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A Surface Geometry Model for LiDAR Depth
Completion

Yiming Zhao , Lin Bai , Ziming Zhang, and Xinming Huang

Abstract—LiDAR depth completion is a task that predicts depth
values for every pixel on the corresponding camera frame, al-
though only sparse LiDAR points are available. Most of the existing
state-of-the-art solutions are based on deep neural networks, which
need a large amount of data and heavy computations for training
the models. In this letter, a novel non-learning depth completion
method is proposed by exploiting the local surface geometry that is
enhanced by an outlier removal algorithm. The proposed surface
geometry model is inspired by the observation that most pixels
with unknown depth have a nearby LiDAR point. Therefore, it
is assumed those pixels share the same surface with the nearest
LiDAR point, and their respective depth can be estimated as the
nearest LiDAR depth value plus a residual error. The residual
error is calculated by using a derived equation with several phys-
ical parameters as input, including the known camera intrinsic
parameters, estimated normal vector, and offset distance on the
image plane. The proposed method is further enhanced by an
outlier removal algorithm that is designed to remove incorrectly
mapped LiDAR points from occluded regions. On KITTI dataset,
the proposed solution achieves the best error performance among
all existing non-learning methods and is comparable to the best
self-supervised learning method and some supervised learning
methods. Moreover, since outlier points from occluded regions
is a commonly existing problem, the proposed outlier removal
algorithm is a general preprocessing step that is applicable to many
robotic systems with both camera and LiDAR sensors. The code has
been published at https://github.com/placeforyiming/RAL_Non-
Learning_DepthCompletion.

Index Terms—Computer vision for transportation, range
sensing, sensor fusion.

I. INTRODUCTION

L IDAR is playing an important role for modern mobile
robots. Many LiDAR related perception tasks, such as

LiDAR 3D detection [1] or point cloud semantic segmenta-
tion [2] attract many recent contributions. LiDAR-based depth
completion is one of those tasks which aims to provide a full
dense depth map for the camera from the sparse depth generated
by mapping LiDAR points on the image. Before the booming
of LiDAR technology, depth completion is usually referred as
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Fig. 1. Illustration of the depth completion task. From top to bottom: RGB
image, sparse LiDAR input, dense completed depth map, and colored 3D points
in real world. This sample comes from the validation dataset in KITTI.

a challenge to complete missing depth from depth sensors like
Microsoft Kinect [3]. The first LiDAR-based depth completion
paper [4] proposed a unique sparsity challenge as each LiDAR
scan contains only about 5% values on the corresponding image.
The benchmark on KITTI LiDAR depth completion task has
attracted many interesting research works [5].

A straightforward solution is using neural network as a regres-
sion function trained with labels. Most of those papers are bor-
rowing ideas from recently developed deep learning algorithms,
such as different post-process modules [6], or various network
structures like encoder-decoder or hourglass [7], [8]. In contrast,
this paper proposes a model-based explainable non-learning
method to complete the depth map. In Fig. 1, we show one
sample from our non-learning method. The generated depth map
recovers the surroundings by embedding all the RGB values in
the 3D world.

Motivation Many neural network methods have been pro-
posed recently for the LiDAR depth completion task. Supervised
learning requires labeled data, while self-supervised learning [7]
is able to train the network without labels. The label-free merit
allows the method to easily adapt new environments by avoiding
offline labeling work. However, a recent paper reports a simple
non-learning method with classical image processing opera-
tors that achieves comparable performance with deep learning
methods [9]. Since the non-learning solution shares the same
label-free merit, we are intrigued to think what is the hidden
mechanism behind this simple method with image processing
operations like dilation.
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Outlier Removal Since LiDAR and camera are two sensors
observing the world from different views, there will be some
small occluded regions that are only observed by the LiDAR
sensor but not observed by the camera. Mapping those points
on image plane will create many incorrect depth values. To
further evaluate this kind of error, we directly calculate the
error between the raw sparse LiDAR and the ground truth on
the KITTI validation set. The RMSE (root mean square error)
is 1595 mm that is even larger than the completed depth map
generated by many models. This explains why dilation works
as it replaces some of those erroneous values with the smallest
value in the local patch. However, the dilation will also change
values of many LiDAR points that are not occluded. To solve this
challenge, we propose a generalized outlier removal algorithm
as a preprocessing step for the non-learning depth completion
method.

Local Surface Geometry Besides the outlier removal, we
also investigate why filling in the empty pixel with the smallest
value in a local patch will not generate large errors. We identify
the relationship between the empty pixel with its surrounding
points is decided by the local surface geometry. Thus, we make
an assumption that most empty pixels are likely sharing the same
surface with their nearest point. Then, the empty depth value
is estimated as an initial guess from the nearest value plus a
residual determined by the direction of the local surface and
the relative distance. In fact, our model is able to produce solid
performance on KITTI, which demonstrates the effectiveness
of the sharing local surface assumption. Note that the shar-
ing surface assumption implies the point cloud should contain
enough geometry information of objects, such as the commonly
used 64-line LiDAR. We will discuss the model performance in
regarding to various input sparsity in Section V.

Contribution Due to the space limitation, we prepare more
supportive materials about the sharing surface assumption and
outlier removal algorithm in the supplementary file. We summa-
rize two major contributions of this paper as following:
� We propose a general outlier removal algorithm to remove

incorrect depth values projected on the image by points
from occluded regions. Considering the displacement of
LiDAR and camera is usually small, the parallax effect
created by the displacement is also smaller than most ob-
jects’ size. This finding builds the intuition of our algorithm
that those points with parallax effect should be identified
as outliers. We further extend this intuition to three obser-
vations and successfully design an effective algorithm. The
proposed outlier removal algorithm is parameter-free that
only needs the image and LiDAR resolutions, i.e, 64 line
or 32 line for LiDAR, 256× 256 or 512× 512 for image.
Therefore, the algorithm can be directly applied to many
LiDAR-camera systems as a pre-processing step.

� We propose a model-based explainable non-learning depth
completion method and achieve good performance with
several practical merits. On KITTI, we achieve the best
performance among all non-learning methods, and also
achieve similar or better performance compared with all
recently developed self-supervised learning methods. As
an explainable model, it also clearly indicates the work-
ing condition that the point cloud should contain enough

geometry information. Our model also shares all the mer-
its of non-learning methods, such as label-free, robust to
changing environment, and computational friendly.

II. RELATED WORK

Classical methods for depth completion Before the wide
adoption of outdoor LiDAR for autonomous driving, depth
completion was researched as a task to fill up the depth map
generated from the RGB-D camera. Some classical methods
were proposed to solve the image inpainting or depth quality
improvement problem for RGB-D depth map [10]–[14]. The
ratio of missing data from RGB-D depth map is roughly around
10% to 30%, which is different from the sparsity of LiDAR
points. Besides completing the generated depth map from the
RGB-D camera, some researchers assumed only a few points
have been matched by the stereo camera and complete this sparse
input to dense by using optimization methods like compres-
sive sensing [15]–[17]. The natural difference between LiDAR
sensors and those RGB-D sensors urges researchers to design
new methods for outdoor LiDAR depth completion. Recently,
Ku et al. [9] proposed a fast method for LiDAR-based depth
completion with simple image processing operators, including
dilation, Gaussian blur, etc. This simple method even obtained
the comparable result with some learning-based methods. We
choose this method as one of our baseline comparisons.

Supervised learning methods for depth completion The
recent success of deep neural networks on several computer
vision tasks attracts researchers to solve the depth completion
task by using neural networks. The supervised way treats the
network as a regression model to directly output depth value. To
handle sparse depth, various ideas were proposed in different
aspects, like special designed layers [18], [19], encoder-decoder
structure [7], fusion with semantic segmentation [20], [21],
etc. Besides completion with LiDAR only, integrating image
as a branch shows a relatively large improvement. Some works
modeled RGB branch inspired by the use of surface normal [22]–
[24]. Since LiDAR can capture the geometry information, the
fusion of geometry information with image texture information
was also investigated in [25], [26]. There are other ideas that also
have been tried to solve this task. Imran et al. [27] proposed a
new depth representation named Depth Coefficients. Chen et al.
[6] designed a post-process module to further improve the model
performance.

Self-supervised learning methods for depth completion
Self-supervised learning can train the network without labels.
Self-supervised depth prediction relies on the image warping
and photometric loss to penalize the error [28], [29]. Ma et al.
[7] extended the self-supervised depth prediction framework to
depth completion by feeding the sparse points into the network
and treating them as the ground truth for corresponding pixels.
Moreover, Yang et al. [30] integrated their Conditional Prior
Network to the self-supervised depth completion pipeline and
got a better performance. Wong [31] further considered pose
consistency and geometric compatibility for performance im-
provement. Yao [32] proposed a binary anisotropic diffusion ten-
sor to eliminate smoothness constraint at intended positions and
directions. Those self-supervised methods do not need labels,
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Fig. 2. Illustration of outliers and results of removal method. The darker color in LiDAR image means the depth is closer to the sensor, and black means no value.
The displacement of LiDAR and camera will map some occluded points from the background on the foreground object. On the left sample, the blue line separates
the left background and right foreground tree. On the right sample, the blue circle shows the foreground cyclist. Our method removes those incorrect points and
keeps a clean edge for occluded regions.

which allows them to update weights online. This convenience
is useful for many advanced situations like federated learning,
domain adaptive learning, and user privacy protection.

In summary Self-supervised methods have label-free merit.
On the contrary, supervised methods need labels but usually
yield better performance. Moreover, from the view of input
modality, sensor fusion methods with both LiDAR and RGB
have better performance, but LiDAR only methods are not
sensitive to the change of lighting conditions, thus is stable in
extreme cases such as dark night. Our method is label-free and
only needs LiDAR as input. We compare the performance with
all label-free methods on the popular KITTI benchmark as well
as show additional benefits through a night-time sample from
the Waymo dataset qualitatively.

III. METHODS

A. Outlier Removal

Though camera and LiDAR are usually mounted close to each
other, there is still a small displacement between them. Due
to their slightly different views, the multi-planar parallax will
create some occluded regions which are observed by LiDAR
but should not be observed by camera. Mapping those points on
image plane leads to a large error as those points are coming from
far away background. To address this challenge, we propose a
general outlier removal algorithm that can work on arbitrary
image and LiDAR resolutions. In Fig. 2, we show two examples
that many points from the background are mapped onto fore-
ground tree or cyclist. Our proposed solution will identify and
remove those points and keep a clean boundary for objects.

Our removal algorithm is based on three observations:
� Most outlier points will change the relative position with

some nearby correct points as they are occluded by fore-
ground objects. Although there are some exceptions, for
instance, the outlier is just mapped on the edge of the
foreground, or the size of the foreground object is small.
We argue most outliers will have this property.

� Outlier points have relatively larger depth values com-
pared with nearby correct depth values since they are
coming from further background.

Fig. 3. Illustration of our three observations. The red point is the outlier that
should be removed. It is on the left of the green point in the LiDAR coordinate
but on the right of the green point in the camera coordinate. The red point has
a larger depth value than green point and also creates a relatively denser region
with green point on image plane.

� Outlier points will create denser regions on image since
they are mixed with points belong to the foreground.

We further illustrate those three observations in Fig. 3. They
build the foundation of our outlier removal algorithm.

Here, we assume that we have an image with the resolution
W ×H , and a LiDAR with L lines. There are N points in
total which are mapped on the image plane. Average distances
between two points in two directions on image plane can be
roughly estimated as WL

N and H
L . Therefore, for a specific point

i on the image plane (μi, νi), we define a set of nearby points in
a local region as:

S(i) =

{
n|∀n ∈ (1, .., N), |μj − μi| < WL

N
& |νj − νi|

<
H

L

}

In the LiDAR coordinate, we choose the spherical representation
for the point i as (ri, θi, φi). The depth value on the image plane
is defined as zi.

In our outlier removal algorithm, the condition_1 and
condition_2 are indicators to check if the point i meet our
first and second observations, respectively. Our third observation
suggests outliers are coming from denser regions. Since the
local region S(i) is defined with average distances in H and
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Fig. 4. Illustration of our geometric model for depth completion. These empty
pixels (green), which share the depth value from the same nearest signal (blue),
are in a local patch and likely to belong to the same surface.

Algorithm 1: Outlier Removal.
for i in (1,2,...,N) do

for j in S(i) do
condition_1← False, condition_2← False
if (μi − μj) ∗ (θi − θj) < 0 or
(νi − νj) ∗ (φi − φj) < 0 then
condition_1← True

if zi > zj + ε then
condition_2← True

if condition_1 == True and
condition_2 == True then

remove i
break

W directions, the third observation suggests that S(i) should
contain extra points if point i is an outlier. The ε is a small
value, and we choose ε = 1.0 m in this paper.

B. Surface Geometry Model for Depth Completion

Geometric Model Here we demonstrate a geometric model
to complete the depth of empty pixel from its nearest pixel with
value. We illustrate our intuition in Fig. 4.

As we can see, those empty green points share the same
surface with the blue point in a small local patch. Let [x, y, z]
and [x,′ y,′ z′] be the 3D locations of one green point and the blue
point. Further assuming that the intrinsic matrix of the camera
is known and fixed as K, we can calculate the location of a 3D
point [x, y, z] in the camera coordinate as:

[x, y, z]T = (z′ +Δz)K−1[u, v, 1]T , (1)

where [u, v] and [Δu,Δv] denote the 2D location and the offset
between the two points in the depth image, respectively, Δz
denotes the difference between the estimated depth and the
ground-truth, and (·)−1, (·)T denote the matrix inverse and

transpose operators, respectively. Similarly, we can compute
[x,′ y,′ z′] as follows:

[x,′ y,′ z′]T = z′K−1[u+Δu, v +Δv, 1]T . (2)

Now considering the simplest pinhole model with focal length
[fu, fv] and component point [pu, pv], we can get

x = (z′ +Δz)(u− pu)/fu, y = (z′ +Δz)(v − pv)/fv,

x′ = z′(u+Δu− pu)/fu, y′ = z′(v +Δv − pv)/fv.

Since we know that [u, v, z] and [u+Δu, v +Δv, z′] come
from the same surface, we have the equation:

n · [x− x,′ y − y,′Δz]T = 0, (3)

where n is the normal vector of the surface.
Then, the depth value z for empty pixel can be written as:

z = z′ +Δz, (4)

where

Δz =
( z
′Δμ
fμ

, z′Δν
fν

, 0) · n
(
μ−pμ

fμ
, ν−pν

fν
, 1) · n (5)

Eq. 5 indicates the residual is decided by the nearest value
itself, the offsets in image coordinate, the local surface normal,
and camera parameters.

Surface Normal A common way to calculate the surface
normal is fitting the local plane from the nearest neighbors of
the query point [33]. However, those K-Nearest Neighbor based
methods are too slow to process 64 line LiDAR point cloud
which contains almost 20 k points only in the front view. For-
tunately, the special property of LiDAR sensor stimulates some
more practical solutions. Following Badino’s method [34], we
map LiDAR points from Cartesian coordinate system (x, y, z)
to spherical coordinate system (r, θ, φ). Then, the normal vector
is the derivative of function r(θ, φ) in Cartesian coordinate,
denoted as:

n = �(x̂,ŷ,ẑ)r(θ, φ), (6)

where (x̂, ŷ, ẑ) is the unit vector in Cartesian coordinate. Eq. (6)
has solution:

n =
(
x̂ ŷ ẑ

)
Rθ,φ

⎛
⎝ 1

1
rcosφ∂r/∂θ

1
r∂r/∂φ

⎞
⎠ ,

where

Rθ,φ =

⎛
⎝ cosθ −sinθ 0

sinθ cosθ 0
0 0 1

⎞
⎠

⎛
⎝ cosφ 0 −sinφ

0 1 0
sinφ 0 cosφ

⎞
⎠ .

This method [34] provides a fast way to calculate normal
just like edge detection. We add one extra step to fill in those
empty pixels, which gives us smooth normal for all points. We
show an example of the calculated normal vector in Fig. 5. The
consistency between the normal image and the RGB supports
the sharing surface assumption that most pixel shares the same
surface with the nearest LiDAR point.
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Fig. 5. Illustration of our non-learning depth completion pipeline based on local geometry model. Red arrows show the order of each step. The algorithm does
not need RGB image, we put an RGB image here to show both the normal vector and final depth map are meaningful. We can see the visualized normal image is
consistent with the RGB image, which also verifies the sharing surface assumption.

Distance Transform [35] (DT) is an operator usually applied
to binary images to generate distance maps (DM), which are
grayscale images of the same size of the original images con-
sisting of the distance as well as the offset to the closest available
signal as each pixel value. For certain sampling functions, the
complexity of DT is linear to the image size [36]. This gives us
a fast way to find z′ and (Δμ,Δν) needed for calculating Δz
in Eq. (5). It also distributes calculated normal vector to each
empty pixel.

C. Pipeline Summary

The whole pipeline of our non-learning method is summarized
as four steps:

Step 1: Project sparse points on spherical range image, calcu-
late normal vector for each point, then project those points back
on the original camera image plane.

Step 2: Run outlier removal algorithm to remove incorrect
values on sparse depth image.

Step 3: Run DT (distance transform) algorithm to prepare
z,′ n, (Δμ,Δν) for each pixel on the original image plane.

Step 4: Apply Eq. (4) and Eq. (5) to calculate depth for each
pixel. Then, smooth the result with Gaussian filter.

We visualize each step of our solution in Fig. 5.

IV. EXPERIMENTS

A. Dataset

We conduct experiments on the KITTI dataset. The KITTI
dataset is a benchmark and collection of sparse LiDAR scans
and corresponding semi-dense depth maps which serve as the
ground-truth. The dataset consists of 85 898 training samples,
1000 validation samples and 1000 test samples. The ground-
truth for test dataset is invisible. People need to submit their
predicted test results to the server in order to receive the metric
scores.

On KITTI, four evaluation metrics are used to evaluate model
performance:
� RMSE: Root mean squared error [mm]
� MAE: Mean absolute error [mm]

TABLE I
THE RAW INPUT ERROR ON KITTI’S VALIDATION SET

TABLE II
OUTLIER REMOVAL ALGORITHM IMPROVES THE PERFORMANCE OF

SELF-SUPERVISED SOLUTION ON KITTI’S VALIDATION SET

� iRMSE: Root mean squared error of the inverse depth
[1/km]

� iMAE: Mean absolute error of the inverse depth [1/km]

B. Outlier Removal

The error of sparse depth map has been reported by some
works [4], [24]. Here, we evaluate the error quantitatively. We
calculate the error of samples on the validation set for those
pixels which have values in both sparse input depth and ground
truth. The error is surprisingly large as reported in the top row of
Table I. After removing those outliers, the error of sparse input
has been significantly reduced.

Our outlier removal algorithm is also beneficial to other meth-
ods. For instance, self-supervised depth completion methods
utilize raw sparse input as ground truth for corresponding pixels.
Simply removing outliers will improve the performance, shown
in Table II by using SparseToDense [7] as an example.

C. The Performance of Surface Geometry Model

As a non-learning method, our surface geometry model has
the advantage of directly working in any new environment with-
out extra labeling work. This is also the major contribution of re-
cent developed self-supervised depth completion methods [31],
[32]. So we compare the performance of our method with all
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TABLE III
COMPARISON ON KITTI’S TEST LEADER BOARD. RED INDICATES THE BEST,
AND BLUE INDICATES THE RUNNER-UP. WE USE D TO REPRESENT LIDAR.
THE BOTTOM TWO METHODS ARE STATE-OF-THE-ART PERFORMANCE OF

SUPERVISED MODELS WITH SINGLE LIDAR AS INPUT AND WITH RGB +
LIDAR AS INPUT RESPECTIVELY

TABLE IV
VERIFY THE EFFECTIVENESS OF OUR OUTLIER REMOVAL ON

KITTI’S VALIDATION DATASET

non-learning methods and self-supervised methods on KITTI’s
test leaderboard in Table III. We achieve the best MAE and the
second best RMSE among all non-learning and self-supervised
learning methods. Our method even can outperform some earlier
supervised solutions. Recent developed supervised models are
prone to use a large network with 10 million or even 100 million
parameters [24], [41], [42], thus have better performance. As a
reference, we also list two state-of-the-art supervised methods
in Table III.

To complete the depth, two different input modality settings
can be used. Sensor fusion models with RGB and LiDAR as input
usually have better performance. However, it is still questionable
if the method works under various lighting conditions. On the
contrary, models with single LiDAR as input will not be affected
by the change of lighting condition. The method proposed in
this paper has such advantage as it only relies on geometry
information.

D. Ablation Study

Effectiveness of Outlier Removal To better evaluate our
outlier removal algorithm, we show the model performance on
KITTI validation set in Table IV. It clearly shows that removing
outliers can significantly improve the performance of our model.
From both Table I and Table IV, our outlier removal method
should be considered as a general preprocessing step for many
camera-LiDAR sensor fusion tasks.

TABLE V
VERIFY THE EFFECTIVENESS OF EACH STEP IN OUR METHOD ON

KITTI’S VALIDATION DATASET

Fig. 6. Compare model performance with self-supervised learning on three
different density input: 64 line, simulated 32 line and simulated 16 line.

Effectiveness of Each Step Table IV illustrates the effective-
ness of our outlier removal module. To further clarify the benefit
of each step, in Table V, we show the change of RMSE, MAE
and density after each step. We can see every step brings some
improvements, and surface geometry connects all those steps
together as an explainable non-learning model. The first two
rows are the same as the Table I, one may check that table for
more details.

V. DISCUSSION

A. Input Sparsity and Model Performance

The sharing surface assumption implies the point cloud should
contain geometry information of objects, which is the case for
commonly used 64-line LiDAR. It is worth to mention that recent
papers even demonstrate a good result of panoptic segmentation
on 64-line LiDAR only [2]. Here we discuss the performance
of our method with sparser LiDAR density. By following the
settings in SparseToDense [7], we group the 64-line LiDAR to
downsample it as simulations of 32-line and 16-line LiDARs. We
compare the performance of our model with the self-supervised
results of SparseToDense [7] in Fig. 6. Our solution outper-
forms the baseline for both 32-line and 64-line cases, but the
self-supervised baseline starts to take the lead in 16-line case.
This phenomenon verifies the condition of our algorithm - The
point cloud cannot be too sparse; otherwise it may lose the
geometry information. We also display these three different
density LiDAR raw inputs and completed maps in Fig. 6.
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Fig. 7. Illustrate the ability of our method to provide depth maps for multi-cameras at night. This data sample is picked from the Waymo dataset.

B. Other Applications

On KITTI’s depth completion benchmark, we conduct the
numerical evaluation and compare the performance with other
depth completion methods. As a non-learning solution working
on LiDAR only, our method has several benefits beyond nu-
merical evaluation. First, our model is able to support driving
under various lighting conditions, such as night-time driving.
Second, owing to the label-free merit, our model is able to easily
provide depth maps for cameras facing different directions. To
illustrate those benefits, we give an example of our method on the
Waymo dataset [43]. As a recently published driving dataset, the
Waymo dataset has more versatile driving scenarios. However,
there is no depth completion benchmark on it which prohibits
us to quantitatively evaluate our surface model. Instead, we use
it to qualitatively demonstrate extra benefits of our solution in
Fig. 7. Based on the point cloud from the top LiDAR sensor, our
method successfully provides dense depth maps for five cameras
mounted around the car at night.

VI. CONCLUSIONS

In this letter, we propose a novel non-learning depth comple-
tion method based on surface geometry. The method achieves the
best MAE and the second-best RMSE compared with all label-
free methods, including all non-learning and self-supervised
learning methods on KITTI’s leader board. This proposed al-
gorithm is computationally efficient and can be used in any
environment, therefore it is truly a practical solution to LiDAR
depth completion task. Moreover, several individual modules,
such as outlier removal or distributing normal vectors on the
image plane, may also be beneficial to other robotics applications
with both LiDAR and camera sensors.
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