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Abstract—Pedestrian detection is a critical feature of au-
tonomous vehicle or advanced driver assistance system. This
paper presents a novel instrument for pedestrian detection by
combining stereo vision cameras with a thermal camera. A new
dataset for vehicle applications is built from the test vehicle
recorded data when driving on city roads. Data received from
multiple cameras are aligned using trifocal tensor with pre-
calibrated parameters. Candidates are generated from each
image frame using sliding windows across multiple scales. A
reconfigurable detector framework is proposed, in which fea-
ture extraction and classification are two separate stages. The
input to the detector can be the color image, disparity map,
thermal data, or any of their combinations. When applying to
convolutional channel features, feature extraction utilizes the first
three convolutional layers of a pre-trained convolutional neural
network cascaded with an AdaBoost classifier. The evaluation
results show that it significantly outperforms the traditional
histogram of oriented gradients features. The proposed pedes-
trian detector with multi-spectral cameras can achieve 9% log-
average miss rate. The experimental dataset is made available at
http://computing.wpi.edu/dataset.html.

Index Terms—Multi-spectral camera, autonomous vehicle,
pedestrian detection, machine learning

I. INTRODUCTION

Automatic and reliable detection of pedestrians is an im-
portant function of an autonomous vehicle or advanced driver
assistance system (ADAS). Research works on pedestrian
detection are heavily depended on data, as different data and
methods may yield different evaluation results. The most com-
monly used sensor in data collection is a regular color camera,
and many datasets have been built such as the INRIA person
dataset [1] and the Caltech Pedestrian Detection Benchmark
[2]. Thermal cameras have also been considered lately, and dif-
ferent methods of pedestrian detection were developed based
on the thermal data [3]. It is worth investigating whether the
methods developed from one type of sensor data are applicable
to other types of sensors. A method may not work anymore
since the nature of data has changes, e.g., finding certain
hot objects by intensity value threshold on thermal image is
not applicable to a regular color image. Some methods such
as gradient and shape based feature extraction may still be
applicable since an object has similar silhouettes in both color
and thermal images. In addition, data from different sensors
may contain complementary information and combining them
may result better performance. Multiple cameras can form
stereo vision, which provides additional disparity and depth
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information. An example of combining stereo vision color
cameras and a thermal camera for pedestrian detection can
be found in [4].

The data collection environment is also very important.
Unlike static cameras for surveillance applications, cameras
mounted on a moving vehicle may observe much more com-
plex background and distance-varied pedestrians. Therefore,
it calls for different pedestrian detection algorithms from the
surveillance camera applications. To use multiple sensors on a
vehicle, a cooperative multi-sensor system need to be designed
and new algorithms that can coherently process multi-sensor
data need to be investigated. The contributions of this paper
are listed as follows:

1) A multi-spectral camera instrument is designed and
assembled on a moving vehicle to collect data for
pedestrian detection. These data contain many complex
scenarios that are challenging for detection and classi-
fication. The experimental dataset is made available at
http://computing.wpi.edu/dataset.html.

2) The multi-spectral data are aligned using trifocal tensor.
It is then possible to combine features from different
sources and compare their performance.

3) A machine learning based algorithm is employed for
pedestrian detection by combining stereo vision and
thermal images. Evaluation results show satisfactory
performance.

The rest of the paper is organized as follows. Section II
provides a summary of related work. Section III describes
our instrumental setup for data collection. In Section IV,
we propose a framework that combines stereo vision color
cameras and a thermal camera for pedestrian detection using
different feature extraction methods and classifiers. Perfor-
mance evaluations are presented in Section V, followed by
further discussion in Section VI and conclusions in Section
VII.

II. RELATED WORK

There are many existing works on pedestrian detection.
The Caltech Pedestrian Detection Benchmark [2] has been
widely used by the researchers. It contains frames from a
single vision camera with pedestrians annotated. Based on
the CVPR2015 snapshot of the results on the Caltech-USA
pedestrian benchmark, it was stated in [5] that at ~95% recall,
the state-of-the-art detectors made ten times more errors than
the human-eye baseline, which is still a huge gap that calls
for research attentions. Overall, the detector performance has
been improved as new methods were introduced in recent
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years. Traditional methods such as Viola–Jones (VJ) [6] and
Histogram of Oriented Gradients (HOG) [1] were often in-
cluded as the baseline. A total of 44 methods were listed
in [7] for Caltech-USA dataset, and 30 of them made the
use of HOG or HOG-like features. Channel features [8] and
Convolutional Neural Networks [9]–[11] also achieved impres-
sive performance on pedestrian detection. The Convolutional
Channel Features (CCF) [12], which combines a boosting
forest model and low level features from CNN, achieved as
low as 19% log-average miss rate (MR) on Caltech Pedestrian
Detection Benchmark. Despite the progressive improvement of
detection results on the datasets, color cameras still have many
limitations. For instance, color cameras are sensitive to the
lighting condition. Most of these detection methods may fail
if the image quality is impaired under poor lighting condition.

Thermal cameras can be employed to overcome some
limitations of color cameras, because they are not affected by
lighting condition. Several research works using thermal data
for pedestrian detection and tracking were summarized in [3].
Background subtraction was applied in [13] for people detec-
tion, since the camera was static. HOG features and Support
Vector Machine (SVM) were employed for classification [14].
A two-layered representation was described in [15], where the
still background layer and the moving foreground layer were
separated. The shape cue and appearance cue were used to de-
tect and locate pedestrians. In [16], a window based screening
procedure was proposed for potential candidate selections. The
Contour Saliency Map (CSM) was used to represent the edges
of a pedestrian, followed by AdaBoost classification with
adaptive filters. Assuming the region occupied by a pedestrian
has a hot spot, candidates were selected based on thermal
intensity value [17] and then classified by a SVM. In addition,
both Kalman filter prediction and mean shift tracking were
incorporated for further improvement. A new contrast invariant
descriptor [18] was introduced for far infrared images, which
outperformed HOG features by 7% at 10−4 FPPW for people
detection. The Shape Context Descriptor (SCD) was also
used for pedestrian detection in [19], followed by AdaBoost
classifier. The HOG features were considered not suitable for
this task because of the small size of the target, variations of
pixel intensities and lack of texture information. Probabilistic
models for pedestrian detection in far infrared images was
presented in [20]. The method in [21] found the head regions
at the initial stage, then confirmed the detection of a pedestrian
by the histograms of Sobel edges in the region.

Stereo vision can provide additional information such as
disparity map to better detect people in the frame. RGB-D
cameras were used for indoor people detection or tracking
in [22], [23], and stereo thermal cameras were used in [24]
for pedestrian detection. and the image pixel registration was
done using 3D point cloud. The combination of stereo vision
cameras and a thermal camera was used in [4]. Trifocal
tensor was used to align the thermal image with color and
disparity images. Candidates were selected based on disparity,
and HOG features were extracted from color, thermal and
disparity images. Concatenated HOG features were then fed
to radio basis function (RBF) SVM classifier to obtain the
final decision. An indoor people detection system using stereo

vision cameras and a thermal camera was presented in [25].
Instead of trifocal tensor, 3D point cloud projection was used
for image point registration between thermal and color images.

For ADAS applications, pedestrian detection is often chal-
lenging because the camera is moving with the vehicle, and the
pedestrians are often very small on images due to the distance
and image resolution. Several pedestrian detection research
works were summarized in [26], including the use of color
cameras and thermal cameras, as well as sensor fusion such
as radar and stereo vision cameras. A benchmark for multi-
spectral pedestrian detection was presented in [27] and several
methods were analyzed. However, the color-thermal pairs were
manually annotated and it is unclear if any automatic point
registration algorithms were used. Furthermore, more sophis-
ticated applications or systems can be built upon pedestrian
detection, such as pedestrian tracking across multiple driving
recorders [28] and crowd movement analysis [29].

III. DATA COLLECTION AND EXPERIMENTAL SETUP

A. Data Collection Equipment

To collect on-road data for pedestrian detection, we design
and assemble a custom test equipment rig. This design enables
the data collection system to be mobile on the test vehicle as
well as maintaining calibration between data collection runs.
The completed system can be seen in Figure 1.

Figure 1: Instrumentation setup with both thermal and stereo
cameras mounted on the roof of a vehicle.

The stereo vision cameras called ZED StereoLabs are cho-
sen for providing color images as well as disparity information.
The ZED cameras can capture high resolution side-by-side
video that contains synchronized left and right video streams,
and can create a disparity map of the environment in real-time
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using the graphics processing unit (GPU) in the host computer.
Furthermore, an easy to use SDK is provided, which allows
for camera controls and output configuration. In addition, the
on-board cameras are pre-calibrated and come with known
intrinsic parameters. This makes image rectification and dis-
parity map generation easier. The rectified images and the
disparity map can be obtained by using the SDK, and point
correspondence between the 2 stereo images can be calculated
as xleft = xright − disparity(xright, y), where (xleft, y) is
the point location in the left image, (xright,y) is the point
location in the right image, and disparity() is the disparity
value at the given location.

The thermal camera is called FLIR Vue Pro, which is a long
wavelengths infrared (LWIR) camera. The IR camera is an
uncooled vanadium-oxide microbolometer touting a 640×512
resolution at a full 30 Hz and paired with a 13 mm germanium
lens providing a 45◦ × 35◦ field of view (FOV). This IR
camera has a wide −20◦ to 50◦ operation range which allows
for rugged outdoor use. The thermal camera also provides
Bluetooth wireless control and video data recording via its
on-board microSD card as well as an analog video output.

Both stereo vision and thermal cameras must remain fixed
relative to each other for consistency of data collection. A
threaded rod is custom cut to length and each end is threaded
into the respective cameras tripod mounting hole. This pro-
vides a rigid connection between the color and thermal cam-
eras. An electrical junction box is utilized as an appropriately
sized, water proof box that provides high impact resistance.
The top lid is replaced with an impact resistant clear acrylic
sheet such that the stereo vision cameras can be situated safely
behind it. A circular hole is cut into the top lid to accommodate
for the thermal camera lens to fit through and mounted via the
lens barrel. This is essential, as even clear acrylic would block
most, if not all the IR spectrum that is used by the thermal
camera.

The mounting system is designed, modeled, and built uti-
lizing aluminum extrusions. The entire structure is completely
portable and can be mounted to any vehicle with a ski rack.
The aluminum extrusions can sit between the front and back
ski rack hold-downs. On the other hand, cable management is
crucial in our design as long cables are needed for communi-
cation between the laptop inside the vehicle and the cameras
on the roof. To avoid interference and safety issues, the cables
must run down the back of the vehicle, through the trunk and
into the vehicle cabin, which needs approximately 20 feet of
cable. This creates an issue for the ZED stereo vision cameras,
as it operates on high speed USB 3.0 protocol that allows
for a 10 feet maximum length due to signal degradation and
loss. To resolve this issue, an active USB extension cable is
used. A total of four cables terminated from the camera setup
are wrapped together with braided cable sleeves to prevent
tangling and ensure robustness.

An analog frame grabber is employed to capture the real-
time analog output of the IR camera instead of directly
recording to the on-board microSD card. It is to ensure proper
synchronization between the thermal camera and stereo vision
cameras. With analog frame grabber, we are able to precisely
capture at 30 FPS. AVI files are generated using software

provided along with the frame grabber. These AVI files are
then converted into image sequences. The thermal images
are synchronized with color images by software timestamps,
and manual correction during post processing. We use this
imperfect approach due to the limitation of our instruments
and/or APIs provided by the SDK. A more reliable approach
is by using trigger-based synchronization, as described in [30].

B. Data Collection and Experimental Setup

Our dataset is made available online at http://computing.
wpi.edu/dataset.html. The data are collected while driving
on city roads. Highway driving data are not collected since
pedestrians are hardly seen on highways. A total number of 58
data sequences are extracted from approximately three hours
of driving on city roads across multiple days and lighting
conditions. There are 4330 frames in total, in which a person
or multiple people are in clear view and un-occluded. Figure
2 shows the histogram of our sample height, which indicates
that more than half of the pedestrian samples in our dataset
are less than 50 pixels in height, and that makes our dataset
challenging. Each frame contains the stereo color images,
thermal image and disparity map. Since cameras have different
angle of view and field of view, the 58 usable sequences are
rather short, ensuring the pedestrians are within the view of all
cameras. Furthermore, video frames without any pedestrians
are not included in our dataset. Currently, our dataset does not
contain categorized scenarios such as sunny days, foggy days,
etc. However, as more data becoming available, the dataset can
be expanded to include those scenarios, and further analysis
can be performed on it.
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Figure 2: Histogram of Sample Height.

IV. PROPOSED METHOD

A. Overview

Figure 3 shows the flowchart of our proposed pedestrian de-
tection method. Disparity data are generated from stereo color
data. Thermal data are obtained from the thermal cameras and
reconstructed according to the point registration using trifocal
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tensor. By aligning data from multi-cameras, features can be
extracted from each sensor using the same window or region
of interests, which corresponds to the same real-world area
or object. Instead of concatenating the features of different
data sources and training a single classifier, feature extraction
and classification are performed independently for each data
source before the decision fusion stage. The decision fusion
stage uses the confidence scores of the classifiers, along with
some additional constraints to make the final decision. The
proposed detector system can be reconfigured using different
feature extraction and classification methods, such as HOG
with SVM or CCF with AdaBoost. The decision fusion stage
can utilize information from one or multiple classifiers. The
performance of different configurations can be evaluated and
compared.

Figure 3: Framework of the proposed pedestrian detection
method.

B. Trifocal tensor

These three cameras have different angle of view and field
of view, making the point registration (pixel level alignment)
essential to windowed detection method cross multi-spectral
images. Simple overlay with fixed pixel offsets does not work
because every object has its own offset values depending on
the distance to camera. Therefore, trifocal tensor [4], [31]
is used for pixel level alignment over the color and thermal
images. The trifocal tensor T is a set of three 3× 3 matrices
that can be denoted as {T1,T2,T3} in matrix notation, or
T jk
i in tensor notation [31] with two contravariant and one

covariant indices. The idea of the trifocal tensor is that given
a view point correspondence x↔ x′ ↔ x′′, there is a relation

[x′]×

(∑
i

xiTi

)
[x′′]× = 03×3. (1)

One method to compute the trifocal tensor T is by using
the normalized linear algorithm. Given a point-point-point
correspondence x↔ x′ ↔ x′′, there is a relation

xix′jx′′kεjqsεkrtT qr
i = 0st

where 4 out of 9 equations are linearly independent for all
choices of s and t. The tensor εijk is defined for i, j, k =
1, . . . , 3 as follows:

0

+1

−1

unless i, j, k are distinct

if ijk is an even permutation of 123

if ijk is an odd permutation of 123

Therefore at least 7 point-point-point correspondences are
needed to compute the 27 elements of the trifocal tensor. The
trifocal tensor can be computed from a set of equations in the
form of At = 0, using the algorithm for least-squares solution
of a homogeneous system of linear equations.

Given the correct correspondence x ↔ x′, it is possible
to determine the corresponding point x′′ in the third view
without reference to image content. It can be denoted as
x′′k = xil′jT

jk
i and can be obtained by using the trifocal tensor

and fundamental matrix F21. The line l′ goes through x′ and
is perpendicular to l′e = F21x. Both the trifocal tensor and
fundamental matrix F21 can be pre-computed and only need
to be computed once as long as the placement of the cameras
remains unchanged. An alternative method is epipolar transfer
x′′ = (F31x)× (F32x

′). However, this method has a serious
problem that it fails for all points lying on the trifocal plane.
Therefore, trifocal tensor is a practical solution for point reg-
istration. In our experiment, trifocal tensor is estimated using
a checkerboard. The pattern is made of different materials,
making it visible in both color and thermal camera. Figure 4
shows the usage of trifocal tensor in aligning color and thermal
images, including reconstructed thermal camera frames using
trifocal tensor, aligned to left.

(a) Color image. (b) Thermal image.

(c) Reconstructed thermal im-
age using trifocal tensor and
disparity information.

(d) Red-cyan anaglyph of color
and reconstructed thermal im-
ages.

Figure 4: Proper alignment of color and thermal images using
trifocal tensor.

C. Sliding windows vs. region of interest

There are two main methods to locate a pedestrian: sliding
window detection and Region of Interest (ROI) extraction. In
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sliding window detection, it applies a small sliding window
over the entire image, often in different scales, to perform
an exhaustive search. Each window is classified followed by
some post-processing, such as bounding box grouping. The
ROI extraction finds out the potential candidates first by some
pre-processing techniques such as color and pixel intensity to
filter out negatives from these candidates by using a classifier
or some other constraints. It is often more efficient, as the
number of candidates is much less than the amount of sliding
windows.

For pedestrian detection, both ROI extraction and sliding
window detection have been employed in the literature. The
sliding window detection method is an universal approach but
is computationally expensive. On the other hand, ROI extrac-
tion is often used for thermal images, because pedestrians are
often hotter than the surrounding environment. The ROIs are
segmented based on the pixel intensity values. However, we
find that the ROI extraction on thermal images does not always
work well. The assumption that the pedestrians are hotter is
not always true for various reasons. For instance, a pedestrian
wearing heavy layers of clothing does not appear with dis-
tinctively high pixel intensity values in a thermal image, and
thus a pedestrian can not be located by simple morphological
operations. As another example, the temperature of the road
surface exposed to intense sunlight has higher temperature
than the human bodies. Although false positives introduced
by hot objects such as vehicle engines can be filtered in later
steps, the losses of true positives become a serious problem.
As a result, we feel the sliding window detection method
is more reliable in case of these complex scenarios. The
classifier can analyze the windowed samples thoroughly and
make an accurate decision. Figure 5 shows some examples
of our pedestrian samples in color images and corresponding
thermal images, where row 1 and 3 are color samples and
corresponds to thermal samples in row 2 and 4, respectively.

Figure 5: Examples of pedestrians in color and thermal images.

However, sliding window detection method also has its own
drawbacks, besides much higher computational cost. The total
number of windows in an images often reaches 105 or more.
Even a fair classifier with False Positives Per Window (FPPW)

of 10−4 would still result 10 False Positives Per Image (FPPI).
Since 2009, the evaluation metric has been changed from
FPPW to FPPI [7]. To solve this problem, many state-of-the-art
CNN-based classifier have been proposed in recent years. An
alternative approach is to combine information from additional
sensors. Our proposed approach of multi-spectral cameras is
along this line.

D. Detection

In this paper, we only compare the HOG and CCF methods
for the task of pedestrian detection. The reason is explained in
Section VI-A. The HOG method used in this paper is based
on [1].

The HOG features have been widely used in object detec-
tion. It defines overlapped blocks in a windowed sample, and
cells within blocks. The histogram of the unsigned gradients
of several different directions are computed in all blocks, and
are concatenated as features. The HOG features are often
combined with SVM and sliding window method for detection
on different scaling levels.

At the training stage, the positive samples are manually
labeled. The initial negative samples are randomly selected on
training images as long as they do not overlap with the positive
samples. All samples are scaled to a standard window size of
20× 40 for training. The size of the minimum sample in our
data is 11×22. After the initial training, the detector is tested
on the training set and more false positives are added back
to the negative samples set. These false positives are often
called hard negatives and this procedure is often called hard
negatives mining. This procedure can be repeated for a few
times until the performance improvement becomes marginal.

Once the detector is trained, it is ready to perform detection
on the test dataset and give a decision score for each window.
Each frame with original size of 640 × 480 is scaled into
different sizes. The detector with a fixed size of 20 × 40 is
then applied to the scaled images to find pedestrians of various
sizes at different locations in a frame.

CCF uses low level features from a pre-trained CNN model,
cascaded with a boosting forest model such as Real AdaBoost
[32] as a classifier. The lower level features from the first
few CNN layers are considered generic descriptors for objects,
which contain richer information than channel features. Mean-
while, the boosting forest model replaces the remaining parts
of CNN. Thus we avoid training a complete end-to-end CNN
model for a specific object detection application which would
require large resources of computation, storage and time. In
our experiment, we apply similar settings as described in [12],
except for the parameters of the scales and number of octaves,
in order to detect pedestrians far away that are as small as
20×40 pixels. The conv3−3 layer in VGG-16 model are used
as feature extraction. The windowed sample size is 128× 64
instead of 20×40. The feature dimension of the 20×40 sample
is 1296. The training samples of CCF are from the training
stage of HOG, similar to the method described in [12] which
use aggregated channel features (ACF) [33] to select training
samples for CCF. Caffe [34] is used for feature extraction of
CCF on a GPU-based computer platform. At the test stage,
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CCF method runs on the GPU platform is considerably faster
than the HOG method, but it requires more memory and disk
space for data storage.

E. Information fusion

The idea of combing the information from color image,
disparity map and thermal data for decision making is referred
as information fusion. One approach is to concatenate these
features together [4]. A single classifier can be trained on
the concatenated features and the final decisions of the test
instances can be obtained from the classifier. This approach
has an disadvantage that the classifier training becomes a
challenge as the dimension of features increases. Furthermore,
if a new type of feature needs to be added or an existing feature
needs to be removed, the classifier need to be re-trained, which
is time consuming.

An alternative approach of information fusion is to employ
multiple classifiers and an example can be found in [35].
Each classifier makes decision on a certain type or subset of
features and the final result is obtained by using a decision
fusion technique such as majority voting or sum rule [36].
This approach has an advantage that the structure of a system
is reconfigurable. Without re-training the classifiers, adding
or removing different types of features becomes very conve-
nient. Therefore, we choose the later approach to make our
system reconfigurable so that it evaluates various settings and
methods. Specifically, an SVM is used at the decision fusion
stage and its inputs are confidence scores from classifiers in the
previous stage, which is more appropriate than commonly used
statistical decision fusion method in the case of multi-source
data [37], [38]. The data from different sources are often not
equally reliable, and so are the classifiers. The confidence
scores must be weighted when obtaining the final decision
from information fusion.

F. Additional constraints

1) Disparity-size: Besides the extracted features from an
image frame, additional constraints can be incorporated into
the decision fusion stage to further improve the detector
performance. An example is the disparity-size relationship.
Figure 6 shows the disparity and height relationship of the
positive samples in the form of a linear regression line
d =

[
h 1

]
×B , where d is mean disparity, h is the height

of the sample, and B is a 2 × 1 coefficient matrix. Given a
pair of mean disparity d̂ and height ĥ of a sample, the residual
r = |d̂−

[
ĥ 1

]
×B| can be used to estimate whether this

sample is possibly a pedestrian or not.
From Figure 6 we can see a number of samples have

very small mean disparity and are far below the regression
line. This is because the disparity information is not accurate
when an object is far away from camera. In fact, the stereo
vision camera we use automatically clamps the disparity value
at certain distance. Object beyond that distance results zero
disparity, which makes the estimation for small size samples
inaccurate.

Figure 6: The relationship between the mean disparity and the
height of an object.

2) Road horizon: During detection, a few reasonable as-
sumptions can be made to filter out more false positives while
retaining the true positives. The assumptions vary depending
on the application, including color, shape, position, etc. One
assumption here is that pedestrians stand on the road, i.e., the
lower bound of a pedestrian must below the road horizon.
The road horizon can be automatically detected in an image.
This kind of simple constraint may or may not improve the
detector performance, and experiments should be carried out
to determine its effectiveness.

V. PERFORMANCE EVALUATION

There are a total of 58 labeled video sequences in our
dataset. We use 39 of them for training and the remaining
19 for test. Figure 7 shows the performance of different
settings, including disparity map, color image, thermal data,
and their combinations, all based on HOG features. Gen-
erally, the more types of information are used, the better
performance is achieved. The disparity-only setup performs
the worst. The color image only is better, followed by the
combination of color and disparity. Note that the thermal-
only setup outperforms the combination of color and disparity.
The heat signature of pedestrians seems more recognizable
in thermal images. The combination of color, thermal and
disparity information achieves the best performance, with
about 36% log-average miss rate.

Figure 8 shows the performance of the HOG features, added
with disparity-size information and road horizon constraint.
The road horizon improves the log-average MR by about 5%.
Despite little improvement provided by adding the disparity-
size information alone, the combination both provides nearly
7% improvement in log-average MR.

Figure 9 shows the performance of different settings using
CCF. Performance of disparity only is the worst. Thermal
image performs very well. However, it is interesting to see the
disparity does not provide any improvement when combined
with color or thermal. In fact, combing with disparity results
lower performance. This is due to the fact that CCF imple-
mentation accepts 8-bit image as input, thus the precision of
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Figure 7: Performance of different input data combinations,
all using HOG features.

Figure 8: Performance improvement by adding disparity-size
and road horizon constraints.

the disparity is not accurate. In comparison, CCF outperforms
HOG almost on all settings except for disparity. The best
performance comes from CCF with the combination of color
and thermal, which achieves 9% log-average MR. Similarly,
we also attempt to add disparity-size information and road
horizon constraint to the CCF method, but the performance
changes are negligible, possibly because the CCF method is
already performing very well at 9% log-average MR.

VI. DISCUSSION

A. Why HOG and CCF?

While there are more advanced deep learning networks that
have better performance on Caltech-USA dataset, we only
compare the HOG and CCF methods for the task of pedestrian
detection for the follow reasons:

1) The HOG method was always included as a baseline
in Caltech-USA dataset. Among 44 methods reported
on the Caltech-USA dataset [7], 30 of them employed
HOG or HOG-like features.

2) The CCF achieved good performance on Caltech-USA
dataset. The idea of combining low level CNN feature

Figure 9: Performance of different input data combinations,
all using CCF.

and a boosting forest model avoids training a CNN from
end to end, which requires huge amount of data and is
time consuming. The advantage of CCF is especially
obvious in this paper, when our dataset is relatively
small, and different combinations of features are used as
input data. Training different versions of CNN to find the
best combination can be done when more data become
available in the future.

3) The goal of this paper is to investigate the combina-
tion of multi-spectral cameras and its improvement on
pedestrian detection. We publicize our dataset, so other
researchers can continue this study to discover many
better solutions in the future.

B. How to interpret the results?

As shown in Figure 9 and explained in Section V, the
best performance is achieved when combining color and
thermal data, and introducing disparity as additional feature
does not improve the performance. However, this does not
mean the disparity information is useless, nor stereo vision
is unnecessary. As described in Section IV-B, trifocal tensor
must be employed to align the thermal and color data, which
requires disparity information. It is impossible to align the
color data with the thermal data using a single color camera
and a single thermal camera, because the entire image cannot
be transformed using point matching techniques due to the
difference of color and thermal data in nature.

On the other hand, the performance is still highly dependent
on the instrument. Our thermal camera has a resolution of
640× 480, which is relatively low. To accommodate the reso-
lution and FOV of the thermal camera, the color cameras have
to be set to the same resolution. In addition, color cameras are
sensitive to the lighting condition, therefore the quality of the
image sometimes cannot be guaranteed. Figure 10 shows an
example, with bounding box drawn on the detected pedestrian
in both color and thermal images. It is obvious that the thermal
image provide much better information about the presence of
the pedestrian, while it is hardly identifiable in the color image
due to the shadow.
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Figure 10: A pedestrian is embedded in the shadow of a color
image.

Although thermal images seem to be dominant in our exper-
iment, its reliability still needs improvement. Figure 11 shows
a thermal image taken on a hot sunny day. Two pedestrians
circled are not bright enough compared to the surroundings,
which is contradictory to the assumption of distinct thermal
intensity in many existing research works. In this case, the
methods or operations based on pixel intensity values become
unreliable, such as intensity thresholding, head recognition
using hot spot, etc. On the contrary, some shape or gradient
based methods may still perform well, such as HOG and CCF
described in this paper.

Figure 11: An example thermal image with two pedestrians.

Finally, it is worth noting that possible camera parameters
estimation errors may have an impact on the performance.
The feature extraction across images requires accurate im-
age point registration, which can’t be done without accurate
camera parameters. Therefore, the possible camera parameters
estimation errors should be minimized during the calibration
stage, possibly by using more point pairs over a set of images.

VII. CONCLUSIONS

In this paper, a novel pedestrian detection instrumentation
is designed using both thermal and RGB-D stereo cameras.
Data are collected from on-road driving and an experimental
dataset is built with pedestrians labeled as ground truth. A
reconfigurable multi-stage detection framework is proposed.
Trifocal tensor is used to align data from multiple cameras.
It is then possible to combine features from different sources
and compare their performance. Both HOG and CCF based de-
tection methods are evaluated using the multi-spectral dataset

with various combinations of thermal, color, and disparity
information. The experimental results show that CCF signif-
icantly outperforms the HOG features. The combination of
color and thermal images using CCF method results the best
performance of 9% log-average miss rate. For the future work,
other advanced feature extraction and classification methods
will be considered to further improve the pedestrian detector
performance.
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