Project Notes:

<u>Project Title:</u> How Synaptic Pruning Mediates the Relationship Between Gut Bacteria and ASD/ADHD <u>Name:</u> Yerin Kim

Note Well: There are NO SHORT-cuts to reading journal articles and taking notes from them. Comprehension is paramount. You will most likely need to read it several times, so set aside enough time in your schedule.

Contents:

Knowledge Gaps:	2
Literature Search Parameters:	3
Tags:	3
Article #0 Notes: Title (template)	4
Article #1 Notes: The Gut Microbiome Helps Social Skills Develop in the Brain	5
Article #2 Notes: Spreading the Word on a Possible Alzheimer's Treatment*	7
Article #3 Notes: Correlation between brain function and ADHD symptom changes in children with ADHD following a few-foods diet: an open-label intervention trial	9
Article #4 Notes: Gut microbiota metabolites mediate the interplay between childhood maltreatment and psychopathology in patients with eating disorders	13
Article #5 Notes: Circulating metabolites modulated by diet are associated with depression	15
Article #6 Notes: Do patterns of synaptic pruning underlie psychoses, autism, and ADHD?	17
Article #7 Notes: Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS	19
Article #8 Notes: The translational genetics of ADHD and related phenotypes in model organisms	22
Article #9 Notes: Gut microbiota and dietary patterns in children with attention-deficit/hyperactivity disorder	27
Article #10 Notes: A Customizable Low-Cost System for Massively Parallel Zebrafish Behavioral Phenotyping	30
Article #11 Notes: Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases	33
Patent #1 Notes: Method and system for diagnosis of neuropsychiatric disorders including attention deficit hyperactivity disorder (adhd), autism, and schizophrenia	36
Article #12 Notes: Decoding the zebrafish genome	40
Article #13 Notes: Bifidobacteria shape host neural circuits during postnatal development by promoting synapse formation and microglial function	42
Article #14 Notes: Early-life differences in the gut microbiota composition and functionality of infants at elevated likelihood of developing autism spectrum disorder	46
Article #15 Notes: Using Zebrafish to Model Autism Spectrum Disorder: A Comparison	of

VIIII T	K	im	1
---------	---	----	---

ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts	48
Article #16 Notes: Autism Spectrum Disorder	51
Article #17 Notes: Pharmacological Therapies for Autism Spectrum Disorder: A Review	/53
Article #18 Notes: Acute pre-operative ibuprofen improves cognition in a rat model for	
postoperative cognitive dysfunction	55
Article #19 Notes: Zebrafish: Housing and husbandry recommendations	58
Article #20 Notes: Quantitative immunohistochemical analysis of myeloid cell marker	
expression in human cortex captures microglia heterogeneity with anatomical context	61
Patent #2 Notes: Compositions and methods for treating disorders characterized by a	
defect in gpr56 expression or activity	64
Patent #3 Notes: Beta-2 chimaerin as a mediator of axonal and synaptic pruning	66

Knowledge Gaps:

This list provides a brief overview of the major knowledge gaps for this project, how they were resolved and where to find the information.

Knowledge Gap	Resolved By	Information is located	Date resolved
Psychostimulants (how they work, drawbacks)	Watching a YouTube video explaining function	https://youtu.be/nhG5 a5sET10?si=WS2YPOB- CSkVHrFQ	11/23
Different types of ADHD	Reading an official ADD article describing each type of ADHD (symptom-wise differences)	<u>https://add.org/adhd-t</u> <u>ypes/</u>	9/10
Short chain fatty acids (SCFAs)	Watching YouTube videos explaining their composition and function	https://youtu.be/1M-p qKeFkJY?si=WRTZzURS Y33SthLg https://youtu.be/zxXCp u4NLaM?si=vDqrMFft MRI1DDU6	11/23
Synaptic pruning	Reading a Healthline article with a general overview of the topic	https://www.healthline .com/health/synaptic-p runing#an-indepth-look	9/3
Zinc Finger Nucleases	Watching a YouTube video outlining the concept	<u>https://youtu.be/TvySii</u> <u>e0KEA</u>	10/18
Purkinje Cells	Watching information YouTube video that highlights their role in the brain	https://youtu.be/QUkw qAaSrUg?si=yQ9qHdQz iJVHv3Kb	12/12
GABA	Introductory YouTube Video about concept	https://youtu.be/MRr6 Ov2Uyc4?si=JZEGYgCC8 CF3cXw9	12/12

Literature Search Parameters:

These searches were performed between (Start Date of reading) and XX/XX/2019. List of keywords and databases used during this project.

Database/search engine	Keywords	Summary of search
Scopus	synaptic pruning mental disorders	Previous studies conducted about the relationship between synapses and mental disorders
Nature	mental disorders diet	foods that were identified to increase chances of mental disorders, or alleviate symptoms
Nature	gut bacteria autism	Many studies regarding different populations of people (and other organisms) that had ASD and differences in their microbiome

Tags:

Tag Name	
#psychology	#gutmicrobiome
#braindevelopment	

Article #0 Notes: Title (template)

Article notes should be on separate sheets

KEEP THIS BLANK AND USE AS A TEMPLATE

Source Title	
Source citation (APA Format)	
Original URL	
Source type	
Keywords	
#Tags	
Summary of key points + notes (include methodology)	(summary) <u>Problem:</u> <u>Goal:</u> <u>Method:</u> <u>Findings:</u> (key points)
Research Question/Problem/ Need	
Important Figures	
VOCAB: (w/definition)	
Cited references to follow up on	
Follow up Questions	

Article #1 Notes: The Gut Microbiome Helps Social Skills Develop in the Brain

Source Title	The Gut Microbiome Helps Social Skills Develop in the Brain	
Source citation (APA Format)	Thompson, J. (2022). The Gut Microbiome Helps Social Skills Develop in the	
	Brain. <i>Quanta Magazine.</i>	
	https://www.quantamagazine.org/the-gut-microbiome-helps-social-skill	
	<u>s-develop-in-the-brain-20221115/</u>	
Original URL	https://www.quantamagazine.org/the-gut-microbiome-helps-social-skills-develop- in-the-brain-20221115/	
Source type	Magazine	
Keywords	gut microbiome psychology	
#Tags	<pre>#psychology #gutmicrobiome #braindevelopment</pre>	
Summary of key points + notes (include methodology)	Scientists have known for a while that the gut and brain are interconnected through the gut brain axis. Though there has been limited knowledge about how they work together, a recent study found that zebrafish that were exposed to healthy gut microbes only a week after birth were late to start joining shoals of fish compared to the other zebrafish who were exposed right at birth. This lack of sociability was also seen through the way their paths in the tank were more random and solitary compared to the zebrafish with normal gut microbiomes that generally swam closer to the transparent divider in the tank so they could be closer to the fish on the other side. These changes could also be seen physically in the brain: the fish that did not have a gut microbiome during early development were more packed with connections between neurons in the forebrain that affect social behavior, and less microglia, which are responsible for getting rid of waste in the brain and pruning unnecessary synapses. Even though it is still unclear how gut microbiota communicate with and create changes in the brain, and if the effect pertains to humans as well, this study still clearly shows that there is definitely a relationship between the two, and it would be interesting to further the studies on how the two communicate with each other, and the specific effects caused by specific bacteria. If this can be identified, it may open up new pathways to treatment for neurological/mental disorders.	
Research Question/Problem/ Need	How does delayed development of the gut microbiome affect the social psychology of zebrafish?	

Important Figures	Normal microbiome	
	Transparent divider	
	Germ-free	
	This visual shows how zebrafish with a normal microbiome primarily swam around the transparent divider near the fish on the other side, while the zebrafish without a gut microbiome had much more sporadic swimming pathways.	
VOCAB: (w/definition)	Inoculate: to immunize (an organism) against a disease by exposing them to infective material Detritus: waste/debri Vagus nerve: cranial nerve that carries signals between brain, heart, and digestive system	
Cited references to follow up on	Paper about lack of gut microbiome and decreased sociability: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001838	
Follow up Questions	How does the gut and brain communicate with each other? What specific effects on the brain are caused by specific bacteria? What role does microglia play in mental disorders?	

Article #2 Notes: Spreading the Word on a Possible Alzheimer's Treatment*

Source Title	Spreading the Word on a Possible Alzheimer's Treatment	
Source citation (APA Format)	Fields, R. D. (2020, May 27). Spreading the Word on a Possible Alzheimer's	
	Treatment. Quanta Magazine.	
	https://www.quantamagazine.org/spreading-the-word-on-a-possible-alz	
	heimers-treatment-20200527/	
Original URL	https://www.quantamagazine.org/spreading-the-word-on-a-possible-alzheimers-t reatment-20200527/	
Source type	Scientific magazine	
Keywords	Alzheimer's, brain waves, microglia	
#Tags	#microglia #brainwaves #exploration	
Summary of key points + notes (include methodology)	Alzheimer's was previously discovered to cause weaker and more infrequent 40-hertz brain waves than in people without Alzheimer's. Using this information, neuroscientist Li-Huei Tsai and her lab used optogenetic simulation on mice which shoots lasers directly into the neurons and made them fire 40 Hz impulses. This led to a decrease in amyloid plaques, an identifier for Alzheimer's. However, they recognized that this was not a realistic treatment option for humans, so instead, they used a different method to increase the power of gamma waves. When they used visual simulation of a strobe of flashing lights, not only did the 40 Hz waves intensify, but the amyloid plaques were also removed. To find out what the direct cause of this was, they moved their focus to microglia which were discovered by Alois Alzheimer himself to be often found near amyloid plaques, and additional research confirmed that they got rid of the plaques. Microglia can sense electrical activity in the brain and are prompted to fix the wiring when waves become irregular. Furthermore, extending the period of the visual simulation prevented neurons and synapses from disappearing. Sound simulation had similar results in the auditory cortex, and in the hippocampus, the subject mice had increased memory. To understand more of the biological reasoning of how the brain waves cause microglia to remove plaques and protect neurons, further research by a team at Georgia Institute of Technology found that gamma visual simulation caused microglia to produce more cytokines, which regulate neuroinflammation. The article concluded by hinting at the possibility of other types or ranges of light	

	and sound simulations to treat different neurological diseases.
Research Question/Problem/ Need	How can specific brain wave frequencies be used to treat Alzheimer's and what is the specific process that leads to the improvement?
Important Figures	N/A
VOCAB: (w/definition)	<u>Oscillate</u> : change in size or position around a central point <u>Optogenetic</u> : technology that allows fast and specific control of precise events in biological systems
Cited references to follow up on	Study in mice showing decreased amyloid plaques after firing 40 Hz waves: https://www.nature.com/articles/nature20587 Study in humans showing strobe lights increase brain waves and decrease AP: https://www.cell.com/neuron/fulltext/S0896-6273(19)30346-0?_returnURL=https %3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0896627319303460% 3Fshowall%3Dtrue
Follow up Questions	What are the drawbacks and/or negative symptoms of using strobe lights to increase brain waves at a certain frequency? What are other methods that have been known to decrease amyloid plaques and how does this method compare? How can other methods be used to increase microglia production of cytokines without affecting brain waves?

Article #3 Notes: Correlation between brain function and ADHD symptom changes in children with ADHD following a few-foods diet: an open-label intervention trial

Article notes should be on separate sheets

Source Title	Correlation between brain function and ADHD symptom changes in children with ADHD following a few-foods diet: an open-label intervention trial	
Source citation (APA Format)	 Hontelez, S., Stobernack, T., Pelsser, L. M., van Baarlen, P., Frankena, K., Groefsema, M. M., Kleerebezem, M., Rodrigues Pereira, R., Postma, E. M., Smeets, P. A. M., Stopyra, M. A., Zwiers, M. P., & Aarts, E. (2021). Correlation between brain function and ADHD symptom changes in children with ADHD following a few-foods diet: An open-label intervention trial. <i>Scientific Reports</i>, <i>11</i>(1), Article 1. <u>https://doi.org/10.1038/s41598-021-01684-7</u> 	
Original URL	https://www.nature.com/articles/s41598-021-01684-7	
Source type	Scientific journal	
Keywords	dietary intervention adhd brain activity	
#Tags	#adhd #brainactivity #diet	
Summary of key points + notes (include methodology)	 (summary) <u>Problem:</u> Drugs for ADHD are not completely effective and have multiple side effects, so new treatment types should be considered. <u>Goal:</u> Since it is already known that ADHD negatively affects brain functioning, the study aimed to investigate the effect of the few foods diet on brain activation, especially in the indicated regions of interest. <u>Method:</u> To analyze differences in ADHD behavior, ADHD Rating Scale scores were compared at baseline and after the FFD, as well as inhibition task reaction times. Additional fMRIs were taken during the response inhibition tasks to see where brain activity increased. <u>Findings:</u> There was a significant decrease in ARS scores in 63% of the subjects, and a slight decrease in reaction time during the interference inhibition tasks (no real improvement in task performance/accuracy). There were no significant changes in 	

Research Question/Problem/ Need	 the brain ROIs during the tasks; however, when activity throughout the whole brain was considered, both response inhibition type tasks caused an increase in activity in the precuneus (which also aligned with the ARS score changes). There were also significant decreases in ODD symptoms, which is often copresent with ADHD. (key points) ADHD affects the following brain regions: frontal, parietal, temporal, occipital lobes and cerebellar and sub-cortical regions (activated during response inhibition). The few foods diet includes: rice, turkey, vegetables, pears, olive oil, ghee, salt, rice drink with added calcium and water The extended FFD also includes: lamb, butter, small portions of wheat, corn, potatoes, some fruits, honey Precuneus plays a role in visuospatial processes, as well as brain's default network (alert but not participation in task). Depending on activity, may be over- or under-activated in people with adhd. How effective is the few foods diet on ADHD, and how can its effect be explained through changes in brain activity? 										
Important Figures	N Mean ARS score t0 (SD) t1 (SD) t2 (SD) t1 versus t0 t2 versus t1										
						Cohen's d	Difference (95% CI)	<i>p</i> valueª	Cohen's d	Difference (95% CI)	p value ^a
	FFD	79	46.7 (5.1)	46.2 (5.8)	22.7 (15.6)	- 0.08	- 0.5 (- 1.3, 0.3)	0.25	- 1.99	- 23.4 (- 27.0, - 19.9)	< 0.0001
	Stop-signal task	53	46.7 (4.6)	46.6 (5.4)	21.5 (15.1)	- 0.02	- 0.1 (- 1.0, 0.9)	0.87	- 2.21	- 25.1 (- 29.4, - 20.9)	< 0.0001
	Flanker task	32	46.9 (4.4)	46.9 (4.9)	20.8 (16.1)	0.00	0.03 (- 1.4, 1.4)	0.96	- 2.19	- 26.2 (- 31.8, - 20.5)	< 0.0001
	t2 (after F indicates I	FD) 10V) ARS : w the i	scores mean	. The C of the 1	ohen's t2 score	d further su es were quite	pports e less t	this as han th	t1 (baseline) the negative e t1 mean sc stically signif	e value ore,

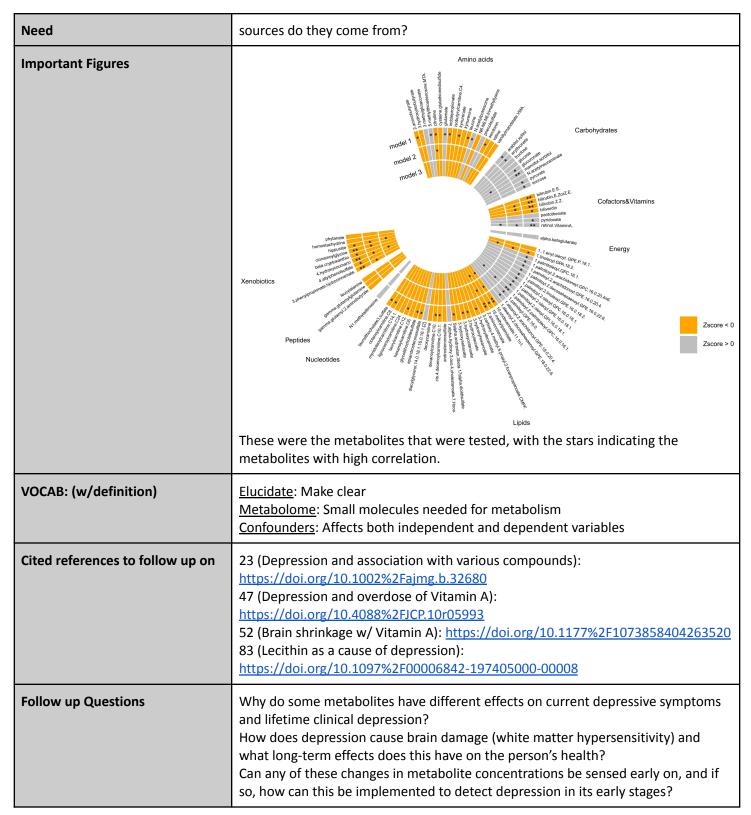
	Responder eNon-responder This scatter plot further supports how there was a significant decrease in ARS scores before and after the FFD intervention. However, it also helps to point out the fact that a little less than half of the participants did not show a significant change in ARS scores/behavior after the FFD.
VOCAB: (w/definition)	<u>Open-label:</u> both researchers and participants are aware of intervention <u>Functional MRIs (fMRIs):</u> as opposed to MRIs, fMRIs solely scan the brain, and they also detect metabolic activity over time using blood flow (blood oxygen levels). <u>Inhibition:</u> forcefully restraining an instinctual response <u>Mean beta weight (of brain):</u> a combination of the different analyses in tiny 3D sections (voxels) of the brain to give an overall result. <u>Covariate:</u> an additional (not primary) independent variable that may affect the outcome of the dependent variable
Cited references to follow up on	6 ("most stringent" FFD): <u>https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169277</u> 9 (developing personalized diets for maximum ADHD effectiveness): <u>https://adc.bmj.com/content/84/5/404</u> 26 (more info about precuneus?): <u>https://www.sciencedirect.com/science/article/pii/S0924977X19304365?via%3Dih</u> <u>ub</u>
Follow up Questions	How does this study put the placebo effect into account? What is the role of the precuneus? What is the difference between researcher's observation ratings and teacher ratings? Is the teacher referred to here just their primary school teacher? What do blood oxygen levels indicate in the brain? What is the difference between combined, inattentive, and hyperactive/impulsive ADHD? What is the main role of the precuneus? (implied through article) How would the results change if the subject were in a different age group (e.g. the elderly)?

(project-like) How can the fMRI scanning process be made more accurate and adaptable to movement and other technical issues? (project-like?) How do the compounds in specific foods lead to a change in br functioning? How were the FFD foods chosen? What was the criteria?	
---	--

Article #4 Notes: Gut microbiota metabolites mediate the interplay between childhood maltreatment and psychopathology in patients with eating disorders

Article notes should be on separate sheets

Source Title	Gut microbiota metabolites mediate the interplay between childhood maltreatment and psychopathology in patients with eating disorders	
Source citation (APA Format)	Castellini, G., Cassioli, E., Vitali, F., Rossi, E., Dani, C., Melani, G., Flaccomio, D., D'Andria, M., Mejia Monroy, M., Galli, A., Cavalieri, D., Ricca, V., Bartolucci, G. L., & De Filippo, C. (2023). Gut microbiota metabolites mediate the interplay between childhood maltreatment and psychopathology in patients with eating disorders. <i>Scientific Reports</i> , <i>13</i> (1), Article 1. <u>https://doi.org/10.1038/s41598-023-38665-x</u>	
Original URL	https://www.nature.com/articles/s41598-023-38665-x	
Source type	Scientific journal	
Keywords	gut brain axis mental disorder	
#Tags	#mentalillness #gutmicrobiome #metabolites	
Summary of key points + notes (include methodology)	(summary) Problem: Eating disorders are dangerous mental illnesses, but their complex causes and lack of biological knowledge makes it difficult to make effective treatments. <u>Goal:</u> This study aimed to bridge the connection between the early childhood trauma, the gut microbiome, and the symptoms of multiple different types of EDs. <u>Method:</u> To analyze childhood maltreatment experiences, the subjects went through clinical evaluations and the Childhood Trauma Questionnaire. <u>Findings:</u> In terms of acids, childhood maltreatment was overall linked to butyric acid, which was also a predictor of trait anxiety; both were found to be significant chains in the connection between EDs and early trauma. Additionally, the people with EDs had significantly less diverse gut microbiota than the HC, with varying types of gut microbiota among people with different types of eating disorders.	


	(key points) - Childhood maltreatment was negatively correlated with shorter SCFAs.
Research Question/Problem/ Need	What changes in the gut are linked to early childhood trauma that also affect different types of eating disorders and their correlating behaviors?
Important Figures	Butyric Acid -0.75* STAI Trait Anxiety -0.84* 4.55*** 0.07 0.08*** (-0.31) (0.50) (0.16) EDE-Q Total Score (0.17) Total Score Butyric acid provides scientific explanation for how childhood trauma leads to eating disorders.
VOCAB: (w/definition)	Etiopathogenesis: cause and development of a disease or abnormal condition <u>Trait anxiety</u> : Tendency to feel anxiety <u>Serial medication</u> : predicts a consequential (one affects the next) chain relating different factors to each other that has a specific direction of flow <u>Stratification</u> : categorizing things into different groups <u>Alpha diversity</u> : the variation of species/organisms/things present on a small scale (smaller, specified population)
Cited references to follow up on	18 (ghrelin receptor signaling): <u>https://doi.org/10.1096%2Ffj.201901433R</u> 17 (anorectic hormones, esp induced by SCFAs): <u>https://doi.org/10.1038%2Fs41575-019-0157-3</u>
Follow up Questions	What are the other studied effects of short chain fatty acids on brain function/mental processing and on overall human health? What is the difference between shorter and longer SCFAs? What is the hypothalamic pituitary adrenal axis and what role does it play? Are there any current medications for people with eating disorders, and if so, how do they help the patient and what are their side effects? What are benzodiazepine anxiolytics? What is their role and relation to EDs?

Article #5 Notes: Circulating metabolites modulated by diet are associated with depression

Article notes should be on separate sheets

Source Title	Circulating metabolites modulated by diet are associated with depression	
Source citation (APA Format)	van der Spek, A., Stewart, I. D., Kühnel, B., Pietzner, M., Alshehri, T., Gauß, F. Hysi, P. G., MahmoudianDehkordi, S., Heinken, A., Luik, A. I., Ladwig, KH., Kastenmüller, G., Menni, C., Hertel, J., Ikram, M. A., de Mutsert, F Suhre, K., Gieger, C., Strauch, K., Amin, N. (2023). Circulating	
	metabolites modulated by diet are associated with depression. <i>Molecular Psychiatry</i> , 1–14. <u>https://doi.org/10.1038/s41380-023-02180-2</u>	
Original URL	https://www.nature.com/articles/s41380-023-02180-2	
Source type	Scientific journal	
Keywords	gut brain axis mental disorder	
#Tags	#metabolites #mentalillness	
Summary of key points + notes (include methodology)	As cases of depression have been increasing during the pandemic, and uncertainty remains about the exact causes and the effectiveness of current treatments, this study sought out to discover which metabolites are positively (or negatively) linked to depression and what food sources they come from to provide insight on dietary recommendations for people with depression. To study this, they analyzed various databases which had information regarding metabolites and genomes in people with depression, food sources for those metabolites, the impact of antidepressant therapies, and the gut microbiota that were correlated with the specific microbiomes. They identified strong correlations between six metabolites and depression, among which one of them was vitamin A, which showed a positive correlation (higher levels of retinol and depression). They also found out that metabolites that were previously discovered to be linked with depression and were part of the amino-acid pathway (ex. Serotonin, leucine) were very likely to be	
	expressed due to antidepressant medication.	

Article #6 Notes: Do patterns of synaptic pruning underlie psychoses, autism, and ADHD?

Source Title	Do patterns of synaptic pruning underlie psychoses, autism, and ADHD?	
Source citation (APA Format)	Silva, P. N. de. (2018). Do patterns of synaptic pruning underlie psychoses,	
	autism and ADHD? <i>BJPsych Advances</i> , 24(3), 212–217. https://doi.org/10.1192/bja.2017.27	
Original URL	https://www.cambridge.org/core/journals/bjpsych-advances/article/do-patterns-o f-synaptic-pruning-underlie-psychoses-autism-and-adhd/10BB01A1F04C0D8EA449 580DA5690144	
Source type	Journal article	
Keywords	synaptic pruning psychiatric conditions	
#Tags	#mentaldisorder #synapticpruning #backgroundinfo	
Summary of key points + notes (include methodology)	 (summary) <u>Problem:</u> Many major psychiatric conditions have biological symptoms in early developmental stages, but many go unnoticed and are not well studied. <u>Goal:</u> Identifying biomarkers can improve early detection of mental illnesses and also help guide the direction of treatment. Specifically, identifying the connection between abnormal amounts of synaptic pruning and specific mental disorders can be applied to specific microglial activity enhancers and suppressors. <u>Method:</u> Different types of brain imaging techniques were used amongst patients with the psychiatric disorder and their healthy siblings such as PET scans, MRIs (+DTIs) to compare grey matter volume loss. <u>Findings:</u> There are excessive amounts of synaptic pruning in all brain regions in schizophrenia and some regions in bipolar disorder. There is not enough pruning during all phases in autism and during the childhood phase of ADHD. (key points) Grey matter loss is associated with and can be a measure of the amount of synaptic pruning occurring in the brain. Unwanted synapses are "tagged" with a protein marker for elimination, and astrocytes help identify these. Microglial activity can be measured using PET scans, particularly ligand PK11195 which provides a proxy measure. 	

	- An allele of the C4 genes (C4A) is more likely to be present in patients with schizophrenia.		
Research Question/Problem/ Need	How does the amount of synaptic pruning connect to various mental disorders and how can this information be utilized to help treat those disorders?		
Important Figures	 BOX 3 Potential immunotherapy for synaptic under- or overpruning Rapamycin (immunosuppressant) enhances neuronal pruning Minocycline (antibiotic and anti-inflammatory) reduces microglial activation Atypical antipsychotics such as perospirone, quetiapine any dynamic attenuate microglial activation via cytokine production Lithium reduces microglial activation via the P13K/Akt intracellular signalling pathway Bone marrow transplantation to increase activated microglia Plasmapheresis to clear the antibodies from bone marrow or circulation Peripheral infusion of activated microglia Gene silencing, for example of the C4 allele in schizophrenia Although there weren't any visuals in this Article, I included this box summarizing the different types of approaches that could be used to mediate rates of synaptic pruning in patients, which could be used as a form of treatment to regulate symptoms of mental disorders. 		
VOCAB: (w/definition)	<u>Prodromal:</u> Relating to the period between first signs and full development of an illness. <u>Phagocytosis:</u> The process of a cell engulfing an unwanted thing to destroy it. <u>Encephalitis (encephalitic):</u> Inflammation of the brain. <u>Parsimonious:</u> Simplest, and hence, most likely to be accurate theory. <u>Ligands:</u> an ion or molecule that bonds with a metal atom.		
Cited references to follow up on	Schizophrenia genes, gene expression and neuropathology: on the matter of their convergence. (https://www.nature.com/articles/4001558) Mapping Continued Brain Growth and Gray Matter Density Reduction in Dorsal Frontal Cortex: Inverse Relationships during Postadolescent Brain Maturation (https://www.jneurosci.org/content/21/22/8819)		
Follow up Questions	Is there a specific (quantitative?) criteria to determine if a synapse should be 'tagged' for elimination? If so, what is it and how general is it? What are the other major roles of the microglia? What are the pros and cons of using grey matter volume loss vs the ligand PK11195 as proxy measures for synaptic pruning? What are the other implications based on amount of grey matter volume in the brain? What are the other biological (or physical?) similarities between autism and ADHD?		

Article #7 Notes: Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS

Source Title	Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS	
Source citation (APA Format)	 Faust, T. E., Gunner, G., & Schafer, D. P. (2021). Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. <i>Nature Reviews Neuroscience</i>, 22(11), Article 11. https://doi.org/10.1038/s41583-021-00507-y 	
Original URL	https://www.nature.com/articles/s41583-021-00507-y	
Source type	Journal article	
Keywords	synaptic pruning microglia neurons astrocyte neural activity	
#Tags	#backgroundinfo #synapticpruning #neurologicalprocesses	
Summary of key points + notes (include methodology)	 (summary) This article explained the various processes that lead to synaptic pruning, mainly spontaneous vs. experience-driven neural activity induced pruning, immune-function induced pruning, and apoptosis, as well as the different cell types that performed the action (microglia, astrocytes, etc), and the different factors that may have triggered the action (neural activity, proteins, genes, environmental factors). Finally, they described how irregular patterns in synaptic pruning may be the cause of neurological disorders such as ASD and schizophrenia. (key points) Activity-induced pruning can happen at different stages of life based on what brain region it's taking place in, what subtype of neuron it is, and when it's taking place (which stage). Spontaneous neural activity regulates S.P. during development of the cerebellum. Cadherin-catenin complexes help stabilize synapses. (may be interesting if there are foods/bacterias that are known to increase amount of this) NP1 and NP2 regulated synapse plasticity? Microglial S.P. occurs in visual cortex, retinogeniculate system, auditory brainstem, auditory cortex, primary and secondary somatosensory 	

	 cortices, and nucleus accumbens. (where to focus brain imaging?) Microglia do not only use phagocytosis to prune synapses, they also weaken climbing fiber synapses to increase chance of "winning" ones. Astrocytes also perform activity-induced synaptic pruning through phagocytosis. There are more astrocytes, so they end up doing more pruning overall, but microglia are more specialized and faster at degradation. ASD brains have not enough S.P., schizophrenia has too much. The genes related to pruning are C1QA, C3, and C3R. Altered mRNA translation may cause autophagy which may be the cause of irregular S.P. Glial cells perform pruning of axons and sensory endings in Drosophila.
Research Question/Problem/ Need	What are the different processes that lead to synaptic pruning and how are they caused? What are the implications of irregular synaptic pruning (specifically in neurological disorders)?
Important Figures	In utero risk factors • Maternal diet • Obstetric complications • Maternal infection • Maternal infection • EIF4E • EIF4E • EIF4E • Rewrow • EIF4E • Adolescent • synaptic pruning • Adolescent • synaptic pruning • Adolescent • Synaptic pruning • Adolescent • Synaptic density than neurotypical • Age (years) • Age (years) • Attism Spectrum Disorder has significant higher synaptic density than neurotypical brains, while Schizophrenic brains have notably lower synaptic density. This connects to the conclusion that ASD often has under pruning and schizophrenia has over pruning.
VOCAB: (w/definition)	Spontaneous neural activity: Neural activity caused without a stimulus. Experience-driven neural activity: Neural activity caused by an external

	factor/stimulus. <u>Cleave</u> : split or sever <u>Endogenous</u> : having an internal cause/origin <u>Synaptogenesis</u> : The process of forming and maintaining a synapse. <u>Autophagy</u> : The process of degrading proteins and organelles.
Cited references to follow up on	158 (genes associated with synaptic pruning): <u>https://pubmed.ncbi.nlm.nih.gov/25180572/</u> 234 (glial synaptic pruning): <u>https://pubmed.ncbi.nlm.nih.gov/18172512/</u>
Follow up Questions	Are there barriers that could cause miscommunication between neuronal activity (use of synapse) and the cells performing synaptic pruning? (ex. accidentally get rid of a necessary synapse) What are (somatic) climbing fiber synapses and what is their significance? How many different types of synapses are there and how are they different? - What are Purjinke Cells and their significance? - Difference between glutamatergic and GABAergic synapses? Would diet be considered spontaneous or experience-driven neural activity? What is the complement cascade? What is it most well known for? What is immunofluorescence microscopy and how does it show S.P.? - Positron emission tomography? What is the difference between spine and synaptic pruning? What are T helper 17 cells and their relationship with ASD?

Article #8 Notes: The translational genetics of ADHD and related phenotypes in model organisms

Source Title	The translational genetics of ADHD and related phenotypes in model organisms	
Source citation (APA Format)	Cabana-Domínguez, J., Antón-Galindo, E., Fernàndez-Castillo, N., Singgih, E. L.,	
	O'Leary, A., Norton, W. H., Strekalova, T., Schenck, A., Reif, A., Lesch,	
	KP., Slattery, D., & Cormand, B. (2023). The translational genetics of	
	ADHD and related phenotypes in model organisms. Neuroscience &	
	Biobehavioral Reviews, 144, 104949.	
	https://doi.org/10.1016/j.neubiorev.2022.104949	
Original URL	https://www.sciencedirect.com/science/article/pii/S0149763422004389?via%3Dihub	
Source type	Scientific review article	
Keywords	ADHD animal models rodents zebrafish fruit fly genetics epigenetics	
#Tags	#modelorganism #adhd #behavioraltests	
Summary of key points + notes (include methodology)	(summary) <u>Problem:</u> The specific molecular explanation of psychological disorders, such as ADHD, are not well known due to their complex causes. <u>Goal:</u> The goal of this paper is to analyze various studies that used different types of model organisms to gain further information about the biology of ADHD, in particular, the genetics and epigenetics related to it. <u>Method:</u> Multiple behavioral tests, gene editing, and exposure to different toxins and drugs were performed on mus musculus, drosophila melanogaster, and danio rerio to identify ADHD behaviors and ADHD-related genes specific to each organism, as well as chemical or environmental factors that increased symptoms/likelihood of ADHD. <u>Findings:</u> Although there are most known symptoms and linked genes to mice models of ADHD, there are also many significant tests and genes known for ADHD models of danio rerio and drosophila. There are also studies that show a link between environmental factors and ADHD through epigenetics, but more research is required for direct causations. (key points)	

-	most of the genes that are correlated with ADHD are targeting genes involved in dopamine transmission (reward pathway), an important neurotransmitter in ADHD
-	treatment for ADHD symptoms includes methylphenidate, amphetamine, and atomoxetine (maybe use to counter-check effects of experimental
	groups with the induced ADHD symptoms?)
-	There are more strains that are known to cause hyperactivity compared to the other 2 ADHD symptom types as it is easier to identify hyperactivity (be aware of this 'bias' when looking at databases)
_	ADHD and ASD are both early-onset neurodevelopmental disorders with
	high comorbidity and genetic overlap.
-	ADHD can cause verbal and visuo-spacial working memory deficits
_	Zebrafish are a common model organism for developmental biology due to
	their quick development and transparency as embryos.
	- Chemical compounds can also be exposed through immersion and
	not direct injection.
-	Zebrafish larvae start moving consistently after 5 days, and adult
	movement pattern forms after ~1 month.
	 Video Tracking can be used to find specific measurements.
-	HYPERACTIVITY IN ZEBRAFISH: "increase in distance swum, heightened
	acceleration during swim bouts"
	 also two choice serial reaction time task
-	IMPULSIVITY IN ZEBRAFISH: The 5-CSRTT test can be performed on the
	zebrafish, which tests their patience of hitting LED lights for food as a
	measure of impulsivity.
-	INATTENTION IN ZEBRAFISH:
	 Orientation - male zebrafish permitted to eavesdrop based on different stimuli?
	 Sustained attention - object recognition test, measuring time
	spent interacting with object on video screen
-	Main ADHD candidate genes are adhesion G protein-coupled receptor L3.1 (lphn3.1/adgrl3.1) and period 1b (PER1B IS MORE WELL STUDIED) (ALSO
	IN TABLE BELOW) both affect ADHD-like behavior through dopamine
	neurotransmission
_	Zebrafish exposed to polychlorinated biphenyls (PCBs) or perfluorooctane
	sulphonate have been linked to increased ADHD (also in humans)
	 "decreased response to visual startle stimulus that could be a measure of attention"
-	Too much acetaminophen use during pregnancy may increase likelihood of
	child showing ADHD symptoms
-	JUST INTERESTING: Irregular circadian rhythms are often the cause of
	many psychiatric disorders, including ADHD
-	HYPERACTIVITY IN FRUIT FLIES: data regarding locomotor activity (using
	Drosophila Activity Monitoring) and sleep help analyze this
	- Also grooming?
-	INATTENTION IN FRUIT FLIES: vision-based behavioral paradigms

	 Main ADHD candidat HABITUATION is related the inability to separ 	ate already known and uch as BPA may contrib	DAT. DHD, as it is mainly caused by new information
Research Question/Problem/ Need	How can different model org mechanisms that cause ADH	-	,
Important Figures	model organism. The second	column shows comort the third column show hree main ADHD sympt	s additional genes/models that

	Table 1 Summary of tests performed to study ADHD-related phenotypes and comorbid disorders in rodents, zebrafish and fruit flies.				
	Disorder	Traits	Rodents	Tests used Zebrafish	Fruit fly
					Activity monitoring, capillary
	ADUD related	Hyperactivity	Open-field test 5-choice serial reaction time task, Go/NoGo,	Locomotive assays	feeder (CAFE) assay, open-field assay
	ADHD-related phenotypes	Impulsivity	continuous performance test, delay discounting, variable delay to signal 5-choice serial reaction time task, continuous	monitoring, 5-choice serial reaction time task 5-choice serial reaction time task,	Courtship disinhibition assay Tethered flight paradigms,
		Inattention	performance test, Go/NoGo, variable delay to signal	object recognition task, social attention paradigm	Buridan's paradigms, optomotor maze
	Autism spectrum disorder	Impaired social behavior and communication, stereotypic behavior, cognitive rigidity	Three-chambered social approach, partition test, nesting behavior, ultrasonic vocalizations, open-field test, Morris water maze, T/Y maze	Shoaling assays, Y maze, interaction with conspecifics, visually-mediated social preference test	Habituation learning assay, grooming, social behavior assay, courtship song assay, Y-maze
	Aggressive behavior	Aggression, social dominance	Resident intruder test, Dyadic social interaction test, social dominance test	Dyadic fight test, interaction with mirror image assay	Dyadic fight test
	Anxiety	Anxiety-related behaviors, thigmotaxis	Open field, elevated plus maze, elevated zero maze, light dark box, stress-induced hyperthermia, vogel test, defensive burying, four plate test	Active avoidance conditioning	Open-field assay
	Major depression	Anhedonia, despair	Sucrose preference test, Porsolt forced swim test, Tail-suspension test, progressive ratio, female urine sniffing test		Learned helplessness paradigm
	Schizophrenia	Impaired sensorimotor gating	Prepulse inhibition test	Prepulse inhibition test	Larval prepulse inhibition test
	Substance use disorders	Reward	Drug-induced locomotor activity or conditioned place preference	Place preference paradigm	Appetitive taste memory test, associative learning assay
VOCAB: (w/definition)	other comorbid disorders. <u>SNP</u> : single nucleotide polymorphism (whole genetic sequence is same except for 1 base) <u>Etiology</u> : The cause(s) of a disease or condition <u>Paradigm</u> : A typical example or model				
	by periods	of inactivity	afish with ADHD) Sharp information that is nev		
Cited references to follow up on	Demontis et al., 2019b (new 12 independent loci regarding "underlying biology of ADHD): <u>https://www.nature.com/articles/s41588-018-0269-7</u> Lee et al., 2019 (genetic studies showing "shared heritability and genetic overlap" between ADHD and ASD): <u>https://doi.org/10.1016/j.cell.2019.11.020</u> Albadri et al., 2017 (study on tools for zebrafish that use light to observe neural activity): <u>https://link.springer.com/chapter/10.1007/978-3-319-60192-2_4</u> Forster et al., 2018 (also study on light to observe zebrafish neural activity): Yang et al., 2018 (most recent article that identified increase in swimming distance				
	in ADHD ze Spulber et zebrafish): Huang et a	ebrafish): <u>https:/</u> al., 2014 (most <u>https://doi.org/</u> al., 2015 (lots of	//doi.org/10.1016/j.ym/ recent article that iden /10.1371/journal.pone. per1b linked to ADHD i NEUROSCI.2551-14.201	eth.2018.08.012 tified motor impu 0094227 n zebrafish info):	ulsivity in ADHD
Follow up Questions		inflammation in	ween knockout and kno the brain affect cogniti	-	hat are the

 What is the difference between unconditioned and conditioned behaviors? How overlapping are the symptoms of ADHD and a dysfunctional circadian rhythm (especially in zebrafish)? Has the "fixing" of circadian rhythms been shown to directly improve
ADHD? Is it possible to purchase per1b mutant zebrafish?

Article #9 Notes: Gut microbiota and dietary patterns in children with attention-deficit/hyperactivity disorder

Source Title	Gut microbiota and dietary patterns in children with attention-deficit/hyperactivity disorder
Source citation (APA Format)	 Wang, LJ., Yang, CY., Chou, WJ., Lee, MJ., Chou, MC., Kuo, HC., Yeh, YM., Lee, SY., Huang, LH., & Li, SC. (2020). Gut microbiota and dietary patterns in children with attention-deficit/hyperactivity disorder. <i>European Child & Adolescent Psychiatry</i>, 29(3), 287–297. https://doi.org/10.1007/s00787-019-01352-2
Original URL	https://link.springer.com/article/10.1007/s00787-019-01352-2
Source type	Scientific article
Keywords	ADHD, Gut-Brain Axis, 16S rRNA sequencing, Microbiome, Biomarker
#Tags	Bacteria, ADHD, Procedure/Method
Summary of key points + notes (include methodology)	 (summary) <u>Problem:</u> ADHD is a common neurodevelopmental disorder that affects various aspects of life for a large number of people, but despite its commonality, the pathophysiology is not clearly known, specifically how it may be affected by diet. <u>Goal:</u> To determine if imbalanced gut microbiomes play a role in the biological causes correlated with ADHD. <u>Method:</u> Collect fecal samples from adolescent ADHD patients, analyze using 16S rRNA amplicon sequencing, and compare with clinical diagnoses and dietary patterns of ADHD. <u>Findings:</u> Although the actual amount of bacteria diversity between ADHD patients and healthy controls is not too varied (ADHD has higher diversity), ADHD patients have different abundances of some specific bacteria. A few types of bacteria were linked to differences in ADHD symptoms as well. (key points) At phylum level, ADHD group had higher relative abundance of <i>Fusobacteria, Actinobacteria*</i>, and <i>Proteobacteria*</i> (*non-significant) At genus level, <i>Fusobacterium</i> had a greater relative abundance in ADHD group. At species level, relative abundance of <i>Bacteroides uniformis, Bacteroides ovatus,</i> and <i>Sutterella stercoricanis</i> were higher in ADHD group than HC.

Research Question/Problem/ Need	- B. ur patie - It is possible by different - Also unclear ADHD, or if A	niformis and B. ovatus ents in Aarts et al. stud that bacterial abunda cultures, age groups, s if difference in bacter ADHD causes the chan	nce in ADHD patients n ocio-environment statu ial diversity/abundance	ant in ADHD hay be affected us, etc. e is a cause of
Important Figures	(Fig 1a, b, c) Shannon and b are expressing with ADHD. The Simp infinite diversity and	n index and Chao index that there is a higher pson index works oppor 1 represents no divers	x both display diversity number of bacterial sp ositely number-wise, as sity. So it follows the pa	ecies in the group 0 represents
	_	ce of bacterial species		
	Genera	ADHD	Healthy controls	p value ^a
	Bacteroides	59.78 (48.16-67.46)	61.72 (50.91–66.43)	0.717
	Prevotella Parabacteroides	0.02 (0.00–1.16) 3.83 (1.71–4.59)	0.06 (0.01–7.11) 3.46 (1.77–6.73)	0.865
	Phascolarctobacterium	1.88 (0.32–3.98)	1.82 (0.75-4.96)	0.734
	Escherichia Shigella	0.68 (0.11-5.24)	1.82 (0.33–3.35)	0.460
	Alistipes	4.32 (0.02–7.37)	0.68 (0.21–2.49)	0.437
	Veillonella	0.54 (0.06–2.04)	0.39 (0.05–1.84)	0.620
	Sutterella	0.34 (0.01–2.42)	0.28 (0.00–3.90)	0.858
	Fusobacterium	0.28 (0.02–3.28)	0.02 (0.00-0.45)	0.041*
	Akkermansia	0.01 (0.00-1.52)	0.00 (0.00-0.34)	0.304
	genera in in ADHD gr bacteria genus with	roup and HC (%s). How	re abundance of differe vever, it should be note the <i>Fusobacterium</i> , wh DHD.	d that the only
VOCAB: (w/definition)	physically and biolog <u>Phylogenetic</u> : Study <u>Alpha diversity</u> : Abun <u>Beta diversit</u> <u>OTU</u> : A collection of sequence divergence <u>Phyla</u> : Group/rank of	tically. of evolutionary relation ndance/variety of spec \underline{y} :comparative amo 16S rRNA sequences t e. f classification betwee	se or condition affects nships between organi cies within a communit ongst different commur hat have a certain perc n kingdom and class. sification between fami	sms y (local scale) iities entage of
Cited references to follow up on	28 (provious study o	n cimilar tonic of using	g 16S rRNA sequencing	to identify

	bacteria present in ADHD patients): http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt =Abstract&list_uids=28863139 25 (study about how 16S rRNA can be used to identify bacterial taxa in given sample): http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt =Abstract&list_uids=24808895
Follow up Questions	How are the different indices for diversity analysis specifically calculated? Is <i>Fusobacterium</i> present in any common foods? Is it dangerous at all to the human body (what biosafety level is it at)? (more of an interpretive question-maybe ask author?) Is it more likely that the differences in bacterial abundance was caused by or a cause of ADHD?

Article #10 Notes: A Customizable Low-Cost System for Massively Parallel Zebrafish Behavioral Phenotyping

Source Title	A Customizable Low-Cost System for Massively Parallel Zebrafish Behavioral Phenotyping
Source citation (APA Format)	Joo, W., Vivian, M. D., Graham, B. J., Soucy, E. R., & Thyme, S. B. (2021). A Customizable Low-Cost System for Massively Parallel Zebrafish Behavioral Phenotyping. <i>Frontiers in Behavioral Neuroscience</i> , 14. <u>https://www.frontiersin.org/articles/10.3389/fnbeh.2020.606900</u>
Original URL	https://www.frontiersin.org/articles/10.3389/fnbeh.2020.606900/full
Source type	Science journal article
Keywords	zebrafish, high-throughput screens, automated behavior, prepulse inhibition, neuropsychiatric disease, high-speed tracking, DanioVision, ZebraBox
#Tags	#method #procedure #observation
Summary of key points + notes (include methodology)	 (summary) <u>Problem:</u> Zebrafish are increasing in population as a model organism for their efficient growth and easily observable structure, but many methods currently created are costly and too individualized. <u>Goal:</u> The goal was to create a zebrafish behavioral testing setup that was not very costly, yet was also accurate, efficient, and could be adapted for different standards. <u>Method:</u> The setup created and tested in this study consisted of a LED panel and mini projector at the bottom to generate visual stimuli, a surface transducer for acoustic stimuli, a camera to track motion, and a computer to collect and analyze data. <u>Findings:</u> The setup was able to accurately take in and analyze large inputs of data with minimal materials and relatively low cost. When put to the test, it was identified that the density of zebrafish in petri dishes did not affect their behavior, but wild zebrafish had vast ranges of behavior. (key points) zebrafish at larva stage express diverse behaviors in 96-well plate format DanioVision and ZebraBox are current commercial zebrafish observation systems, but they are costly and individualized (only specific types of stimuli)

Research Question/Problem/ Need	 custom LABVIEW software (Python based) on computer analyzes data each analysis run takes between 1.5 and 3.5 hrs Acoustic, visual, and thermal stimuli available (can even be modified for additional parameters) Larvae were grown in 150x55 mm petri dishes with standard methylene blue water, with density of <150 fish per plate, at 28°C, and a 14h/10h light/dark cycle. Behavioral experiments conducted on light/dark cycle Dead material and debris were removed twice before 4 days post-fertilization, and behavioral tests were conducted 4-7 days post-fertilization. Zebrafish were sealed in oxygen permeable film to prevent water evaporation during multi-day experiments. Typically, larvae were loaded into observation boxes on afternoon of 4 days post-fertilization and data analyses started at 11 pm. Strictly standardized mean difference (SSMD) values were calculated to estimate behavioral differences across all parameters, with 0 indicating no effect (test to identify difference between ADHD and healthy controls?) Mini-projector can test optomotor response
Need Important Figures	behaviors? A A A A A A A A A A A A A
VOCAB: (w/definition)	<u>Phenotyping</u> : Determining or predicting the phenotype of an organism <u>Conserved signaling pathways</u> : Signaling pathways w/ similar function present in different organisms <u>Transducer</u> : Electronic device that transforms energy from one form to another <u>Modular</u> : Constructed around a basic formula, but can also be modified for different functions <u>Latency</u> : Delay between user initiation and event actually occurring

Cited references to follow up on	Thyme et al., 2019 (previous observation system design): <u>https://pubmed.ncbi.nlm.nih.gov/30929901</u> Randlett et al., 2019 (zebrafish response to visual stimuli): <u>https://pubmed.ncbi.nlm.nih.gov/30955936</u> Brown et al., 2012 (genetic diversity in wild-type zebrafish): <u>https://pubmed.ncbi.nlm.nih.gov/22203992/</u>
Follow up Questions	What are the benefits of the commercial systems that are not present in the system specified in this study? Does accuracy increase when less fish are being recorded or not necessarily? What is the difference between C-bends and O-bends? Is there a minimum number of zebrafish in one petri dish to ensure they are able to socialize enough? How are zebrafish with and without normal swim bladder morphology different in terms of their behavior? Why is this important to differentiate in this system? Is 14h/10h the optimal light/dark cycle? How is this maintained?

Article #11 Notes: Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases

Course Title	Torgeted gene inactivation in reprefich using engineered sing finger availances
Source Title	Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases
Source citation (APA Format)	Meng, X., Noyes, M. B., Zhu, L. (Julie), Lawson, N. D., & Wolfe, S. A. (2008).
	Targeted gene inactivation in zebrafish using engineered zinc finger
	nucleases. <i>Nature Biotechnology, 26</i> (6), 695–701.
	https://doi.org/10.1038/nbt1398
Original URL	https://pubmed.ncbi.nlm.nih.gov/18500337/
Source type	Scientific article
Keywords	mutagenesis, zinc finger nucleases, zebrafish, gene editing
#Tags	#method #mutations
Summary of key points + notes (include metho\dology)	 (summary) <u>Problem:</u> Directly editing a specific gene in vertebrae organisms is not easily doable. <u>Goal:</u> The goal is to use zinc finger nucleases to make changes in specific genes in model organisms, particularly zebrafish. <u>Method:</u> Engineer ZFNs that can recognize common (ortholog) genes in zebrafish, then co-inject them into zebrafish embryos. <u>Findings:</u> The ZFNs can perform mutations at targeted sites and they can also be passed down through the germline, and they cause mild mutagenesis to the genome overall. (key points) Mutations can occur through ZFNs when non-homologous end joining is performed after ZFN cleavage mRNA injections are performed into stage 1-cell stage embryos, and they will still transmit through following generations observation for injected embryos is needed 24 hrs after injection check for monsters embryos injected with ZFN in this study showed lesions at specific target site and only mild mutagenesis to genome but there is evidence supporting possibility of other alleles being affected degree of penetrance of ZFN mutation was consistent through breeding,

	 indicating that the mutations are stable within germline Embryos were separated (normal vs "monster") 26 hpf Genome sequences 	
Research Question/Problem/ Need	What is the most efficient and effective way to mutate specific genes in the zebrafish genome?	
Important Figures	A	
VOCAB: (w/definition)	Ortholog: Genes in different species that evolved from common ancestral gene Chimeric: containing multiple sets of DNA Dimerization: Multiple proteins bind to create a functional unit Heterozygosity: two different alleles at locus Mosaic: two or more cell populations with different genotypes in one organism Mutagenic: causing permanent chance in organism's genes Stringency: How precisely DNA/RNA strands bind to each other based on their similar features Epitope: Part of antigen where antibody attaches Denature: Unfolding/breaking apart protein from its 3D structure Propensity: Tending to behave in a certain way	
Cited references to follow up on	12 (ZFPs can be engineered to recognize a wide variety of target sequences): <u>https://pubmed.ncbi.nlm.nih.gov/17406455/</u> 18 (imaging of wild type and Tg embryos): <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1458922/</u> 27 (standard method of microinjection of ZFN in embryos): <u>https://pubmed.ncbi.nlm.nih.gov/10503230</u> 21 (toxicity of ZFNs): <u>https://pubmed.ncbi.nlm.nih.gov/17603476</u>	
Follow up Questions	What are the chances of ZFN attaching to the correct genetic sequence, but in the wrong locus/location, causing mutations in other alleles? Why is there a minimum and maximum amount for ZFP chains? (particularly questioning the maximum, since isn't more specific the better?) **from video	

How does non-homologous end joining work? (I assume it's like a chemical(?) reaction since it is error-prone)
What is the significance of nuclear localization signals, epitope tags, and Fokl
cleavage domain variants in ZFPs?
How is Solexa sequencing technology accessed?
How can non-morphologically normal (monster) zebrafish be identified? Why was there such a high percentage of these "monster" zebrafish post-injection and why did only a small group of injected embryos reach adulthood? Why is it significant to look for purines (and even more specifically, guanines) in
ZFP sites?
What is the randomized aspect of the ZFNs and how are they still able to bind to the target site?
How can ZFNs be harmful to organisms? What are the worst possible symptoms?

Patent #1 Notes: Method and system for diagnosis of neuropsychiatric disorders including attention deficit hyperactivity disorder (adhd), autism, and schizophrenia

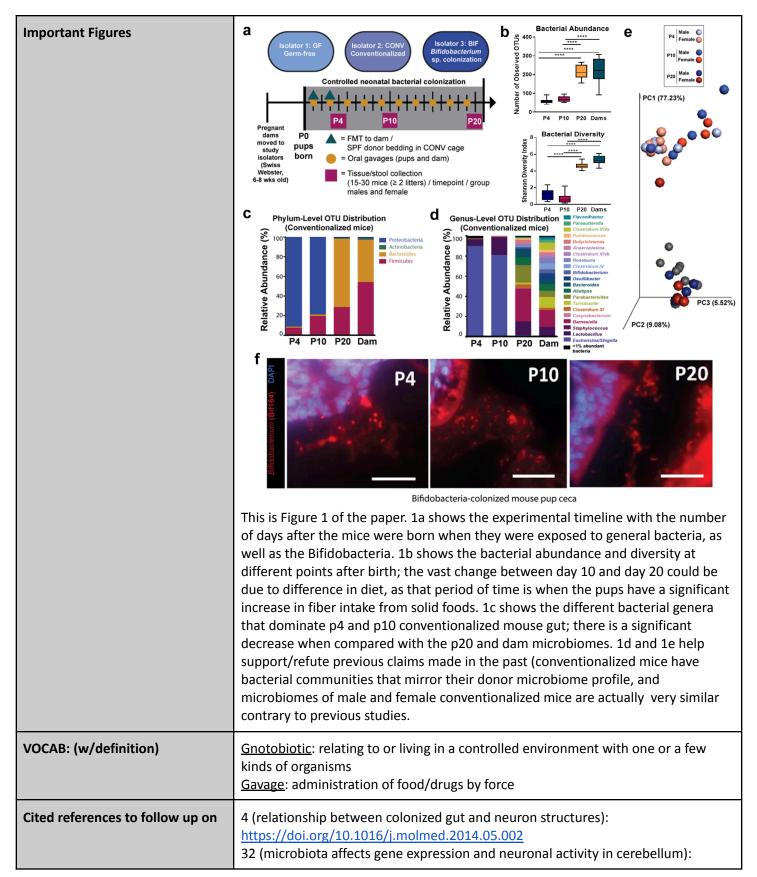
Source Title	Method and system for diagnosis of neuropsychiatric disorders including attention deficit hyperactivity disorder (adhd), autism, and schizophrenia
Source citation (APA Format)	Pettegrew, J., & Panchalingam, K. (2010, January 14). Method and system for diagnosis of neuropsychiatric disorders including attention deficit hyperactivity disorder (adhd), autism, and schizophrenia.
Original URL	https://patents.google.com/patent/US20100010336A1/en?q=(synaptic+pruning)& oq=synaptic+pruning
Source type	Patent
Keywords	ADHD, autism, schizophrenia, neuropsychiatric disorders, biomarkers, neurodevelopment, magnetic resonance spectroscopy
#Tags	#neurodevelopmentalDisorderDetection #otherNeurologicalDisorders
Summary of key points + notes (include methodology)	(summary) This invention describes a method and system for diagnosing and treating neuropsychiatric disorders using phosphorus magnetic resonance spectroscopic imaging (31P MRSI). The invention focuses on two main applications: Diagnosing Chronic Alcoholism: The method examines molecular alterations in the brain, including: Membrane phospholipid and high-energy phosphate metabolism, Synaptic transport vesicles, Phosphorylated proteins, Metabolites with N-acetyl moieties and gangliosides. These alterations are measured using 31P MRSI and compared between individuals with chronic alcoholism (both cognitively impaired and unimpaired) and healthy controls. The presence of specific molecular changes can be used to diagnose chronic alcoholism and potentially distinguish between cognitively impaired and unimpaired subgroups. Treating Depression: The invention proposes using acetyl-L-carnitine (ALCAR) to treat depression. Studies show that ALCAR treatment in depressed patients leads to: Normalization of PME(s-Tc) levels in the prefrontal region (brain area associated with mood regulation) and elevation of PCr levels in various brain regions. These changes are associated with clinical improvement in depression symptoms. ALCAR is proposed as a potential treatment for depression due to its effects on brain energy metabolism, membrane structure/function, and neurotrophic factors.

	 (key points) The invention uses 31P MRSI to identify molecular changes in the brain associated with chronic alcoholism and depression. For chronic alcoholism, the invention offers a potential method for diagnosing the disorder and distinguishing between cognitively impaired and unimpaired subgroups. For depression, the invention proposes ALCAR as a treatment option based on its ability to normalize brain metabolite levels and improve symptoms. Potential Benefits: Improved diagnosis and treatment of chronic alcoholism and depression. Development of new therapeutic strategies based on the identified molecular changes. Personalized medicine approaches based on individual brain chemistry. Future Directions: Further research is needed to validate the diagnostic accuracy of the proposed method for chronic alcoholism. Clinical trials are necessary to confirm the efficacy and safety of ALCAR treatment for depression. Investigating the underlying mechanisms of action for both diagnostic and therapeutic applications would provide valuable insights for future development.
Research Question/Problem/ Need	Can 31P MRSI detect brain chemistry changes to diagnose and treat chronic alcoholism and depression?
Important Figures	FIG. 2A Prefrontal FIG. 2B Prefrontal FIG. 2B FIG. 2B FIG. 2C Basal ganglia figure includes four panels: Fig. 2A: Shows the levels of PME in the prefrontal cortex, a brain region involved in mood regulation and executive function.

	 Fig. 2B: Shows the levels of PME in the basal ganglia, a group of brain structures involved in movement and learning. Fig. 2C: Shows the levels of PCr in the prefrontal cortex. Fig. 2D: Shows the levels of PCr in the basal ganglia. Key findings: PME: In the prefrontal cortex (Fig. 2A), PME levels are higher in both CA-UI and CA-CI groups compared to controls. This suggests that chronic alcoholism, regardless of cognitive impairment, leads to changes in membrane phospholipid metabolism in the prefrontal cortex. In the basal ganglia (Fig. 2B), PME levels are lower in the CA-CI group compared to controls and CA-UI. This suggests that cognitive impairment in chronic alcoholism may be associated with specific changes in basal ganglia (Fig. 2D), PCr levels are lower in the depression group compared to controls. This suggests that depression is associated with decreased energy metabolism in these brain regions. Overall, the figure suggests that 31P MRSI can detect brain chemistry changes associated with chronic alcoholism and depression. These changes may have potential diagnostic and treatment implications.
VOCAB: (w/definition)	 <u>Phosphorus magnetic resonance spectroscopic imaging (31P MRSI):</u> A technique used to study brain chemistry by measuring phosphorus metabolites. (Synonyms: P-MRS, phosphorus MRI) <u>Phosphomethyl ester (PME)</u>: A metabolite involved in membrane phospholipid metabolism. (Synonyms: PME(s-Tc)) <u>Phosphocreatine (PCr)</u>: A high-energy phosphate metabolite that provides energy for brain cells. (Synonyms: creatine phosphate)
Cited references to follow up on	 Aberg-Wistedt A, Ross S B, Jostell K G & Sjoqvist B. A double-blind study of a 5-HT uptake inhibitor in endogenous depression. Acta Psychiatr Scand 66:66-82, 1982. Aitchison J. The Statistical Analysis of Compositional Data, Chapter 7, London: Chapman and Hall, 1986, Alexopoulos G S, Meyers B S, Young R C, Kakuma T, Feder M, Einhorn A & Rosendahl E. Recovery in geriatric depression. Arch Gen Psychiatry 53:305-312, 1996. Altshuler L L, Post R M, Leverich G S, Mikalauskas K, Rosoff A and Ackerman L (1995) Antidepressant-induced mania and cycle acceleration: A controversy revisited[see comment]. Am. J. Psychiatry 152, 1130-1138.
Follow up Questions	How accurate is 31P MRSI in identifying individuals with chronic alcoholism, both cognitively impaired and unimpaired, compared to other diagnostic methods? How does ALCAR treatment normalize brain metabolite levels and improve depression symptoms? Are there specific molecular pathways involved? What are the long-term safety and efficacy of ALCAR treatment for depression,

*generated by ChatGPT

Article #12 Notes: Decoding the zebrafish genome


Source Title	Decoding the zebrafish genome
Source citation (APA Format)	Lawson, N. D. (2022). Decoding the zebrafish genome. <i>Nature Genetics</i> , 54(7),
	Article 7. <u>https://doi.org/10.1038/s41588-022-01080-5</u>
Original URL	https://www.nature.com/articles/s41588-022-01080-5
Source type	Scientific journal (Nature) News Article
Keywords	zebrafish, genome, promoter
#Tags	#zebrafish #genetics #background
Summary of key points + notes (include methodology)	 (summary) <u>Problem:</u> The zebrafish genome, especially the non-coding sequence, is not well known, even though it makes up a large portion of genes. <u>Goal:</u> To be able to map out the zebrafish genome and analyze the importance of non-coding genes. <u>Method:</u> The DANIO-CODE consortium and its affiliated researchers used various assays that had been used before with the human genome such as chromatin immunoprecipitation, high-throughput sequencing, assay for transposase-accessible chromatin with sequencing, etc. <u>Findings:</u> They were able to create public datasets that spanned 15 developmental stages of zebrafish, and identify specific elements such as over 100,000 with predicted enhancer activity. (key points) 99% of human genome is non-coding, "non-functional" zebrafish are an attractive model organism because of their rapid embryogenesis and externally fertilized transparent embryos >70% of human genes have zebrafish equivalents genetic information and properties regarding zebrafish changes based on development
Research Question/Problem/ Need	How can the zebrafish genome be further studied, and in turn, how can cis-regulatory elements be analyzed for their significance/role?

Important Figures	
	RNA-seq
	CAGE
	Gene
	H3K4me3
	H3K27ac
	Cell specificity Stage specificity
	This figure shows the changing complexity of genetic information and characteristics based on the developing stages of the zebrafish. It also highlights the functional elements that are unique to certain developmental features during embryogenesis.
VOCAB: (w/definition)	<u>Glean</u> : To extract info from various sources <u>Perturbation</u> : Alteration of function <u>Amenable</u> : Compliant / responsive to <u>Enhancers</u> : Increase transcription of gene <u>Syntenic</u> : Having similar chromosomal sequences
Cited references to follow up on	DANIO-CODE consortium (8): <u>https://doi.org/10.1089%2Fzeb.2015.1179</u> Annotating non-coding elements in zebrafish genome (9): <u>https://doi.org/10.1038/s41588-022-01089-w</u>
Follow up Questions	What are forward and reverse genetic approaches? What is the benefit/specialty of each? What is chromatin immunoprecipitation? Purpose? What are examples of intrachromosomal interactions and what can they indicate about the organism? What is the difference between CAGE-defined and Ensembl-defined transcriptional start sites?

Source Title	Bifidobacteria shape host neural circuits during postnatal development by promoting synapse formation and microglial function
Source citation (APA Format)	 Luck, B., Engevik, M. A., Ganesh, B. P., Lackey, E. P., Lin, T., Balderas, M., Major, A., Runge, J., Luna, R. A., Sillitoe, R. V., & Versalovic, J. (2020). Bifidobacteria shape host neural circuits during postnatal development by promoting synapse formation and microglial function. <i>Scientific</i> <i>Reports</i>, 10(1), Article 1. <u>https://doi.org/10.1038/s41598-020-64173-3</u>
Original URL	https://www.nature.com/articles/s41598-020-64173-3
Source type	Scientific journal article
Keywords	Bacteria, Synaptic Pruning, Development, Microglia
#Tags	#gutmicrobiome #synapticpruning #development
Summary of key points + notes (include methodology)	 (summary) <u>Problem:</u> gaps in current studies: gut brain axis communication research is mainly done around complex microbial communities, which doesn't indicate anything about specific bacterial species or the specific pathways

	 genes (possibly overexpressed in mice w/out microbial signaling), increased amount of markers signifying more abundant active microglia, and normal synaptic density and neuronal activity measured by density of VGLUT2+ puncta and Purkinje cell firing rate GF mice had observed synaptic deficits measured morphologically and functionally
	(key points)
	 colonization of intestinal microbiota correlated with organization of fundamental neural circuitry during the postnatal period gba in this period is especially important for proper neuronal development
	 Early life microbiomes to early life models will be most similar to actual/natural gut microbiome and brain relationship model Bifidobacterium is an early life microbe that exerts neuromodulatory results
	 the cerebellum is good for studying microbiota affected changes such as synaptic functionality and circuit development well-described circuit organization and in vivo neuronal firing properties
	 colonized mice were colonized using bedding exposure and through their dams
	 routine agar plating of feces of mice was used to check that the mice had no microbial colonization
	 genes controlling synapse development and plasticity in the brain were identified using PCR arrays SYNAPSE RELATED GENES ARE UPREGULATED IN EARLY AGES OF GERM-FREE MICE RELATIVE TO COLONIZED MICE
Research Question/Problem/ Need	How does the gut microbiome affect neurological development in terms of the synaptic pruning process?

Kim 44

	https://doi.org/10.1038/nn.4030 34 (exposure to dietary fiber in solid foods increases Bacteroidetes colonization): https://doi.org/10.1016/j.chom.2017.11.004 25 (studies that show correlation with SP related genes and gut microbiome): https://doi.org/10.1111/nmo.12295
Follow up Questions	 What is the significance of Purkinje Cells and what does their firing rate indicate about neuronal activity? What are the prenatal, neonatal, and postnatal stages for zebrafish? What is the mid-stage of synaptic reorganization and pruning for zebrafish? What are the other known roles/characteristics of <i>Bifidobacterium</i>?

Article #14 Notes: Early-life differences in the gut microbiota composition and functionality of infants at elevated likelihood of developing autism spectrum disorder

Source Title	Early-life differences in the gut microbiota composition and functionality of infants
	at elevated likelihood of developing autism spectrum disorder
Source citation (APA Format)	Zuffa, S., Schimmel, P., Gonzalez-Santana, A., Belzer, C., Knol, J., Bölte, S.,
	Falck-Ytter, T., Forssberg, H., Swann, J., & Diaz Heijtz, R. (2023). Early-life
	differences in the gut microbiota composition and functionality of
	infants at elevated likelihood of developing autism spectrum disorder.
	Translational Psychiatry, 13(1), Article 1.
	https://doi.org/10.1038/s41398-023-02556-6
Original URL	https://www.nature.com/articles/s41398-023-02556-6
Source type	Science journal article
Keywords	Gut-Brain Axis, Autism Spectrum Disorder, Gut Microbiota
#Tags	#bacteriaspecies #analyzingmicrobiome #detection
Summary of key points + notes (include methodology)	(summary) <u>Problem:</u> More and more studies have been identifying that the gut microbiome affects activity in the brain, but <u>Goal:</u> To identify distinct characteristics of the gut microbiota of people with ASD (or a higher likelihood of developing it) so that it can be used to detect the disorder before behavioral symptoms are evident. <u>Method:</u> They used an integrated shallow shotgun metagenomic sequencing and H nuclear magnetic resonance spectroscopy-based untargeted metabolomics method to analyze the microbial profiles of the infants, while MSEL and ADOS-2 tests were used to test <u>Findings:</u> Infants with a higher chance of developing ASD had increased amounts of <i>Bifidobacterium</i> and more <i>Clostridium</i> and <i>Klebsiella</i> species compared to the infants who were less likely. They also scored lower on behavioral intelligence tests compared to the low likelihood group, supporting that there are noticeable

	characteristics of the gut microbiome in infants who are likely to have ASD
	 characteristics of the gut microbiome in infants who are likely to have ASD. (key points) higher vs lower likelihood of ASD determined through family tree people with ASD often have more GI symptoms than neurotypical individuals fecal microbiota transplantation has been used as a method that produced improvements in ASD symptoms and GI issues people with ASD have detailed food preferences, which may often lead to lower gut microbiota diversity Shallow shotgun metagenome sequencing DNA was extracted, then quantified, then libraries were set up to be sequenced H NMR spectroscopy fecal samples were defrosted, diluted, then homogenized, centrifuged, then one-dimensional pulse sequence Stats: calculated mean relative abundances, then plotted the most abundant genera of each group at the specific time points Early Learning Composite Scores (ELCS) improved for infants with a low chance of developing ASD, while there was no significant increase and
	 even some decrease in infants with a high chance amounts of GABA was significantly lower in infants who are more likely to develop ASD
Research Question/Problem/	How can the gut microbiome be used for early detection of ASD? What are the
Need	specific characteristics that are unique to the neurodevelopmental disorder?
Important Figures	specific characteristics that are unique to the neurodevelopmental disorder?

Cited references to follow up on	 6 (multiple different types of causes for ASD): 19-22 (lower expression of possibly good bacteria in people with ASD): 26 (inserting high or low expressed bacteria in ASD into mice): 49 (lower amounts of GABA is children with ASD):
Follow up Questions	How is it determined which bacteria/microbiota to transplant into people with ASD symptoms? I.e. How do they know what will be effective? How long does the full process of shallow shotgun metagenome sequencing take? What is the difference between shallow shotgun metagenome sequencing and H NMR spectroscopy in terms of the results that they yield? What is the typical role/significance of GABA in the brain?

Article #15 Notes: Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts

Source Title	Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts
Source citation (APA Format)	Rea, V., & Van Raay, T. J. (2020). Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts. <i>Frontiers in Molecular Neuroscience</i> , 13. <u>https://www.frontiersin.org/articles/10.3389/fnmol.2020.575575</u>
Original URL	https://www.frontiersin.org/articles/10.3389/fnmol.2020.575575/full
Source type	Science journal article
Keywords	Autism Spectrum Disorder, DNA, mutation, behavior tests
#Tags	#zebrafishAsModelOrganism #ASDBehaviorTests
Summary of key points + notes (include methodology)	(summary) <u>Problem:</u> ASD is a very prevalent neurological disorder that affects cognitive function and behaviors, but the causes are numerous, very complex, and not well understood. <u>Goal:</u> The goal is to identify how zebrafish can be used as a model organism for ASD and specifically observe 12 ASD risk genes in zebrafish. <u>Method:</u> Behavioral tests, primarily observing zebrafishes' behaviors in a tank, were used to identify their ASD symptoms, and gene knockout and morpholino

	 knockdown was used to identify human ASD gene orthologs. <u>Findings:</u> A number of behavioral tests were identified that could be used to indicate the symptoms/symptom severity of ASD in zebrafish, and 12 gene orthologs were identified. (key points) zebrafish are physiologically and genetically similar to humans genome is over 70% similar have been used before to visual neural development genetic manipulation w CRISPR is fairly simple in zebrafish major brain similarities 62% of 858 human ASD risk genes for humans have zebrafish parallels zebrafish brains have neurons, astrocytes, oligodendrocytes, microglia, and similar regions as well ASD related regions human amygdala : zebrafish medial pallium
	 human amygdala : zebrafish medial pallium some human genes have two zebrafish orthologs because of duplication Behavioral tests for zebrafish Visually mediated social preference test comparing fishes' time spent with near familiar and unfamiliar fish 3-Chamber social choice test
Research Question/Problem/ Need	How can zebrafish be used to model ASD in humans in terms of their linked genes and behavioral symptoms?

Important Figures	A yes the shows how there are many similar regions in the brain among zebrafish (A), mice (B), and human brains (C), supporting their capability of being effective human models for cognitive processes.
VOCAB: (w/definition)	<u>Pleiotropic</u> : producing more than one effect <u>Idiopathic</u> : relating to a disease or condition that occurs spontaneously or due to an unknown cause <u>Topologically</u> : relating to the way that parts of a whole are arranged in relation to each other <u>Teleost</u> : bony fish
Cited references to follow up on	Sgritta et al., 2019 (GI issues and microbial profile in ASD): <u>https://www.cell.com/neuron/pdf/S0896-6273(18)31009-2.pdf</u> Stilling et al., 2018 (bacterial metabolites affect cognitive processing): <u>https://elifesciences.org/articles/33070</u> Shams et al., 2018 (zebrafish similarity to humans): <u>https://pubmed.ncbi.nlm.nih.gov/28887224</u>
Follow up Questions	 What are Prader-Willi and Angelman syndromes? How do they compare with ASD? What is the process of neurulation and why is it significant? What is the role/significance of siRNA? What are morpholinos / morpholinos knockdown? Are there different types of methods to knock- down genes? How do they differ? What is the percent of zebrafish that develop ASD when each of the genes are knocked out? I.e. how closely correlated are the specific genes to actual ASD?

Article #16 Notes: Autism Spectrum Disorder

Source Title	Autism Spectrum Disorder
Source citation (APA Format)	National Institute of Mental Health. (n.d.). Autism Spectrum Disorder.
	Retrieved November 8, 2023, from
	https://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-asd
Original URL	https://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-asd#
Source type	Descriptive overview article
Keywords	Autism Spectrum Disorder, Hyperactivity, Neurological Disorder, Developmental Disorder
#Tags	#backgroundInfo #causesOfASD
Summary of key points + notes (include methodology)	 (summary) Autism Spectrum Disorder is a neurodevelopmental disorder that affects a person's ability to socialize and learn. Symptoms include difficulty with communication, interaction, repetitive and restrictive behaviors, as well as excelled memory. The causes of this disorder are complex and not completely known, but genetics are likely to play a role. (key points) Diagnostic and Statistical Manual of Mental Disorders (DSM-5) is used to diagnose ASD Major symptoms social lack of eye contact, even during conversation less responsive, difficulty maintaining conversations difficulty understanding others' point of view restrictive/repetitive restrictive/repetitive upset when routine is interrupted increased sensitivity to external stimuli may have sleep problems academic strong memory strong wisual and auditory understanding

	 genetics older parents lower birth weight Treatment includes medication and behavioral, psychological, and educational interventions
Research Question/Problem/ Need	What is Autism Spectrum Disorder and its major causes and symptoms?
Important Figures	n/a
VOCAB: (w/definition)	<u>Echolalia</u> : repetition of words or phrases <u>Screening</u> : testing of person or group of people for presence of disease or other condition
Cited references to follow up on	 more sources medication for ASD: <u>http://www.fda.gov/drugsatfda</u> current studies about ASD: <u>https://clinicaltrials.gov/ct2/results?term=autism&Search=Apply&recrs=b</u> <u>&recrs=a&age_v=&gndr=&type=&rslt=&fund=0</u> ASD Federal Resource: <u>https://www.nichd.nih.gov/health/topics/autism</u>
Follow up Questions	How does low birth weight affect likelihood of ASD? I.e. how are they correlated? What are the specific types of medication and how do they target the symptoms of ASD? Do symptoms tend to be less or more apparent as the individuals with ASD grow older?

Article #17 Notes: Pharmacological Therapies for Autism Spectrum Disorder: A Review

Source Title	Pharmacological Therapies for Autism Spectrum Disorder: A Review
Source citation (APA Format)	LeClerc, S., & Easley, D. (2015). Pharmacological Therapies for Autism Spectrum Disorder: A Review. <i>Pharmacy and Therapeutics, 40</i> (6), 389–397.
Original URL	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450669/
Source type	Science journal article (review)
Keywords	Autism Spectrum Disorder, Medication, Clinical Studies
#Tags	#typesOfMedication #comorbidSymptoms
Summary of key points + notes (include methodology)	 (summary) <u>Problem:</u> ASD symptoms delay development of social, speech, and behavioral skills. <u>Goal:</u> To identify and explain medication options that can be used alongside behavioral therapy to alleviate particular symptoms. <u>Method:</u> To identify the effects of the drugs, studies gave doses of these medications to people with ASD and other comorbid disorders and tested their behavioral symptoms after a certain period. <u>Findings:</u> There are many prescription based drugs that can be used to treat the different categories of symptoms for people with ASD. (key points) treatment for hyperactivity and inattention blocks reuptake of norepinephrine and dopamine and increases release more ADHD > ASD improvements negative drawbacks like decreased appetite, increase irritability, social withdrawal, restlessness Venlafaxine blocks reuptake of serotonin and norepinephrine linked with depression, anxiety, and panic disorder treatments also improved self-injury behavior

Research Question/Problem/ Need	What are the different types of medication that can be prescribed for people with ASD to target specific symptoms?
Important Figures	n/a
VOCAB: (w/definition)	<u>reuptake</u> : neuron reabsorbing neurotransmitter <u>crossover study</u> : two or more treatments are given to subjects in randomized orders <u>intravenous</u> : situated or occurring in a vein / by entering a vein <u>diuresis</u> : increased excretion of urine
Cited references to follow up on	39 (studying methylphenidate's effect on ASD and ADHD): <u>https://pubmed.ncbi.nlm.nih.gov/11055460</u> 40 (testing different doses of methylphenidate): <u>https://pubmed.ncbi.nlm.nih.gov/17276750</u> 43 (clinical study with low dose of venlafaxine): <u>https://pubmed.ncbi.nlm.nih.gov/16307837</u>
Follow up Questions	What are the major effects of norepinephrine? What are monoamines & their significance? How does the time of administration for these medications influence its effectiveness?

Article #18 Notes: Acute pre-operative ibuprofen improves cognition in a rat model for postoperative cognitive dysfunction

Source Title	Acute pre-operative ibuprofen improves cognition in a rat model for postoperative cognitive dysfunction
Source citation (APA Format)	Oberman, K., Hovens, I., de Haan, J., Falcao-Salles, J., van Leeuwen, B., & Schoemaker, R. (2021). Acute pre-operative ibuprofen improves cognition in a rat model for postoperative cognitive dysfunction. <i>Journal</i> <i>of Neuroinflammation</i> , <i>18</i> (1), 156. <u>https://doi.org/10.1186/s12974-021-02206-y</u>
Original URL	https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-021-022 06-y
Source type	Science journal article
Keywords	Cognition, Inflammation, Neuroinflammation, Ibuprofen
#Tags	#NSAIDsForCognition #synapticPruningNSAIDs
Summary of key points + notes (include methodology)	 (summary) <u>Problem:</u> Inflammation has an impact on development of post operative cognitive dysfunction (POCD), which can impair memory, neurological processes, attention etc. <u>Goal:</u> To identify if NSAIDs, specifically ibuprofen, plays a role in alleviating POCD, and identifying the specific mechanisms that cause this result. <u>Method:</u> Rats were injected with ibuprofen (or just normally cared for) before surgery. Blood and fecal samples were routinely analyzed, behavioral testing was performed 9-14 days post-op, and the specific components of the brain was through immunohistochemistry on day 14. <u>Findings:</u> Ibuprofen improved memory, hippocampal neurogenesis, and hippocampal microglia activity. Gut microbiome was not significantly affected. (key points) Ibuprofen previous results reduces lipopolysaccharide-induced cognitive dysfunction and

	 neuroinflammation in rats improves cognitive function post operation correlated with specific microbial profiles open field test used to assess anxiety and exploratory behavior more time in center of field indicates less anxiety (LIKE THIGMOTAXIS!) samples were stained for ionized-binding adaptor protein (IBA)-1 and doublecortin X to identify microglia and young neurons specifically scanned for hippocampus Statistical tests used Mean, two way anova, one way anova, permanova, beta-diversity Novel object recognition and novel location recognition for for short-term object and spatial memory
Research Question/Problem/ Need	How can NSAIDs be used to alleviate POCD in terms of behavior and changes in neural activity?
Important Figures	$\begin{array}{c} \label{eq:second} \mbox{Microglia activity in hippocampus} \\ \hline \end{tabular} \label{eq:second} \mbox{Microglia activity in hippocampus} \\ \hline \end{tabular} \label{eq:second} \mbox{young C} young IBU aged C aged IBU \\ \hline \end{tabular} \mbox{young C} young IBU aged C aged IBU \\ \hline \end{tabular} \mbox{young } \end{tabular} \mbox{ged} \mbox$
VOCAB: (w/definition)	Ligation: to join together with chemical process

	Endothelial cells: single layer of cells that lines blood vessels and regulates exchange between bloodstream and tissues <u>Neurogenesis</u> : growth and development of tissue part of nervous system <u>Corroborate</u> : to support with evidence
Cited references to follow up on	19 (cognitive effects of ibuprofen on mice): https://doi.org/10.3389/fphar.2019.00632 21 (ibuprofen and gut): https://doi.org/10.1016%2Fj.cmi.2015.10.003 20 (ibuprofen study with decreased microglial activity): https://doi.org/10.1186%2Fs12974-018-1163-z 25 (ILI-b response and microglia activation): https://doi.org/10.1016/j.bbi.2014.02.002
Follow up Questions	What are the symptoms of lipopolysaccharide-induced cognitive dysfunction? Why was the hippocampus region chosen for IHC imaging? Why have previous studies led to decreased microglial activation, while this one shows an increase? What might the underlying factors be? How much excessive microglial activity leads to inflammation?

Article #19 Notes: Zebrafish: Housing and husbandry recommendations

Source Title	Zebrafish: Housing and husbandry recommendations
Source citation (APA Format)	Aleström, P., D'Angelo, L., Midtlyng, P. J., Schorderet, D. F., Schulte-Merker, S., Sohm, F., & Warner, S. (2020). Zebrafish: Housing and husbandry recommendations. <i>Laboratory Animals</i> , <i>54</i> (3), 213–224. <u>https://doi.org/10.1177/0023677219869037</u> .
Original URL	https://journals.sagepub.com/doi/10.1177/0023677219869037
Source type	Science journal article (review)
Keywords	Zebrafish, Husbandry, Temperature, Feed, Condition
#Tags	#takingCareOfZebrafish #controlVariables
Summary of key points + notes (include methodology)	 (summary) <u>Problem:</u> Current care procedures for zebrafish vary greatly between facilities, which can lead to fluctuations in results that use these organisms. <u>Goal:</u> The goal is to create more standardized protocols regarding the way fish are taken care of. <u>Method:</u> <u>Findings:</u> (key points) Transportation and reception safe shipment without contamination regulate temp, water, and air condition embryos > adults Water and housing most tanks come with filter systems, germicidal irradiation, light, and temp controls overflow system with recirculating water Temperature 28.5° C is most often used as a standard temp for zebrafish development temp can influence the rate of their development

	 typically 10h dark and 14h light other combinations may affect physiological processes, like breeding Water quality 0.1 mg/l can be toxic for fish, so should be removed by stirring and aerating chloramine should be removed many facilities used conditioned deionised water
Research Question/Problem/ Need Important Figures	How can zebrafish care conditions be standardized to produce more repeatable projects and consistent results?

Ki	m	60

	grown in facilities. The range for pH is 6.5 to 8, while the recommended temperature range is 24-29°C.
VOCAB: (w/definition)	Irradiation: exposure to radiation <u>Poikilothermic</u> : an organism whose body temperature fluctuates to be similar or slightly higher than the temperature of the environment <u>Water hardness</u> : the concentration of divalent metals in water <u>Autoclave</u> : a strong heated container for sterilization
Cited references to follow up on	25 (O2, CO2, N conditions for fish): <u>https://www.ncbi.nlm.nih.gov/pubmed/27443942</u> 29 (temp influences (zebrafish) development): <u>https://www.ncbi.nlm.nih.gov/pubmed/23382349</u> 36 (importance of D-L cycle for embryos): <u>https://www.ncbi.nlm.nih.gov/pubmed/24367902</u> 41 (zebrafish cortisol release and stress): <u>https://doi.org/10.1016/j.aquaculture.2006.04.020</u>
Follow up Questions	What are the less obvious signs that zebrafish transportation has been contaminated? What is germicidal irradiation and why is it important for the fish? How is the light transitioned for dusk and sunrise? What is conditioned deionised water and why is this important for fish?

Article #20 Notes: Quantitative immunohistochemical analysis of myeloid cell marker expression in human cortex captures microglia heterogeneity with anatomical context

Source Title	Quantitative immunohistochemical analysis of myeloid cell marker expression in human cortex captures microglia heterogeneity with anatomical context
Source citation (APA Format)	Swanson, M. E. V., Murray, H. C., Ryan, B., Faull, R. L. M., Dragunow, M., &
	Curtis, M. A. (2020). Quantitative immunohistochemical analysis of
	myeloid cell marker expression in human cortex captures microglia
	heterogeneity with anatomical context. Scientific Reports, 10(1), Article
	1. <u>https://doi.org/10.1038/s41598-020-68086-z</u>
Original URL	https://www.nature.com/articles/s41598-020-68086-z
Source type	Science journal article
Keywords	Immunohistochemistry imaging, Antigens, Microglia, Perivascular Macrophages
#Tags	#markersForMicrogliaIHC #phagotyosisDetection
Summary of key points + notes (include methodology)	 (summary) <u>Problem:</u> Current IHC images are not able to pick up microglia with different functions. <u>Goal:</u> To identify different markers that can be used in IHC imaging to detect distinct microglia types / types of activity <u>Method:</u> Immunohistochemistry on post-mortem human middle temporal gyrus sections from neurotypical individuals. <u>Findings:</u> HLA-DR had mostly similar results to when other proteins such as CD206, CD32, and CD163 were stained, but none were completely the same. Perivascular macrophages detect more phagocytic and antigen presentation. (key points) L-Ferritin detects dystrophic microglia Myeloid cell proteins were chosen by referring to previous studies that showed that they binded more to cells unique to the brain, or were only

	 expressed by microglia and perivascular macrophages in general Perivascular macrophages live in perivascular area of blood brain barrier Microglia can go through morphologies due to damage or disease in order to maintain proper function in the brain ramified, hypertrophic, dystrophic, rod, and amoeboid rod microglia are hypothesized to support signaling in grey matter 	
Research Question/Problem/ Need	How can the different types of microglia (based on differences in function) be identified using IHC staining?	
Important Figures	This figure shows the number of cells counted based on the markers of interest in gray matter vs white matter. Data from the case are joined together. Significance determined through paired t-tests.	
VOCAB: (w/definition)	<u>Gyrus</u> : ridge or fold between two clefts in the brain <u>Perivascular</u> : Situated or occurring around a blood vessel <u>Amoeboid</u> : relating to amoeba <u>Parenchyma</u> : functional tissue of an organ (not just the connective and supporting tissue) <u>Ramified</u> : forming extensions/branches	
Cited references to follow up on	 27 (use of HLA-DR as activation marker for microglia): http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt <u>Abstract&list_uids=31454549</u> 33 (cause of microglia morphologies): http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt <u>Abstract&list_uids=25257319</u> 38 (rod microglia support signaling, possibly related to SP?): https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-015-0209-z 30 (antigen and microglia presentation related markers): 	

	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt =Abstract&list_uids=26286145
Follow up Questions	What are myeloid cells and how are the proteins they express different from other proteins? How are the types of morphologies different from each other / what are their different results? How can these staining techniques be used to identify changes in synaptic pruning? How can the connection be made?

Patent #2 Notes: Compositions and methods for treating disorders characterized by a defect in gpr56 expression or activity

Source Title	Compositions and methods for treating disorders characterized by a defect in gpr56 expression or activity
Source citation (APA Format)	Piao, X. (2020, January 23). Compositions and methods for treating disorders characterized by a defect in gpr56 expression or activity.
Original URL	https://patents.google.com/patent/WO2020018913A1
Source type	Patent
Keywords	GPR56, ASD (Autism spectrum disorder), synaptic pruning, Microglia, neurodevelopmental disorders, TG2 (Transglutaminase 2), RhoA signaling, mTOR signaling
#Tags	#proteinAffectingASD #treatmentPathway
Summary of key points + notes (include methodology)	 (summary) GPR56 is a protein involved in various biological processes, and its malfunction can contribute to several diseases, including metabolic disorders, inflammatory bowel disease, and cancer. Existing treatments for these conditions often have limitations, prompting the search for new therapeutic approaches. (key points) This patent proposes compositions and methods for treating disorders linked to GPR56 dysfunction. These include: GPR56 agonists: Molecules that activate GPR56, potentially mimicking its natural function and alleviating symptoms. GPR56 positive allosteric modulators (PAMs): Substances that enhance the activity of GPR56 without directly binding to it, potentially offering a different approach to treatment. The patent describes various ways to deliver the GPR56-targeting agents, such as oral, intravenous, or topical administration. The patent suggests that these compositions and methods could be used to treat a range of disorders: Metabolic disorders: Type 2 diabetes, obesity, non-alcoholic fatty liver disease. Inflammatory bowel disease: Ulcerative colitis, Crohn's disease. Cancer: Colon cancer, pancreatic cancer, breast cancer. Other conditions: Bone diseases, neurodegenerative diseases.

	 Benefits: The proposed approach offers several potential advantages: GPR56 plays a crucial role in various diseases, making it a promising therapeutic target. The patent explores different compositions and methods, providing flexibility for tailoring treatment to specific needs. Compared to existing treatments, GPR56-targeting agents might offer better symptom control and fewer adverse effects.
Research Question/Problem/ Need	Can GPR56 agonists or PAMs effectively treat disorders characterized by GPR56 dysfunction?
Important Figures	n/a
VOCAB: (w/definition)	<u>GPR56 (G protein-coupled receptor 56)</u> : The protein targeted by the compositions and methods described in the patent. It plays a role in various biological processes and its malfunction is linked to several diseases. <u>Agonist</u> : A molecule that activates a receptor, in this case GPR56. GPR56 agonists mimic the natural ligand (activating molecule) of GPR56, potentially triggering its desired function. <u>Positive allosteric modulator (PAM)</u> : A substance that enhances the activity of a receptor without directly binding to it. In this case, GPR56 PAMs would increase the response of GPR56 to its natural ligand, even at low concentrations.
Cited references to follow up on	DATABASE UniProtKB [online] 15 March 2004 (2004-03-15), "Adhesion G-protein coupled receptor G1", Database accession no. AGRG1_HUMAN STOVEKEN ET AL.: "Gedunin- and Khivorin- Derivatives are Small-Molecule Partial Agonists for Adhesion G Protein-Coupled Receptors GPR56/ADGRG1 and GPR114/ADGRG5", MOLECULAR PHARMACOLOGY, vol. 93, no. 5, May 2018 (2018-05-01), pages 477 - 488, XP055676790, DOI: 10.1124/mol.117.111476
Follow up Questions	How specific are the proposed GPR56 agonists and PAMs to GPR56? Are there potential off-target effects on other receptors? What is the expected efficacy of these compositions in treating the mentioned disorders? How does it compare to existing treatments? How exactly do the proposed GPR56 agonists and PAMs work to alleviate symptoms in different disorders? Is there a specific signaling pathway involved?

*generated using ChatGPT

Patent #3 Notes: Beta-2 chimaerin as a mediator of axonal and synaptic pruning

	Cazanietz, M., & Riccomagno, M. (2013, December 19). Beta-2 s a mediator of axonal and synaptic pruning.
Original URL <u>https://patent</u>	s.google.com/patent/WO2013188666A1
Source type Patent	
	erin, Axonal pruning, Synaptic elimination, Neurological diseases, in modulators, Rac GTPase, Neuropilin-2
#Tags #proteinAffect	tingSynapticPruning #regulatingNeurologicalFunctioning
natural process unnecessary of function. (key points) Beta-2 chimae its structure a Methods are p the way for its The patent sup neurological d schizophrenia Potential bene Stimulating pr with neurodeg Promoting hea memory.	provided for producing and purifying beta-2 chimaerin. This paves potential use in therapeutic applications. ggests that beta-2 chimaerin could be used to treat or prevent iseases. Examples include Alzheimer's, Parkinson's, and , where abnormal pruning is implicated. efits: uning could help clear away harmful protein aggregates associated generative diseases. althy pruning patterns could improve cognitive function and

	investigated.
	Overall, this patent presents a promising avenue for developing new therapies for neurological diseases by targeting the natural process of brain cell pruning.
Research Question/Problem/ Need	Can beta-2 chimaerin, a regulator of brain cell pruning, be harnessed to treat neurological diseases linked to abnormal pruning patterns?
Important Figures	n/a
VOCAB: (w/definition)	Recombinant cells: Cells that have been engineered to express a specific protein, such as beta-2 chimaerin. <u>Guanylate nucleotide exchange factor (GEF) activity</u> : The ability of beta-2 chimaerin to activate another protein involved in pruning. <u>Catalytic domain</u> : The part of the protein that performs its enzymatic activity, potentially involved in cleaving proteins during pruning
Cited references to follow up on	 BRUINSMA, S. P. ET AL.: "Chimaerin and Rac regulate cell number, adherens junctions, and ERK MAP kinase signaling in the Drosophila eye", PNAS, vol. 104, no. 17, 2007, pages 7098 - 7103 LEUNG, T. ET AL.: "Cerebellar beta2-chimaerin, a GTPase-activating protein for p21 ras-related Rac is specifically expressed in granule cells and has a unique N-terminal SH2 domain", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 269, no. 17, 1994, pages 12888 - 12892 WEGMEYER, H. ET AL.: "EphA4-dependent axon guidance is mediated by the RacGAP alpha 2-chimaer in", NEURON, vol. 55, 2007, pages 756 - 767
Follow up Questions	How specific is beta-2 chimaerin for axonal and synaptic pruning compared to other processes in the brain? What are the potential delivery methods for beta-2 chimaerin to its target sites in the brain? Can the identified PH domain and catalytic domain be further characterized to understand their precise functions in pruning?

*generated by ChatGPT