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Abstract— System identification models relating forearm
electromyogram (EMG) signals to phantom wrist radial-
ulnar deviation force, pronation-supination moment and/or
hand open-close force (EMG-force) are hampered by lack
of supervised force/moment output signals in limb-absent
subjects. In 12 able-bodied and 7 unilateral transradial
limb-absent subjects, we studied three alternative super-
vised output sources in one degree of freedom (DoF) and
2-DoF target tracking tasks: (1) bilateral tracking with force
feedback from the contralateral side (non-dominant for able-
bodied/ sound for limb-absent subjects) with the contralat-
eral force as the output, (2) bilateral tracking with force
feedback from the contralateral side with the target as the
output, and (3) dominant/limb-absent side unilateral target
tracking without feedback and the target used as the output.
“Best-case” EMG-force errors averaged ∼10% of maximum
voluntary contraction (MVC) when able-bodied subjects’
dominant limb produced unilateral force/moment with feed-
back. When either bilateral tracking source was used as
the model output, statistically larger errors of 12–16 %MVC
resulted. The no-feedback alternative produced errors of
25–30 %MVC, which was nearly half the tested force range
of ± 30 %MVC. Therefore, the no-feedback model output
was not acceptable. We found little performance variation
between DoFs. Many subjects struggled to perform 2-DoF
target tracking.
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I. INTRODUCTION

L IMB-ABSENT subjects can generate motor commands
that are communicated to remnant muscle tissue,

which contracts and provides a measurable electromyogram
(EMG) [1], [2]. This remnant muscle EMG is used to com-
mand myoelectric prostheses [3]. Proportional myoelectric
control of one degree of freedom (DoF) prosthesis tasks has
been available commercially for decades—including systems
which support sequential switching between distinct DoFs [4].
So-called seamless sequential control has been achieved via
pattern recognition [5] and recently commercialized. Simul-
taneous, independent and proportional control of multiple
DoFs is mostly found in research systems and is primarily
limited to 2-DoFs. Such control has typically been facilitated
via multiple EMG sites [6] or advanced machine learning
algorithms [7]. Our research described herein is applicable to
simultaneous, independent and proportional 2-DoF hand-wrist
prosthesis control.

In able-bodied subjects, biomedical signal processing and
modelling methods have been used to map EMG to force [3],
[8]–[12], and to mechanical impedance about a joint [13]–[17].
Historically, such modeling has a goal of improving
myoelectric prosthesis control [3], [13], [17]. Numerous
supervised system identification methods have been used to
model the EMG-force (or, EMG-kinematics) relationship (see
[9], [10] for reviews). All methods use an estimate of the
EMG standard deviation (EMGσ , a.k.a. processed EMG) as
input [18], [19], and may use other features extracted from the
EMG signal, such as zero crossing rate, slope sign change rate
and waveform length [5], [20]. Regression approaches have
been common, with studies using standard (un-regularized)
linear regression to fit the model [21], [22]. Recent work
has used various forms or regularized regression, such as
ridge [11], Moore-Penrose pseudo-inverse [11] and support
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vector [23] regression approaches, to improve robustness of
the model and reduce its error. Non-linear models have also
been shown to reduce error somewhat, from implementations
of the EMGσ -force power law observation reported by
Vredenbregt and Rau [20], [24], to neural networks [25], [26],
to parallel cascade structures [27], amongst many
others. Some modeling approaches that require limited
supervision are also emerging, including nonnegative matrix
factorization [28], [29] and population-based assignment of
dynamics [30], [31]. Of course, a classic approach with limited
supervision is to insert dynamics in the form of a conventional
linear lowpass filter (e.g., 2nd-order with cut-off frequency
∼1.5 Hz) [32], [33]. Note that each of these less-supervised
approaches still must calibrate a gain to each EMG channel.

A fundamental challenge for developing EMG-force
models in limb-absent subjects is that end-effector force is not
available as the output of supervised model training. As one
alternative, EMG from remnant muscles of the absent limb are
used to estimate the force (or kinematics) from the contralat-
eral limb when performing bilateral symmetric (mirror) con-
tractions [34]–[36]. This model is then used as the EMG-force
relationship in the absent limb. Mirror-provided optical reflec-
tion of contralateral-side movement creates a visual illusion
that builds awareness of phantom limb movement (and may
relieve phantom limb pain) [1], [37]–[39]. Bilateral symmetric
mirror tracking experiments on able-bodied subjects have
found that relating dominant-limb EMG to contralateral
hand position is slightly worse than relating it to dominant
hand position [36]. However, experiments on amputees led
to different results, as they had overall poorer performance
than able-bodied subjects, but equal or better performance
for some specific motions and their combinations [40].
The individual differences within limb-absent subjects was
another important factor, as different kinds of limb-absence
(i.e., congenital, traumatic), residual-limb length, or other
conditions (e.g., neuron damage, contraction imbalance) may
affect performance. Accordingly, some researchers prefer to
individualize control methods for each specific subject [40].

An alternative approach is for limb-absent subjects to
directly activate their phantom limb to track a target on a
computer screen, then relate EMG to this target [23], [41]. This
solution avoids the need for a physical feedback source (also
applicable to those with bilateral limb-absence). However, this
approach provides no physical measure of actual achieved
remnant muscle force and always produces some amount of
tracking error. For example, visual tracking incurs a pure
reaction time delay between the target and the produced force
(i.e., an average delay of 0.268 s [42]).

Our research extends prior EMG-force study in several
manners. First, in able-bodied subjects, we compare and
contrast different visual feedbacks within one study: dominant
limb force, contralateral limb force with mirror feedback,
and no force feedback. Second, in limb-absent subjects,
the feedbacks studied were: contralateral1 side using mirror
feedback and no force feedback. Third, our novel methods

1The term “contralateral” will be used to refer to the non-dominant side of
able-bodied subjects and the sound side of limb-absent subjects.

TABLE I
TRANS-RADIAL LIMB-LOSS SUBJECT INFORMATION

include instrumenting hand open-close (Opn-Cls) forces as
well as wrist forces/moments, and doing so simultaneously on
both sides of able-bodied subjects. We are not aware of any
previous applicable studies that have simultaneously measured
hand-wrist forces on both sides of able-bodied subjects. This
instrumentation provided unique insights into evaluation of
EMG-force models, including a direct measure as to how well
forces in the contralateral limb are representative of forces
in the dominant limb of able-bodied subjects. Our results
have important implications for the calibration of myoelectric
control algorithms, in particular the extent to which these
measures can serve as surrogate supervised output sources for
limb-absent subjects.

II. METHODS

A. Experimental Apparatus

Experimental data were collected from 12 able-bodied
subjects (6 males, 6 females; aged 18–55 years) and 7 trans-
radial unilateral limb-absent subjects (4 males, 3 females;
aged 27–61 years; see Table I) at Worcester Polytechnic
Institute (WPI) and approved by the WPI Institutional Review
Board (IRB Protocol #17-155). All limb-absent subjects rou-
tinely use myoelectric-controlled upper-limb prostheses and
all, except subject 27, were known to have previously partic-
ipated as subjects in upper-limb myoelectric control studies.
All subjects provided written informed consent. Able-bodied
subjects had no deficits involving their upper limbs or vision
and were right-hand dominant. Limb-absent subjects had no
deficits involving their contralateral limb or vision, and the
residual limb on the affected side was at least 5 cm in length
with functional muscle contraction. One additional limb-absent
subject was excluded due to neural damage on the limb-absent
side.

Subjects were seated at the experimental apparatus (Fig. 1).
The palm of each hand (sound side only for limb-absent
subjects) was separately aligned and secured via Velcro
straps to a thermo-formable plastic mold which was rigidly
connected to a six-DoF load cell (MC3A-100 transducer,
Gen 5 signal conditioner, AMTI, Watertown, MA) to measure
radial-ulnar deviation (Rad-Uln) force along one force axis and
pronation-supination (Pro-Sup) moment along one moment
axis. Rad-Uln force was measured directly. However, this force
is not produced at the axis origin of the load cell (which exists
within the body of the load cell, approximately 6.3 cm from the
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Fig. 1. Experimental apparatus. Subjects (limb-absent subject shown)
sat in a chair with each able hand secured into force measurement
devices, facing the computer screen which displayed a target and
real-time force/moment feedback.

Fig. 2. Experimental apparatus at the hand-wrist. Each able hand was
separately secured via Velcro to a thermo-formable plastic glove that was
bolted to a six-axis load cell to measure the moment at the wrist. Fingers
were secured to a single-axis load cell to measure hand grip force.
Sixteen EMG electrodes were secured around the dominant/limb-absent
forearm.

center of mass of the palm). Hence, Rad-Uln forces also pro-
duced an artifactual Pro-Sup moment. Thus, Pro-Sup moment
was computed as the moment measured by the load cell, less
the product of the Rad-Uln force times the 6.3 cm moment
arm. To measure hand grip force during attempted hand Opn-
Cls, each hand (sound side only for limb-absent subjects)
additionally gripped a single-axis load cell (LCR-150 with
DMD-465WB amplifier, Omega Engineering, Inc., Stamford,
CT) while the thumb was secured via a rigid tube and, sep-
arately, the proximal aspects of the four fingers were secured
by Velcro on the opposing side of the cell. The palms of the
hands were oriented perpendicular to the plane of the floor,
facing inwards; the wrists were relaxed in a neutral position;
and the shoulders were in the anatomical position (Fig. 2).

During unilateral tasks (Fig. 3, Tasks 1 and 2), a computer-
controlled target guided the subject to complete different
experimental tasks via a blue arrowhead on the computer

Fig. 3. Experiment Protocol. Blue arrowhead is target and red arrowhead
is visual feedback. a) Task 1: able-bodied subjects tracked target with
their dominant limb given real-time visual feedback of their dominant
limb force (FD); c, d) Task 2: subjects tracked the target with their
dominant/limb-absent side with no visual feedback (NVF); e, f) Task 3:
subjects tracked the target with both limbs given real-time feedback from
their contralateral side and with mirror visual feedback (MVF).

screen in front of the subject, with up-down movement
displaying wrist radial-ulnar deviation, rotation displaying
Pro-Sup moment and arrowhead size displaying hand Opn-Cls
force. (Wrist extension-flexion force was considered as an
additional contraction dimension, but discarded due to the
overall experimental protocol duration and its proximity to
muscles used in hand Opn-Cls.) When desired, another red
arrowhead displayed real-time force/moment feedback from
both load cells on the dominant/affected or contralateral side,
depending on the task being performed. During bilateral tasks
(Fig. 3, Task 3), these displays were mirrored in two display
panels on the screen.

One array of 16 bipolar EMG electrodes was secured to
a subject’s forearm (dominant side for able-bodied subjects,
affected side for limb-absent subjects). Electrode gel was
applied to a subject’s forearm and the electrodes were equally
spaced about its circumference, with the midpoints of the
bipolar contacts placed 5 cm distal to the elbow crease.
Each electrode pair consisted of 5 mm diameter, stainless
steel, hemispherical contacts separated 1 cm edge-to-edge,
oriented along the forearm’s long axis. A reference electrode
was gelled and secured on the forearm, just proximal to the
active electrodes. Each bipolar EMG signal was differentially
amplified (Liberating Technologies, Inc. BE328 amplifier;
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30–500 Hz pass band, CMRR>100 dB over the pass band) and
then selectable gain was applied. All EMG channels and load
cell signals were sampled at 2048 Hz with 16-bit resolution,
and target movement was recorded at 800 Hz.

B. Experimental Protocol

All trials were constant-posture. To prevent cumulative
fatigue, the interval between trials was at least two minutes.
All limb-absent subjects were offered mirror-box training,
using methods designed by a consulting occupational therapist,
before tracking trials to help build a better sense of muscle
contraction for the different tasks.

1) MVC Trials: After a warm-up period during which each
task was introduced, able-bodied subjects performed bilateral
maximum voluntary contraction (MVC) trials for each of wrist
radial and ulnar deviation, wrist pronation and supination, and
hand close and open. Limb-absent subjects only performed
MVC trials for the sound side. All subjects took 2–3 seconds
to ramp up to their MVC effort and then maintained this
effort for 2–3 seconds. The plateau force/moment during the
maintained period was recorded as the MVC. Lastly, rest trials
with all muscles fully relaxed were recorded for EMG noise
level evaluation.

2) Force-Varying Target Tracking Trials: Next, subjects per-
formed force-varying target tracking Tasks 1, 2 and 3
(explained below) separately for 1-DoF Rad-Uln, Pro-Sup and
Opn-Cls; and 2-DoF Rad-Uln & Opn-Cls and, separately, Pro-
Sup & Opn-Cls. The 2-DoF tasks always included Opn-Cls,
as this function is fundamental to a hand-wrist prosthesis.
Only the utilized motions were enabled for visualization in
the screen display (i.e., the remaining DoFs were locked out).
The target was a 0.75 Hz band-limited, white and uniform
random process [16] between ±30% MVC (independently
generated for each DoF) corresponding to the utilized task.
This bandwidth was the widest for which subjects could
maintain target tracking for these tasks during preliminary
testing. The order of presentation of DoFs, unilateral/bilateral
and visual feedback condition (see below) was randomized
and the subjects were told which side was controlling the
feedback. Each trial was 40 s in duration and conducted twice
per task. Before each trial, subjects were instructed about the
range of target movements and allowed practice until they were
comfortable. Unilateral and bilateral tasks were completed as
described subsequently.

Task 1—Tracking with Dominant-Limb Force Feedback
(Fig. 3a): Only able-bodied subjects performed these
force-varying tracking tasks, using their dominant limb (with
EMG electrodes). Feedback of dominant force/moment was
provided for target tracking. The contralateral limb was fully
at rest and not secured to the load cells. Off-line, EMG (which
was acquired only from the dominant side) was related to
force/moment on the dominant side. This task provides the
best-case scenario for supervised learning of EMG-force
models since EMG is recorded directly from the muscles
producing the measured force/moment and, thus, represents
the benchmark. Limb-absent subjects did not complete this
task.

Task 2—Unilateral Tracking with No Visual Feedback
(Fig. 3c, d): Able-bodied subjects used their dominant limb
(with electrodes) to track the target, with no real-time feed-
back provided. Only the target was shown on the screen.
Limb-absent subjects used the limb-absent side (the only side
with electrodes) to track the target, with no real-time feedback
provided. For all subjects, the contralateral limb was fully at
rest (not secured to the load cells). Off-line, EMG was related
to the target. This task represents the no-feedback condition
in which a dominant/limb-absent side model is built without
feedback.

Task 3—Bilateral Tracking with Mirror Visual Feedback
(Fig. 3e, f): Able-bodied subjects used both limbs to simulta-
neously track the target. Limb-absent subjects used their sound
and phantom limbs to simultaneously track the target. For all
subjects, feedback consisted only of the force produced by the
contralateral-side limb. This force and its mirror force were
simultaneously displayed, producing mirror visual feedback.
Offline, EMG was related to contralateral-side force/moment.
This task represents use of the force/moment in the con-
tralateral side in order to build the dominant/limb-absent side
model. We also related EMG to the target, for comparison.

C. Methods of Analysis

1) Data Pre-Processing: Data processing was performed in
MATLAB 2018b (Mathworks, Inc., Natick, MA). All filters
were implemented using the two-pass, zero-phase method,
thus their effective filter orders are twice those listed herein.
The forces/moments (Rad-Uln, Opn-Cls, Pro-Sup) were each
lowpass filtered ( fc = 16 Hz; Chebyshev Type I filter,
ninth-order, 0.05 dB peak-to-peak passband ripple) and then
downsampled from 2048 Hz to 40.96 Hz. The wrist Rad-Uln
data were normalized by (|MV C Rad | + |MV CUln |) /2, and
similar normalization was applied to the Pro-Sup and Opn-Cls
data. All target data were identically lowpass filtered, then
resampled to 40.96 Hz.

For each of the 16 EMG channels in a trial, an estimate of
time-varying EMG standard deviation (EMGσ [m], where m
was the decimated discrete-time sample index) was computed.
The raw EMG were highpass filtered ( fc = 15 Hz, fifth-order
Butterworth filter) to remove motion artifact, then notch
filtered (second-order IIR filter at 60 Hz, notch bandwidth
of 1 Hz), rectified, lowpass filtered ( fc = 16 Hz, as above)
and finally downsampled to 40.96 Hz. Note that additional
lowpass filtering, typically with fc ≤1 Hz, is optimized to
each subject via the EMGσ -force/target model [33]. Prior to
further analysis, the initial and final 1 s of all signals were
removed to avoid filter startup transients.

2) Latency Between Forces/Moments and the Target: For
each able-bodied subject and DoF, we computed the
cross-correlation coefficient function to estimate the latency
between subject force/moment and the target [43]. For 2-DoF
tasks, latency estimates were made independently for
each DoF. The time location of the maximum of the
cross-correlation coefficient function indicated the time delay
(latency) (τ = k

/
Fs , where k is the number of samples,

Fs is the sampling frequency) at which the force/moment
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and the target were best aligned. The corresponding maximum
cross-correlation coefficient function value (ρ) is a measure of
the linear association of the target tracking, after accounting
for the latency. It is invariant to gain and, as such, is a measure
of timing accuracy in tracking. As the force will lag behind
target movement due to the subject’s reaction time, we only
searched for the maximum ρ between a delay τ of 0 to 1 s.
Note that our pre-processing of the force/moment data did not
bias the latency estimates, since pre-processing filters were
implemented with zero phase.

3) Dynamic EMGσ -Force/Target Modeling: When EMGσ [m]
was related to force (EMG-force), or when EMG was related
directly to the arrowhead target (EMG-target), during 1-DoF
trials, a linear, dynamic, finite impulse response relation was
used, of the form:

F [m] =
Q∑

q=0

E∑

e=1

ce,q E MGσ e[m − q − k],

where F was the force/target, m was the decimated discrete-
time sample index, q and e were integer indexes, Q = 20
was the order of the linear dynamic model, E = 16 was the
number of electrodes used in the fit, and ce,q were the fit
coefficients [44]. Latency (k; in samples) was assigned to zero
for EMG-force models (we observed that sufficient latency
was provided by the frequency-dependent phase response of
the linear models). For EMG-target models of able-bodied
subjects, latency was taken from the same trial as the model
fit, as this value was assumed to be most accurate; for
limb-absent subjects (wherein latency cannot be measured
on the limb-absent side), the latency used was the average
latency from able-bodied subject trials from the same task
and DoF. Fit coefficients were estimated via the linear least
squares pseudo-inverse method, in which singular values of
the design matrix were removed if the ratio of that singular
value to the largest was less than a tolerance value (T ol = 0.1,
based on previous study [11], [20]). We chose this modeling
method for its robustness, simplicity and because linear models
capture most of the EMG-force/target relationship. In this
manner, we could maintain our focus on the different feedback
mechanisms.

Each task consisted of two trials. The first trial was used for
coefficient training and the second for testing. Then, the train-
ing and testing trials were flipped for two-fold cross-validation
and the average of the two RMS errors (RMSEs) reported. All
RMSEs were in %MVC (normalized force/moment).

For 2-DoF trials, two EMGσ -force/target models were fit,
one per DoF (each with its own coefficients). In this manner,
each EMG channel contributed to each DoF. Again, one trial
was used for training and one for testing, with two-fold
cross-validation.

4) EMG-Force, EMG-Target Models Studied: For each exper-
imental task, both 1- and 2-DoF trials had been performed.
Thus, both 1- and 2-DoF EMG-force/target models were
studied, respectively. From the Task 1 data, EMGσ was related
to force in the dominant arm. These data were only available
from the able-bodied subjects and represented the reference
(“best-case”) task. From the Task 2 data in which there was

TABLE II
ABLE-BODIED SUBJECTS, TRACKING LATENCY BETWEEN ACTUAL

FORCE/MOMENT AND TARGET, FOR EACH DOF (MS)

no visual feedback, EMGσ only was related to the target for
all subjects. This analysis represents building models when
no feedback is available during training (e.g., when building
EMG-force style prosthesis control models for limb-absent
subjects). From the Task 3 data that used mirror visual feed-
back, EMGσ was related to contralateral force (representing
use of forces from the sound side to train models in unilateral
limb-absent subjects); and EMGσ was related to the target for
all subjects (for comparison to results from Task 2). Again,
the average RMSEs from two-fold cross-validated results is
reported.

D. Statistics

Our primary evaluation metrics were latency between
forces/moments and the target, and maximum cross corre-
lation coefficient/RMSE between measured/EMG-estimated
forces/moments. Unless noted otherwise, performance differ-
ences were evaluated using repeated measures analysis of
variance (RANOVA) in SPSS 22, using a significance level of
p = 0.05. Prior to RANOVA, the degree of sphericity (ε) was
used to adjust the degrees of freedom by either the method of
Greenhouse-Geisser (ε < 0.75) or the method of Hyunh-Feldt
(0.75< ε <1). Unless stated otherwise, no interactions were
found. Pairwise comparisons (post hoc or stand-alone) were
conducted using paired t-tests with Bonferroni correction.
We statistically analyzed 1-DoF tasks separately from 2-DoF
tasks.

III. RESULTS

A. Latencies Between Force/Moment and Target

Table II shows the mean ±std. dev. latencies between
force/moment and target for each experimental task, for the
able-bodied subjects. RMSE between force/moment and target
was compared pairwise with vs. without latency adjustment.
Pooling all conditions [288 1-DoF trials (12 subjects ×
4 feedback types × 3 DoFs × 2 sets) and 384 2-DoF trials
(12 subjects × 4 feedback types × 2 DoF pairs × 2 errors
per DoF pair × 2 sets], the latency adjusted error was smaller
(in 658 of 672 pairs) by an average of 4.60±2.91 %MVC,
which was statistically significant (p < 10−6, paired sign test).
This result formed the basis for our step in the Methods section
to latency-adjust all EMG-target models.
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Fig. 4. Mean + std. dev. errors between dominant limb force/moment and
target for able-bodied subjects, after adjusting for time latency. Statisti-
cally significant differences between feedback types indicated with “∗”.
RMSE (left) with different feedback conditions [dominant (Task 1),
none (Task 2) and mirror (Task 3)] as a function of DoF for 1-DoF
tasks (top) and as a function of DoF pairs for 2-DoF tasks (bottom).
Maximum cross-correlation coefficients (ρ) shown at right. Dash-line
boxes in (d) group DoF pairs.

B. RMSE, Dominant Force vs. Target, Able-Bodied
Subjects

Before reporting EMG-force and EMG-target performance
(see subsequent sub-sections), we describe the ability of
able-bodied subjects to track the random target in Tasks 1–3.
Fig. 4 shows summary RMSE and ρ of dominant limb force
in able-bodied subjects vs. target for the different feedback
conditions (i.e., tasks), after adjusting for time latency. RMSE
measures tracking error, while ρ provides an error measure
that is invariant to gain (and provides our latency values).

In 1-DoF tasks, a two-way RANOVA of RMSE with the
factors feedback (dominant, none, mirror) and DoF (Rad-Uln,
Pro-Sup, Opn-Cls) found only feedback as significant
[F(1.1, 12.6) = 42, pGG = 10−5. Pairwise comparison
found RMSE in dominant feedback was significantly lower
than none (p =10−4) and mirror (p = 0.002), and mirror had
significantly lower error than none (p =10−4).

In 2-DoF tasks, a three-way RANOVA for tracking RMSE
with the factors of feedback (dominant, none, mirror), DoF
pair (Rad-Uln & Opn-Cls or Pro-Sup & Opn-Cls) and motion-
within-DoF (wrist Rad vs. Uln, or Pro vs. Sup; or hand Opn vs.
Cls) found only feedback was significant [F(1.2, 13.0) = 40,
pGG = 10−5]. Pairwise comparison found RMSE in dominant
feedback was significantly lower than none (p =10−4) and
mirror (p =10−4), and RMSE in mirror was significantly
lower than none (p = 0.001). In both 1-DoF and 2-DoF
tasks, the average error when using no feedback is nearly
half the contraction range of ±30 %MVC, which seems
unacceptable.

Fig. 5. Mean ± std. dev. EMG-force RMSEs when testing on forces from
the dominant limbs of able-bodied subjects and training from indicated
feedback source [dominant force (Task 1), target with no visual feedback
(Task 2), contralateral force (Task 3), target during mirror visual feedback
(Task 3)], for (a) 1-DoF and (b) 2-DoF tasks. EMG acquired from the
dominant limb. Statistically significant differences between feedback
types indicated with “∗”.

C. Train EMG-Force, EMG-Target: Test Using Dominant
Limb Forces of Able-Bodied Subjects (Tasks 1–3)

Fig. 5 shows summary results of EMG-force/target models
trained with the various indicated signal as the supervised
output, but always tested using a distinct trial of able-bodied
dominant limb forces. Thus, regardless as to whether the
training set used force or target as the output, the model
was tested using dominant limb force as the output. When
training did not use dominant limb force, then testing on
the dominant limb best indicates if the supervised output
is an acceptable surrogate for dominant limb force—which,
of course, is not available in limb-absent subjects. Note that
training with dominant force feedback (same side as the
electrode array) represents the best-case EMG-force training
condition (EMG recorded directly from muscles producing the
measured force/moment).

In 1-DoF tasks, a two-way RANOVA with factors: DoF
(Rad-Uln, Pro-Sup, Opn-Cls) and feedback (dominant, con-
tralateral, none, mirror) found only feedback was significant
[F(1.3, 14) = 45, pGG = 10−6]. Post hoc comparison found
that dominant feedback had significantly lower RMSE than the
others (p < 0.002), contralateral and mirror had no significant
difference from each other, and both had lower RMSE than
none (p < 0.001).

In 2-DoF tasks, a three-way RANOVA with factors:
DoF pair (Rad-Uln & Opn-Cls, Pro-Sup & Opn-Cls),
feedback (dominant, contralateral, none, mirror) and motion-
within-DoF (wrist Rad-Uln vs. hand Opn-Cls, or wrist Pro-Sup
vs. hand Opn-Cls) found only feedback was significant
[F(1.4, 16) = 37, pGG = 10−6]. Pairwise comparison found
that dominant feedback had significantly lower RMSE than
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Fig. 6. Example 1-DoF EMG-force/target time-series results, limb-
absent subject 22, Pro-Sup, for three feedbacks (none, contralateral
force, mirror. EMG acquired from the affected side. Both true force and
EMG-estimated force are shown in each plot.

the others (p < 0.001), contralateral and mirror had no
significant difference from each other, and both had lower
RMSE than none (p < 0.004).

D. Train EMG-Force, EMG-Target: Test Using Respective
Feedback Signal—All Subjects (Tasks 2, 3)

Fig. 6 and Fig. 7 show example time-series results.2 Fig. 8
shows summary results of EMG-force/target models when the
distinct train and test trials were from the same feedback signal
other than dominant force. These three signals were available
for both able-bodied and limb-absent subjects, so provide
a more direct means of comparison between these subject
populations which is not available from the prior results.

In 1-DoF tasks, a three-way RANOVA for RMSE with
two subject-within factors: feedback (contralateral, none,
mirror) and DoF (Rad-Uln, Pro-Sup, Opn-Cls); and one
subject-between factor: group (able-bodied, limb-absent)
found significant interactions. Thus, two-way RANOVAs were
computed separately for able-bodied and limb-absent subjects.
For able-bodied subjects, the two-way RANOVA found only
feedback was significant [F(2, 22) = 12.5, p = 10−4].
Pairwise comparison showed that contralateral feedback had
significantly lower error than none (p = 0.04) and mirror (p =
10−4). For limb-absent subjects, the two-way RANOVA found
both feedback and DoF significant [F(2, 22) > 4.0, p < 0.05].
Pairwise comparison showed that contralateral feedback had
significantly lower error than none (p = 0.035) and mirror
(p = 0.015), and that Pro-Sup had better performance than
Rad-Uln (p = 0.021). Alternatively, we fixed each of the DoFs
in the original three-way RANOVA. Of these three two-way
RANOVAs, only when Rad-Uln was fixed was a significant
difference found in the group factor, with able-bodied subjects
exhibiting lower error than limb-absent [F(1, 17) = 10.8,
p = 0.004].

2Note that there is sufficient subject-to-subject variation that finding one
trial with each RMSE near its average result is not feasible. Thus, the rank
order of the RMSEs shown in these figures does not necessarily follow those
of the summary results.

Fig. 7. Example 2-DoF EMG-force time-series results, limb-absent sub-
ject 21, Rad-Uln & Opn-Cls when using (a) no feedback, (b) contralateral
feedback and (c) mirror feedback. EMG acquired from the affected side.
Both true force and EMG-estimated force are shown in each plot.

In 2-DoF tasks, a four-way RANOVA for RMSE with
three subject-within factors: feedback (contralateral, none,
mirror), DoF pair (Rad-Uln & Opn-Cls; Pro-Sup & Opn-Cls)
and motion-within-DoF (wrist Rad-Uln vs. hand Opn-Cls,
or wrist Pro-Sup vs. hand Opn-Cls); and a subject-between
factor: group (able-bodied, limb-absent) found DoF to not be
significant [F(1, 17) = 0.3, p = 0.6], and the other three
factors to interact. Continuing analysis of the three interacting
factors, two three-way RANOVAs with factor group fixed
were computed. For able-bodied subjects, there was a two-way
significant interaction of feedback× motion-within-DoF. Thus,
pairwise comparison found that: for both motion-within-DoF
wrist Rad-Uln and Pro-Sup, contralateral feedback had sig-
nificantly lower RMSE than mirror (p = 0.008); for motion-
within-DoF hand Opn-Cls, contralateral feedback exhibited
significantly lower RMSE than both none (p <10−4) and
mirror (p = 0.001). For limb-absent subjects, the three-way
RANOVA found only feedback significant [F(1.1, 6.4) = 9.4,
p = 0.02]. Pairwise comparison found contralateral feedback
had significant lower RMSE than mirror (p = 0.033).
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Fig. 8. (a) 1-DoF mean ± std. dev. EMG-force/target RMSEs when
testing and training on trials from the same feedback type [none (Task 2),
contralateral force (Task 3), mirror (Task 3)] three motion pairs for both
able-bodied and limb-absent subjects. (b) Corresponding 2-DoF RMSE
results. EMG acquired from the dominant limb of able-bodied subjects,
affected side of limb-absent subjects. Statistically significant differences
described in text.

IV. DISCUSSION

A. Latencies Between Force/Moment and Target

The 1-DoF latencies between force/moment and target
(Table II) are generally consistent with those found in the
literature, ranging in average from 234–367 ms [42]. When
tracking using the contralateral (i.e., non-dominant) limb of
able-bodied subjects for feedback, the latencies tended to be
longer.

Latencies for our 2-DoF tasks were not readily found within
the literature, hence our results for these tasks may be novel.
Across Tasks 1–3, the trend was for much larger average
latencies (by a factor of ∼2) for the Opn-Cls dimension
within each 2-DoF task, while the other contraction dimension
retained a latency similar to its 1-DoF task. Standard devia-
tions were similar to the 1-DoF results. The only exception
was Rad-Uln & Opn-Cls 2-DoF Task 2—in this case both con-
stituent DoFs exhibited the higher average latencies. Anecdotal
observation during the trials suggests that subjects struggled
to perform the 2-DoF tracking, and may have concentrated
their tracking focus on Rad-Uln/Pro-Sup at the expense of
Opn-Cls. Additionally, use of arrowhead size as the feedback
source for Opn-Cls may have been more challenging compared
to the other DoFs. But, this issue is less likely, since no
similar performance distinction occurred in 1-DoF. Note that
in able-bodied subjects, each subject’s latency was available,

thus these subject-specific latencies provided the most accurate
estimates. For limb-absent subjects, we resorted to using the
average value from able-bodied subject trials from the same
task and DoF. This approximation was necessary, but likely
contributed more error to the limb-absent results.

B. RMSE, Dominant Force vs. Target, Able-Bodied
Subjects

The results in Fig. 4 depict the ability of forces/moments in
the dominant arm of able-bodied subjects to track the target,
as a function of three feedback sources. As expected, when
dominant feedback is provided from the dominant limb, errors
are statistically lower. Our results then show a hierarchy of
performance, with mirror feedback showing the next lowest
error and no-feedback providing the highest error. These
results are consistent both for 1- and 2-DoF tasks. Notably,
the error between the target and the actual force produced
by the dominant arm in the no-feedback condition averaged
25–30 %MVC, even though the full force range only spanned
±30 %MVC. Hence, this error was nearly half the available
force range, which is quite large; suggesting that the target
displayed during the no-feedback condition is quite a poor
supervised output source for system identification purposes.

In contrast, the maximum cross-correlation results for all of
these tasks are quite high (Fig. 4, right). The average value of
ρ ranged from ∼0.6 to over 0.8 for the 1-DoF tasks. As shown
in the time-series plots of Fig. 6 and Fig. 7, subjects followed
the timing of the extrema of target force quite well, but
had difficulty in maintaining proper amplitude (especially for
2-DoF tasks).

C. Train EMG-Force, EMG-Target: Test Using Dominant
Limb Forces of Able-Bodied Subjects

Fig. 5 shows the principal results of this study. Relating
EMG from the dominant limb to forces in that limb,
as expected, gives EMG-force models with the lowest errors—
since EMG is recorded directly from the muscles producing
the measured force/moment. The errors found herein are
consistent in magnitude with those found in prior studies
[44], [45]. It is also encouraging that the EMG-force errors
shown in Fig. 5 are similar in amplitude to the force tracking
errors shown in Fig. 4. Thus, relating EMG to dominant side
force has errors that are similar to those between dominant
force and the target. But, when dominant limb forces are not
available and a surrogate output is needed to train EMG-force
for the dominant limb (e.g., limb-absent subjects), our results
again found a hierarchy of statistically significant differences:
bilateral tracking using contralateral force for training (with or
without mirror visual feedback) performed somewhat poorer,
while no feedback performed the poorest. Statistically, there
was no performance distinction in bilateral tracking between
feedback of contralateral force and mirror visual feedback. For
both 1- and 2-DoF tasks, the EMG-force/target errors with no
feedback were approximately half the available force range.
These errors are so large that it is likely that population-based
models of EMG-force dynamics (e.g., Hill-style muscle
models [46] or generic EMG-force calibrations from a
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population [30], [31]), combined with estimation only
of one gain parameter per EMG channel, would provide
considerably better EMG-force estimation. For example, in a
2-DoF hand-wrist EMG-force task involving nine able-bodied
subjects [31], we replaced EMG-force dynamics calibrated
to each individual with one universal model calibrated across
the population. A single gain per EMG channel was still
optimally estimated per individual. The population-based
model performed nearly identically to those customized to
each individual. Of course, optimal gain selection still requires
force estimation from the dominant limb. However, prosthetists
are familiar with the subtleties of EMG channel gain selection.

Note that EMG-force calibration using contralateral force
feedback (with or without mirror feedback) still requires use
of a load cell. This option might be reasonable for use in
a prosthetist’s office, but does not seem reasonable for field
calibration of a prosthesis control system.

D. Train EMG-Force, EMG-Target: Test Using Respective
Feedback Signal—All Subjects

Finally, Fig, 6 and Fig. 7 show results when EMG-force/
target models were trained and tested from the same signal
source, excluding the previously shown Task 1 results from
training using dominant limb force. These models impor-
tantly highlight results from the limb-absent subjects (whose
anatomy does not permit measurement of affected-side limb
forces). The associated statistical results are not as sharply
defined, perhaps reflecting the larger result variances and the
smaller sample size. Nonetheless, there was still a general
trend for lower errors when training EMG-force/target models
using contralateral feedback, and unacceptably higher errors
when training with no feedback—consistent with results from
the able-bodied subjects. Also, there were limited distinctions
between the wrist DoFs (although Pro-Sup did have better
1-DoF performance than Rad-Uln). Pro-Sup would be the most
intuitive if used to control wrist rotation. And, in limb-absent
subjects, it is interesting to note that providing mirror visual
feedback was not statistically different from providing no
feedback.

E. General Discussion and Limitations

Our results found a rather clear performance hierarchy,
with dominant limb feedback providing the lowest EMG-force
error (as would be expected), followed by feedback based
on bilateral tracking (using either the forces from the con-
tralateral side, or mirror visual tracking), followed by no
feedback. EMG-force models based on bilateral tracking
seemed adequate, but require the use of a load cell and would
exclude persons with bilateral limb-absence. EMG-target mod-
els formed using no feedback seemed inadequate. In such
cases, population-based EMG-force models (as least for
EMG-force dynamics; one gain per EMG channel is always
needed to scale its contribution) might perform better.

In general, we chose to equate the dominant side of able-
bodied subjects to the affected side of limb-absent subjects.
We did so because prostheses aspire to be a high quality
replacement of limb function (which is best represented by

the dominant side in able-bodied subjects) and, thus, we wish
to advance prosthesis control towards the performance
expectations of the dominant limb. In addition, most prior
EMG-force modeling has been performed on the dominant
side of able-bodied subjects. Nevertheless, the sound side
of limb-absent subjects becomes used as the dominant side,
regardless of natural handedness—due largely to the limited
functionality provided by existing prostheses.

We did not find many substantive differences in performance
as a function of DoF. Such changes have been found in the
literature (e.g., when relating dominant-limb EMG to hand
position in the contralateral hand of able-bodied subjects,
during bilateral mirror contractions [36]) and postulated to
be consistent with deeper muscle fibers (which are more
poorly represented in surface EMG) that are prime torque
generators for the poorer performing DoFs [47]. Perhaps if
such differences exist, they are subtle enough to be difficult
to find with the small sample sizes common in experimental
studies in this field. Also, the use of a large number of
electrodes, placed about the full extent of the remnant limb (as
was done in our work), may help to mitigate these issues [36].

The tasks tested in this study were relatively novel to
both our able-bodied and limb-absent subjects. In particular,
2-DoF target tracking was both novel and challenging. It would
be interesting to determine if more tracking practice (or,
repeated experimental sessions) would have led to better
2-DoF tracking [48], [49]. Note that our force-varying tar-
get trajectories were selected for their system identification
properties (uniform distribution gives equal weight to each
force level; bandlimited and white gives equal weight to each
frequency). If subjects are better able to produce the requested
forces, the quality of the identified model is likely to improve.

We separated our statistical analyses of 1-DoF tasks from
those of 2-DoF tasks, because these tasks are inherently
different. Testing for a statistical difference between inherently
distinct tasks is, generally, not of scientific value [16], [44].
As shown in Table II, Opn-Cls tracking latencies during 2-DoF
tasks trended longer than those from 1-DoF tasks. Similarly,
Fig. 5 and Fig. 8 suggest a trend for larger 2-DoF EMG-force
RMSEs compared to 1-DoF. These trends are consistent with
our anecdotal observation that subjects had more difficulty
tracking in 2-DoFs than 1-DoF. Future work might seek
to better understand the decrement in performance, if any,
in 2-DoF tracking tasks vs. 1-DoF tracking tasks.

It is always important to recognize that the neuromuscular
anatomy of limb-absent subjects is both different from that
of able-bodied subjects and highly variable. For example,
our able-bodied subjects had a mean ± std. dev. forearm
circumference of 25.9 ± 3.2 cm compared to 22.2 ± 2.3 cm
for the limb-absent subjects. Remnant muscle tissue typically
has more neuromuscular damage and may be more prone to
fatigue (e.g., [48]). And, the sensation of a phantom hand may
be more or less expressive in different subjects. Anecdotally,
phantom limb sensation may have been more of a limitation
in 2-DoF tasks than in 1-DoF tasks. Each of these factors may
influence EMG-force performance.

Finally, there is some evidence suggesting that an accurate
model of the dynamics between muscular activation (inputs)
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and kinetic/kinematic outputs is not paramount to control
of the existing generation of myoelectrically-controlled pros-
theses, which provide relatively rudimentary function. If the
myoelectric control model is repeatable and largely linear,
then prosthesis users are hypothesized to adapt/re-learn the
necessary inputs (muscular activations) required to achieve the
desired output [48], [50], [51] In fact, existing commercial
prosthesis users have been doing so for years, albeit at
the cost of additional mental workload (among other lim-
iting factors) [52]. Of course, the higher the fidelity with
which future prosthetic devices reproduce the function of
intact limbs, the more apparent will become the benefit of
accurately identifying models relating muscular activation to
kinetics/kinematics. And, unilateral prosthesis users should
benefit from more accurate forward-path activation models
during, for example, bilaterally symmetric tasks, wherein the
central nervous system nominally matches muscular activation
between the affected and the sound side.

V. CONCLUSION

The prime goal of this work was to evaluate distinct
options for surrogate supervised output sources in hand-wrist
EMG-force models for limb-absent subjects. We did so using
novel instrumentation in which hand Opn-Cls forces as well as
wrist Rad-Uln force and Pro-Sup moment were simultaneously
measured on both sides of our able-bodied subjects. This
instrumentation allowed us to report novel quantitative results
on the latency between force/moment and our random target
(Table II); and on the ability of these subjects to perform
random target tracking during our various tasks, contrasting
RMSE to cross-correlation coefficient (Fig. 4).

For EMG-force modeling, our comparison of different feed-
back approaches found that use of the phantom limb for
bilateral tracking (with or without mirror visual feedback)
permitted the limb on the sound side to provide a reasonable
substitute force measurement. But, this output source is only
available to persons with unilateral limb-absence and still
requires use of a load cell. As such, it is primarily of use in
a prosthetist’s office, and not in the field. We found that use
of the tracking target without a feedback source (applicable
to limb-absent subjects) resulted in an inadequate EMG-force
model. In such cases, use of generic models for EMG-force
dynamics, combined with simple gain selection for each EMG
channel, would likely provide better performance.
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