streaming features and station profile features. Streaming features are time-
variant features including time, weather, and historical stream traffic at subway
stations (as time-series of arrival/departure streams), where station profile fea-
tures capture the time-invariant unique characteristics of stations, including each
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station’s peak hour crowd flow, remoteness from the downtown area, and mean
flow, etc. (See Section 4.)
• PULSE employs a novel stream feature selection algorithm and a model se-
lection algorithm to select the most appropriate machine learning technique for
each target station and tune that model by choosing an optimal subset of stream
traffic features from other stations. (See Section 5 and Section 6.)
• We evaluate our PULSE framework using real transaction data of 11 million
passengers from a subway system in Shenzhen, China. The results demonstrate
that PULSE greatly improves the accuracy of predictions at all subway stations
by up to 49% over baseline algorithms. (See Section 7.)

2 Related Work

In this section, we briefly discuss two research areas that are closely related to
this work, namely, urban computing and traffic prediction.
Urban computing studies the impact and application of technology in urban
areas, including the collection and usage of smart card transactions. Analyzing
smart card records is an effective way of understanding human mobility patterns
in urban areas [17], [20]. Various studies [6], [5], [17], [15] show that city wide
mobility follows a common pattern that is consistent across cities and modes
of transportation. These studies describe mobility patterns, but fall short of
developing a framework for fine grain predictions of human mobility. To our
knowledge this study is the first to directly address prediction of arrival crowd
flow in a subway network.
traffic prediction in road networks has been studied extensively [24] [7] [23] [14]
[26] [29] [12]. In this study, we compare and contrast the most commonly used
machine learning models as baseline methods. One of these baselines (Multiple
Linear Regression–MLR) is described in [24], where it is used to capture short
term traffic trends. In another study [7] non parametric models similar to K-
Nearest Neighbours (KNN) are used for road traffic flow predictions. The concept
of using ensembles of models is used in [23], where a state machine switches
among different Auto-regressive Moving Average Models (ARIMA) [14]. In [12]
Random Forest models are used for short term context aware predictions. All
these traffic prediction methods are addressing vehicle traffic prediction problem
and utilize a fixed (sometimes ensemble) model to conduct the traffic prediction.
Thus, when applying to our crowd flow prediction problem at subway stations,
these methods would fail to capture unique features and choose appropriate
models for subway system.

In summary, PULSE is the first framework that enables fine-grained arrival
crowd flow predictions at subway stations, using smart card transaction data,
weather data, and calendar data.

3 Overview

In this section, we define the subway traffic prediction problem and outline the
framework of our methodology.
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3.1 Preliminary and Problem Definition

We worked on transaction data generated from subway system in Shenzhen,
China. Similar to many other subway systems in different cities, such as Beijing
Subway 4, and London Subway 5, a passenger needs to swipe his smart card at
both the entering and leaving stations. Such paired transaction records capture
the trip information of passengers. Below, we explicitly highlight key terms used
in the paper, and define the subway station traffic prediction problem.

Definition 1 (Trip). tr = (pid, sd, td, sa, ta) represents a trip made by passen-

ger with ID pid, who departs from station sd at time td and arrives the station

sa at time ta. TR represent the set of all trips, i.e., tr ∈ TR.

Definition 2 (Subway Trajectory). A subway trajectory is a sequence of sub-

way stations that a passenger enters and leaves in the subway system as a func-

tion of time. Each record thus consists of a passenger ID pid, subway station ID

s, and a time stamp t.

Definition 3 (Subway Network). A subway network consists of a set of sub-

way stations connected by subway lines. We represent a subway network as a

undirected graph G = (V,E), where V represent the subway stations and E con-

tain the edges between neighboring subway stations via subway lines.

Fig. 2: The PULSE framework.

Problem Definition. Given a set of
historical trips TR, the subway net-
work G, and the current time t, we
want to predict the number of passen-
gers arriving a subway station s ∈ V
(from other stations) during the con-
secutive time intervals [t + T ∗ (k −
1), t + T ∗ k], with 1 ≤ k ≤ K. T is
a time aggregation interval, which is
usually 15 minutes. K the number of
future intervals to be predicted, and
we use K = 6 in this paper.

3.2 The PULSE Framework

To tackle the above subway station
traffic prediction problem, we intro-
duce PULSE framework (Prediction
Framework For Usage Load on
Subway SystEms) as shown in Figure 2. PULSE takes the historical trip data,
calendar information, and weather data as input, to predict future traffic flows at
each subway station at fine grained periodic intervals e.g., every 15 minutes. This

4 http://www.bmac.com.cn
5 https://oyster.tfl.gov.uk/oyster/entry.do
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Fig. 3: Temperature, Humidity and Arrivals at subway station during Saturday.

task is achieved in three core steps, namely, feature extraction, traffic prediction,
and model update, as outlined next.
Feature extraction module aggregates the time-varying data sources, such as
the transaction data, weather data, calendar data, at certain time granularity,
e.g., 15min. Then, we extract and model both streaming and profile features.
Streaming features are direct aggregates of the time-varying datasets, including
aggregated traffic volumes entering and leaving a subway station and weather
statistics. Profile features describe relatively stable characteristics of each sta-
tion, including remoteness of a station, peak-hour traffic, average inflow at a
station. See more details in Section 4.2.
Traffic prediction. When predicting the entering and leaving traffic at a sub-
way station si, the traffic prediction module employs an automatic feature and
model selection algorithm that achieves high prediction accuracy. A prediction
model is chosen and a subset of subway stations are selected to include their
streaming features as training data. The model and features selected are used
to perform predictions on the future entering and leaving traffic at each subway
station. Section 5 describes this process in more details.
Model update module keeps track of the performance of the PULSE system
overtime. It automatically re-selects features and rebuilds the models.

4 Feature Extraction for PULSE

The feature extraction module explores two sets of key features,namely stream-
ing features and station profile features. The former capture the dynamics of de-
parting/arriving traffic at different stations and the meteorological features over
time; while the latter characterize the time-invariant profiles of different subway
stations, including remoteness from the city center, the mean flow, peak-hour
traffic, etc.

4.1 Streaming Features

4.1.1 Time Features F
t. As discussed earlier, the departing and arriving

transaction data are aggregated at a certain time granularity, e.g., T = 15 min-
utes. We observe that the daily operation time of a subway system, denoted as
T0, is usually less than 24 hours. For example, in Shenzhen, the subway system
operates between 7am and 11pm every day, that is, a total of T0 = 16 hours
operation time. Hence, given the time aggregation interval T , the daily opera-
tion time T0 is divided into a fixed number of time slots with equal length of
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T minutes. For example, a total of 64 such intervals are obtained given T = 15
minutes and T0 = 16 hours. We then use the interval id Fint ∈ [1, 64] to repre-
sent the time of day as a feature. As observed in [17], [15], and [5] this feature
is significant in urban human mobility predictions. Similarly, we introduce the
feature day of the week, that distinguishes between weekdays from Monday
to Sunday, which can be represented using the weekday id, namely, Fday ∈ [1, 7].
As shown in Figure 1b, The traffic patterns vary significantly during different
days in a week as also observed in [17] and [15].

4.1.2 Traffic Stream Features F
s. Given an aggregation interval T , we can

obtain the arrival and departure traffic at each subway station during each time
interval T . For one station si, we denote the vector F arr

i = [a1, a2, . . . , aN ] as
the arrival stream feature of a station si. Given a starting time t0, each aℓ
represents the number of passengers who arrived the station si, during the ℓ-th
time interval, namely, Tℓ = [t0 + T ∗ (ℓ − 1), t0 + T ∗ ℓ]. Hence, each aℓ can be
obtained from the trip data as follows.

aℓ =
∑

tr∈TR

I(tr.sa = si, tr.ta ∈ Tℓ), (1)

where I(·) is the indicator function, which is 1 if the condition holds, and
0 otherwise. Similarly, we define the departure stream feature of a sta-
tion si as a vector F dep

i = [d1, d2, . . . , dN ]. Each dℓ can be represented as
dℓ =

∑

tr∈TR
I(tr.sd = si, tr.td ∈ Tℓ). When considering pair-wise flows be-

tween station pairs, F pair
i,j = [p1, p2, . . . , pN ] is the pairwise flow feature. pℓ

representing the number of trips from station si to station sj during the time
interval Tℓ, namely, pℓ =

∑

tr∈TR
I(tr.sd = si, tr.sa = sj , tr.td ∈ Tℓ, tr.ta ∈ Tℓ).

We also take into account of F dur
i,j = [π1, π2, . . . , πN ] as the vector average

trip duration feature from station si to sj during the time interval Tℓ. Each
πℓ =

1

pℓ

∑

tr∈TR
(tr.sa − tr.sd)I(tr.sd = si, tr.sa = sj , tr.td ∈ Tℓ, tr.ta ∈ Tℓ).

4.1.3 Weather Features F
w. The traffic at subway stations are affected

by meteorology. Hence, we identify two features that are correlated with the
subway stations traffic, namely temperature and humidity. Figure 3a (resp. Fig-
ure 3b) shows the correlation between the subway station traffic and the temper-
ature (resp. humidity) feature, using the data we collected during 03/20/2014-
03/31/2014 in Shenzhen. We can see that the temperature (resp. humidity) is
positively (resp. negatively) correlated with subway station traffic. Apparently,
a higher temperature leads to a high traffic volume, and a high humidity usually
causes low traffic volume.

4.2 Station Profile Features
In this section, we present the profile features extracted from each subway sta-
tion, which are time-invariant, and capture the unique profile of each subway
station from different aspects, such as peak-hour traffic, mean flow, and remote-
ness from the city center.
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Fig. 4: Equivalent traffic vol-
umes, but different peak
patterns.

4.2.1 Peak Traffic F
P Crowd movement dur-

ing commute hours shows unique and character-
istic peak patterns. These patterns vary between
stations, but are relatively stable over time. In our
study, we choose the peak hour as 7-11am and 5-
11pm. The peak-hour behavior as a feature pre-
cisely capture the “signature” of a station. A naive
way of characterizing the peak-hour behavior is to
use total traffic volume occurred in the peak hour.
However, it may miss important information of
the underlying traffic dynamics in the peak-hour.
For example, as shown in Figure 4, two stations
have exactly the same peak-hour traffic volume,
namely, the total area between the traffic curve
and the x-axis. However, we observe that the sta-

tion 1 shows a flat traffic pattern during the peak-hour, while station 2 has one
significant spike. To capture such spike, we employ the Tukey[25] outlier detec-
tion method to identify the outliers in the peak-hour, and count the number of
outliers as the peak-hour traffic feature.

Fig. 5: Arrival streams with different
morning peak scores

In Figure 5, we use the morning
arrival peak-hour traffic as an exam-
ple. To generate these scores we first
extract arrivals during the morning
interval 7-11am. Then, we construct
the frequency distribution of the ar-
rival values.

We find the first quantile Q1 and
third quantile Q3 of the distribution,
and compute the inter-quantile range
as IQR = Q3 − Q1. A data point Y
is labeled as an outlier when: Y >
Q3 + 1.5IQR and the morning ar-
rival peak score is the average num-
ber of outliers in all the morning in-
tervals. Similarly, we can obtain the
peak-hour traffic for evening arrival, evening departure, and morning departure.

4.2.2 Flow Related Features F
F . We introduce two types of flow related

features, including attrition rate and mean flow of a station.

Attrition Rate. For a station si we define the attrition rate of a station si
as the relative difference between departures and arrivals as the attrition fea-
ture Atti. As is observed in [17], most departure trips from a station si have
a matching arrival trip, since the majority of passengers return to their home
station. However, attrition rates in Shenzhen subway data vary considerably as
illustrated in Figure 6. Atti = (|F dep

i | − |F arr
i |)/|F arr

i |.



8 PULSE Framework

(a) (b)

Fig. 7: Geographic distribution of remoteness and mean station flow.

Fig. 6: Distribution of Attrition Rate.

Mean Flow of a station si is defined
as F flow

i and is the average number
of arrivals per interval, which can be
calculated as F flow

i = |F arr
i |/N . Fig-

ure 7b illustrates the flow at each sub-
way station. As expected, downtown
areas and commercial centers show
high concentrations of passenger ar-
rivals.

4.2.3 Remoteness F
R. From the

subway transaction data, we observe
that in general stations located far-
ther away from the downtown area tend to have similar traffic patterns and
overall fewer traffic. This motivates us to extract the remoteness of station si as
a feature, i.e., FR

i . FR
i is the average duration of the historical trips arriving to

si, namely, FR
i =

∑

tr∈TR
(tr.ta − tr.td)I(tr.sa = si). Figure 7a illustrates the

geographic distribution of remoteness.

5 Station Stream Selection

Our focus in this work is arrival traffic prediction at subway stations. Given
a target station si, its historical traffic data as a time-series can be used to
predict its future arrival traffic, e.g., [14]. In general, subway stations are inter-
connected, and the arrival traffic at one particular subway station si is affected
and generated by the traffic from all other stations (in V/si). However, given si,
it is computationally efficient in practice to include a subset of stations (instead
of all stations) which contribute significantly to the arrival traffic at si, i.e., they
are geo-graphically close by, or there are a large amount of traffic flow to the
target station. In this section, we present our stream selection algorithm, that
can identify the subset of stations, whose departure traffic (as key features) have
the most contribution to the traffic at the target station. Our selection algorithm
combines three criteria, including Time Based Stream Selection (TBSS), Flow
Based Stream Selection (FBSS), and Profile Based Stream Selection (PBSS).
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(a) (b)

Fig. 8: Selecting streams based on pairwise flow ( 8a) and temporal distance
( 8b).

Below, we elaborate each selection criterion and the overall stream selection
algorithm.
Time Based Stream Selection (TBSS). Given the current time t, a time
interval T = 15 minutes, a target station si, we aim to predict the arrival traffic
at si during the future time interval φ = [t+T ∗ (k−1), t+T ∗k] with a positive
integer k > 0. For example, when k = 1, the prediction yields the arrival traffic
for the immediate time interval T from the current time t. Hence, we choose
those stations that have average arrival time during the prediction interval φ.
We use the following criterion (in Equation 2) to select θL such stations. Recall
that the average trip time feature F dur

j,i = [π1, · · · , πN ] include the pairwise trip
time from a station si to sj over time.

Li,φ(θL) = argmin
BθL⊂V/si

∑

sj∈BθL







∑

π∈Fdur
j,i

∣

∣T

(

k −
1

2

)

− π
∣

∣






(2)

where Li,φ(θL) is the set of θL selected stations. The value of θL is selected by
the model selection module (See Section 6) to achieve high prediction accuracy.
Figure 8b illustrates the set of stations selected by TBSS for with θL = 20,
T = 15 minutes, and two values of k (orange, k = 1 and green, k = 4).
Flow Based Stream Selection (FBSS). FBSS is based on the intuition that
future traffic at station si will come from (departures of) stations with most
historical trips to si. Recall that the pairwise flow feature F pair

j,i = [p1, · · · , pN ]
include the numbers of pairwise trips from a station si to sj over time. Mi,φ(θM )
is the set containing θM stations with the highest number of trips to si, as
illustrated in Equation 3. Again, θM is chosen by the model selection module.
An example of stations selected by FBSS is given in Figure 8a.

Mi,φ(θM ) = argmax
BθM ⊂V/si

∑

sj∈BθM

|F pair
j,i | (3)

where |F pair
j,i | indicates the total number of trips from station sj to si.

Profile Based Stream Selection (PBSS). Profile features characterize the
overall traffic patterns of subway stations. The stations with similar profile fea-
tures tend to have similar traffic pattern over time. Given a target station si,
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its profile feature vector is PFi = [FP
i , FF

i , FR
i ], where FP , FF and FR rep-

resent the peak traffic features, flow related features, and remoteness features,
respectively. PFi is compared to PFj for each sj ∈ V and a set Ki,φ(θK) of
the θK nearest (in terms of profile features) stations is selected as illustrated in
Equation 4. The optimal value for θK is determined during model selection.

Ki,φ(θK) = argmin
BθK⊂V/si

∑

sj∈BθK







√

√

√

√

|PF |
∑

n=1

(

PFn
i − PFn

j

)2






(4)

Stream selection. The final set of stations are simply the union set of the
results from three criteria, i.e., Li,φ(θL) ∪Mi,φ(θM ) ∪Ki,φ(θK).

The pseudocode for the stream selection is given in Algorithm 13. In Lines 2–
6, the procedure iterates through all stations sj ∈ V/si and calculates the time
distances, pairwise flows, and profile feature Euclidean distances between sta-
tions si and sj . In lines 7–12, these distances are sorted, and the first θL,θM ,
and θK , streams are selected. Line 13 merges and returns the three stream sets.

Algorithm 1: Stream selection for station si

1 function StreamSelection (si, φ, F
dur
i,j , F pair

i,j , PF, θL, θM , θK);

Input : Station si. Prediction interval φ. Sets F dur
i,j ,F pair

i,j , and PF. Number of
streams to be selected defined by θL, θM , and θK .

Output: Lθ
i,φ ∪Mθ

i,φ ∪Kθ
i,φ

2 for sj ∈ V/si do

3 timedistance[j] = |average(F dur
i,j )− T ∗ (k − 1/2)|;

4 flow[j] = |F pair
i,j |;

5 pfdistances[j] = euclidiandistance(PFi, PFj);

6 end

7 timedistances = sort(timedistances);
8 flow = sort(flow);
9 pfdistances = sort(pfdistances);

10 Lθ
i,φ = getKeys(timedistances[1..θL]);

11 Mθ
i,φ = getKeys(flow[1..θM ]);

12 Kθ
i,φ = getKeys(pfdistances[1..θK ]);

13 return Lθ
i,φ ∪Mθ

i,φ ∪Kθ
i,φ;

6 Model Selection

To accurately predict the arrival traffic for a prediction interval φ at a target
station si, we need to choose the right prediction model and the right set stream
features from other stations, namely, θL, θM , θK . We consider five candidate
prediction models used in literature for time-series data prediction, including
Autoregressive integrated moving average (ARIMA) [14, 23], Artificial Neural
Networks (ANN) [18, 28, 26, 29], K-Nearest Neighbours (KNN) [8, 10, 7], Random
Forest (RF) [13, 16, 12], and Multiple Linear Regression (MLR) [24]. It also has
to choose the optimal number of streams to include using the methods described
in Section 5. In our study, the Shenzhen subway system have five subway lines
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with 118 subway stations. Thus, θL, θM , and θK each has 118 possibilities,
leading to a searching space of 1183. Each model configuration setup requires
training and testing using historical data.

To find the optimal configuration of model and stream set for a station si
and prediction interval φ, it requires examining all configurations with different
model and stream combinations. A naive method is to brute force all such
configurations, and choose the one with the highest prediction accuracy. How-
ever, this is too costly to be implemented in practice. To be precise, we have
five prediction models and 1183 possibilities of stream set sizes. Let’s consider
6 future prediction intervals and different temporal partitions, which in this set
of experiments is two (weekdays and weekends). In total there are about 79
million different models. We ran our experiments in a server with 30 Intel(R)
Xeon(R) CPU E5-4627 v2 @ 3.30GHz Cores. Each model training and testing
would take about 1 to 15 seconds, thus leads to a total of 14 years to compare
all configurations using our 30 core system.

Thus, we are motivated to employ the profile features to conduct Gradient-
based optimization of hyper-parameters [3] [4] to optimize this process.
Initially this method uses a pure gradient search approach to discover parame-
ters. As more station profiles are matched to models, PULSE can initiate sub-
sequent searches with model parameters from stations with similar profiles as
described by Equation 5. Henceforth we refer to this method as Model Select
(MSELECT). After a large number of stations have been assigned with pre-
diction models, the process only takes a few seconds. Therefore this method is
suitable as an online process for model updates based on changes in the profile
features. Our gradient based model search takes approximately 2 hours to find
the optimal prediction configuration.

Modeli = argmin
Modelj∈Models







√

√

√

√

|PF |
∑

n=1

(

PFn
i − PFn

j

)2






(5)

Model update. PULSE system monitors the prediction performance overtime.
It automatically re-selects features and rebuilds the models when the average
prediction accuracy goes below certain threshold value.

7 Evaluation of PULSE Model

To evaluate the performance of our PULSE framework on arrival traffic pre-
diction, we conduct comprehensive experiments using real subway transaction
dataset collected from Shenzhen subway system for 21 days in March 2014. By
comparing with baseline algorithms, the experimental results demonstrate that
PULSE can achieve a 26%-94% relative prediction accuracy, which is on average
20% higher than baseline algorithm. Below, we present the datasets, baseline
algorithms, experiment settings, and results.
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7.1 Dataset Description

For this work, we used 60 million smart card transactions from the subway
system in the city of Shenzhen, China between March 10th and March 31st, 2014.
The dataset contains 11 million unique passengers (identified by their smart card
ids). Each transaction contains a timestamp, location coordinates, and whether
the transaction is an departure from or an arrival at a station. During data pre-
processing we matched entry and exit transactions for each passenger in order
to generate trip record tr = (pid, sd, td, sa, ta) containing a passenger identifier
pid, a starting station sd, a destination sa and respective departure and arrival
times td, ta.

7.2 Evaluation Settings

Fig. 9: Distribution
of the best perform-
ing models over the
prediction horizon.

PULSE predicts the number of arrivals at a station si
at future time intervals in [t + T ∗ (k − 1), t + T ∗ k]
with 1 ≤ k ≤ K. In our evaluation of PULSE, we used
a variable k ∈ [1 · · · 6].

Prediction models for both PULSE and the base-
line methods are trained using a sliding window
containing a week of historical data, to predict
the arrival traffic of a future interval specified by
k. The accuracy of the predictions is defined as

accuracy = 1−
∑

|ŷi−yi|∑
yi

. Again, we consider five pre-

diction models used in literature for time-series data
prediction, including Autoregressive integrated mov-
ing average (ARIMA) [14, 23], Artificial Neural Net-
works (ANN) [18, 28, 26, 29], K-Nearest Neighbours
(KNN) [8, 10, 7], Random Forest (RF) [13, 16, 12], and
Multiple Linear Regression (MLR) [24]. All these methods can be setup as both
single stream (only using the features of the target station) or multi-stream mod-
els (using features from both the target station and other selected stations)6. In
our experiments, we evaluate PULSE framework in two stages. In the first stage,
we run all prediction models in a single-stream fashion using the arrival stream
feature F arr

i of the target station si, with vs without other streaming features,
such as time feature FT and weather features FW . In the second stage, we eval-
uate the stream feature selection and model selection algorithms introduced in
Section 5 and 6 in a multi-stream scenario. We compare our PULSE framework
with each individual model under single-stream mode. The evaluation results
are summarized in the next subsection.

7.3 Evaluation Results

Stage 1: Single-stream models. In table 1, the column BaseL No SF list the
baseline results of single stream models, that only use the arrival stream feature

6 Note that ARIMA can only be setup as a single stream model by its design in nature.
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Table 1: Overall performance evaluation at 118 stations.

BaseL No SF BaseL SF

H. KNN MLR RF ANN ARIMA KNN MLR RF ANN MSEL

W 15 0.738 0.735 0.735 0.750 0.746 0.872 0.848 0.860 0.836 0.884
D 30 0.658 0.647 0.657 0.672 0.745 0.872 0.846 0.855 0.840 0.883
a 45 0.575 0.560 0.574 0.595 0.745 0.870 0.837 0.850 0.840 0.882
y 60 0.526 0.509 0.525 0.548 0.745 0.868 0.831 0.848 0.834 0.881

75 0.498 0.477 0.498 0.524 0.745 0.865 0.824 0.845 0.832 0.880
90 0.488 0.462 0.489 0.516 0.744 0.862 0.818 0.842 0.825 0.879

W 15 0.752 0.784 0.749 0.780 0.772 0.770 0.726 0.801 0.724 0.845
E 30 0.712 0.760 0.707 0.755 0.772 0.768 0.667 0.791 0.718 0.841
n 45 0.639 0.702 0.631 0.698 0.771 0.761 0.603 0.763 0.705 0.833
d 60 0.585 0.662 0.578 0.649 0.771 0.760 0.573 0.745 0.693 0.827

75 0.540 0.623 0.535 0.610 0.769 0.762 0.572 0.731 0.687 0.820
90 0.518 0.601 0.516 0.590 0.771 0.770 0.590 0.728 0.699 0.813

Av. 0.602 0.627 0.600 0.641 0.758 0.817 0.728 0.805 0.769 0.856

Table 2: Stations with top improvement in prediction accuracy.

Rank Station ID ML H TBSS FBSS PBSS KNN M.Select Diff

Week 1 260011 LM 90 0 0 0 0.709 0.769 0.060
days 2 260024 RF 30 30 10 20 0.465 0.523 0.058

3 260024 RF 45 30 40 0 0.465 0.521 0.056
4 268028 RF 15 40 40 20 0.469 0.522 0.053
5 268023 KNN 90 40 40 40 0.871 0.921 0.050

Week 1 261006 RF 45 0 0 10 0.264 0.755 0.491
ends 2 268023 KNN 60 30 0 40 0.334 0.814 0.481

3 268012 KNN 60 20 20 30 0.618 0.854 0.236
4 261006 KNN 90 0 20 10 0.481 0.716 0.234
5 263013 KNN 15 30 0 10 0.512 0.739 0.228

of the target station. The column BaseL SF list the results of single stream
models, that include both the arrival stream feature of the target station, and
also other streaming features introduced in Section 4.1, such as the weather and
time features. The results show that by introducing time and weather features,
the prediction accuracy for the single-stream models is improved on average
13.4% and up to 21.7%, namely, from 60%–75.8% to 76.9%–81.7%. When we
look at the different prediction horizons from 15 minutes to 60 minutes ahead
of time, the accuracy of all models (except ARIMA) decreases as the prediction
horizon increases. This is reasonable since it is in general harder to predict the
arrival traffic in a long term future interval than an immediate future interval.

Stage 2: Multi-stream models. In table 1, the last column MSEL list the re-
sults of multi-stream models, when stream feature selection and model selection
algorithms are applied to include departure stream features from other stations
than the target station. We observed that the average prediction accuracy is
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further improved to 85.6% over single-stream models, with an average of 7.6%
improvement over BaseL SF, and 21% improvement over BaseL No SF.

Table 2 lists the evaluation results of the stations with the top five improve-
ment on the prediction accuracy for weekdays and weekends, respectively. During
weekends, the first ranked station (in terms of model improvement) has a predic-
tion accuracy as low as 26.4% at 45 minutes prediction horizon when using KNN
(the best performing single-stream baseline) with all streaming features. By ap-
plying stream feature selection and model selection algorithms, PULSE increases
the prediction accuracy of this model to 75.5% with a total of 49.1% improve-
ment. This was achieved by using a Random Forest model with 10 streams that
were selected using profile based stream selection (PBSS). Overall, the stream
feature selection and model selection algorithms improve the prediction accuracy
more during the weekends (up to 49.1% improvement) than the weekdays (up
to 6%). This happens primarily because the arrival traffic in weekends is less
stable than that during weekdays, and single-stream models have low prediction
accuracy, providing more room to improve the performance when stream feature
selection and model selection algorithm are used.

(a) (b)

Fig. 10: KNN vs MSELECT weekend prediction accuracy at 60min horizon, for
stations with different mean passenger flow.

Summary and Observations. The above results with single-stream models
demonstrate that by introducing time and weather features, the prediction ac-
curacy is improved on average 13.4%. For multi-stream models, our PULSE
framework further improves the prediction accuracy 7.6% on average. To better
understand the evaluation results, Figure 10(a)(b) present the prediction ac-
curacy distribution over stations in terms of their mean arrival flow for single
stream model (KNN) in Figure 10(a) vs multi-stream models Figure 10(b). We
observed that stations with lower mean arrival traffic had the most improvement.
When we looked at the best models being selected by our model selection algo-
rithm over different prediction horizons, we noticed that there is a clear shift in
the machine learning models with increasing prediction horizons. For example,
linear model (LM) and Random forest (RF) are used more for smaller prediction
horizons (i.e., predicting the near future), while k-nearest neighbors (KNN) in
general performs better for larger prediction horizons (i.e., predicting the long
term future intervals). These observations shed light on the performances of
different models in subway station traffic predictions.
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8 Conclusion

In this study we present PULSE, a real-time system to predict arrival crowd
flow at metropolitan subway stations. The system extracts streaming features
and station profile features from heterogeneous urban data, including subway
transaction data, weather data, and calendar data. PULSE employs novel stream
feature selection and model selection algorithms to improve the prediction ac-
curacy and running time. Experimental results on real subway transaction data
from 11 million passengers in Shenzhen, China demonstrated that PULSE can
increase the prediction accuracy by up to 49% over baseline algorithms.
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for hyper-parameter optimization. In Advances in Neural Information Processing

Systems, pages 2546–2554, 2011.

5. Artem Chakirov and Alexander Erath. Use of public transport smart card fare
payment data for travel behaviour analysis in singapore. 2011.

6. Yew-Yih Cheng, Roy Ka-Wei Lee, Ee-Peng Lim, and Feida Zhu. Measuring cen-
tralities for transportation networks beyond structures. In Applications of Social

Media and Social Network Analysis, pages 23–39. Springer, 2015.

7. Stephen Clark. Traffic prediction using multivariate nonparametric regression.
Journal of transportation engineering, 129(2):161–168, 2003.

8. Thomas M Cover and Peter E Hart. Nearest neighbor pattern classification. In-

formation Theory, IEEE Transactions on, 13(1):21–27, 1967.

9. Liping Fu, Qing Liu, and Paul Calamai. Real-time optimization model for dynamic
scheduling of transit operations. Transportation Research Record: Journal of the

Transportation Research Board, (1857):48–55, 2003.

10. Keinosuke Fukunaga and Patrenahalli M Narendra. A branch and bound algorithm
for computing k-nearest neighbors. IEEE, 100(7):750–753, 1975.

11. Peter Furth and Adam Rahbee. Optimal bus stop spacing through dynamic pro-
gramming and geographic modeling. Transportation Research Record: Journal of

the Transportation Research Board, (1731):15–22, 2000.

12. Benjamin Hamner. Predicting travel times with context-dependent random forests
by modeling local and aggregate traffic flow. In ICDMW, 2010 IEEE International

Conference on, pages 1357–1359. IEEE, 2010.

13. Tin Kam Ho. Random decision forests. In Document Analysis and Recognition,

1995., Proceedings of the Third International Conference on, volume 1, pages 278–
282. IEEE, 1995.

14. GM Jenkins and GC Reinsel. Time series analysis: forecasting and control, 1976.

15. Yexin Li, Yu Zheng, Huichu Zhang, and Lei Chen. Traffic prediction in a bike-
sharing system. 2015.

16. Andy Liaw and Matthew Wiener. Classification and regression by randomforest.
R news, 2(3):18–22, 2002.



16 PULSE Framework

17. Liang Liu, Anyang Hou, Assaf Biderman, Carlo Ratti, and Jun Chen. Under-
standing individual and collective mobility patterns from smart card records: A
case study in shenzhen. In Intelligent Transportation Systems, 2009. ITSC’09.

12th International IEEE Conference on, pages 1–6. IEEE, 2009.
18. Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent

in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.
19. United Nations. World Urbanization Prospects 2014: Highlights. United Nations

Publications, 2014.
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