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Abstract— This paper presents a field-programmable gate
array (FPGA) design of a segmentation algorithm based on con-
volutional neural network (CNN) that can process light detection
and ranging (LiDAR) data in real-time. For autonomous vehicles,
drivable region segmentation is an essential step that sets up the
static constraints for planning tasks. Traditional drivable region
segmentation algorithms are mostly developed on camera data,
so their performance is susceptible to the light conditions and
the qualities of road markings. LiDAR sensors can obtain the
3D geometry information of the vehicle surroundings with high
precision. However, it is a computational challenge to process
a large amount of LiDAR data in real-time. In this paper,
a CNN model is proposed and trained to perform semantic
segmentation using data from the LiDAR sensor. An efficient
hardware architecture is proposed and implemented on an FPGA
that can process each LiDAR scan in 17.59 ms, which is much
faster than the previous works. Evaluated using Ford and KITTI
road detection benchmarks, the proposed solution achieves both
high accuracy in performance and real-time processing in speed.

Index Terms— Autonomous vehicle, road segmentation, CNN,
LiDAR, FPGA.

I. INTRODUCTION

IN RECENT years, we have witnessed a strong increase of
research interests on autonomous vehicles [10], [22]. Since

the DAPRA Urban Challenge in 2007, automated driving
technology has grown rapidly from research experiments to
commercial vehicle prototypes owing to the explosive progress
in the fields of artificial intelligence and machine learning.
As an important task of an automated driving system, it is
critical to conduct research on traffic scene perception and its
implementations on hardware platforms.

For traffic scene perception, detecting and tracking algo-
rithms are aimed to perceive the surroundings and to set
the constraints for planning and control tasks. Based on the
object types, the task of traffic scene perception can be
classified into three sub-tasks: (1) road perception includes
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drivable region segmentation and lane detection, (2) object
detection/tracking, and (3) traffic sign/signal detection. In road
perception, drivable region segmentation scans the front area
and searches for the drivable region, while lane detection
narrows the region of planning to the ego-lane if lane markers
are visible. Object detection and tracking identify the moving
objects such as vehicles, pedestrians, cyclists and animals,
and measure their locations, dimensions and speed to avoid
a collision. Traffic sign/signal detection looks for traffic signs
and traffic lights to perceive additional constraints for planning
tasks [8]. As a critical component of an automated driving
system, drivable region segmentation provides fundamental
knowledge of driving environment. Drivable region segmenta-
tion solutions are required to perceive a wide range of view,
generate accurate results, and respond in real-time. However,
road scenes are complicated. As described in [18], road scenes
have three types of diversities: (1) appearance diversity due to
changing shapes of lane markers and camera lens distortion,
(2) clarity diversity due to occlusions and illumination, and
(3) visibility condition diversity due to weather conditions.

Many sensing modalities have been used for drivable region
segmentation. Vision modalities [2], [13], [25] are frequently
applied on drivable region segmentation for two major reasons:
(1) Vision modality is similar to human visual system and
most road markers have features in the visual domain, and
(2) As a passive sensor, visual camera provides high-resolution
data with rich features. By implementing multiple cameras,
stereo vision [5] can provide depth information for drivable
region segmentation. However, due to the diversity in road
scene, it is difficult to design a feature descriptor that handles
all visual cases and light conditions. In addition, Shen et al.
proposed a series of algorithms to cluster super-pixels that
could improve vision based semantic segmentation [28], [29].

Light Detection And Ranging (LiDAR) is another major
modality often used by autonomous vehicles. By actively emit-
ting laser beams and measuring the 3D geometry around the
vehicle using Time of Flight (ToF), LiDAR can provide a few
million geometric points per frame with centimeter accuracy.
In addition, LiDAR is not subjected to environmental illumina-
tion. However, compared to vision modalities, LiDAR points
are sparse and do not contain any visual features employed
in traditional vision based algorithms. Several recent works
studied traffic scene perception involving LiDAR modality
and proposed various schemes for data arrangement, feature
extraction and sensor fusion with monocular vision. Much in
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depth studies are needed on LiDAR data arrangement and
feature extraction for accurate and efficient LiDAR based
drivable region segmentation.

In the past decades, drivable region segmentation has been
studied with different sensors and methodologies. A general
solution consists of four components: pre-processing, fea-
ture extraction, detection and post-processing. Pre-processing
includes noise removal, data sampling and transformation.
Feature extraction encodes local features such as color, edge
and texture from pre-processed data. Detection applies manu-
ally defined or machine learning based models to detect road
area or lane boundaries. Lastly, post-processing suppresses
candidates to provide final results.

In traditional computer vision algorithms, those four steps
are totally separated and the extracted features are often
describable. However, manually defined features and detectors
only work well in normal conditions but cannot handle much
variations on the road. Machine learning especially convolu-
tional neural network (CNN) based algorithms combine fea-
ture extraction and detection together. Pre-processed data are
fed into a well-structured CNN with millions of parameters.
Despite that features and detectors are hardly describable
visually, machine learning based road perception algorithms
have significant advantages in accuracy when compared with
traditional computer vision based approach.

For autonomous vehicles, both real-time processing speed
and low power consumption are desirable. Graphics processing
unit (GPU) devices are popular for parallel processing, but
usually consume too much power. Currently only one or two
GPU devices can be installed in a vehicle due to the limited
power supply. But tens of perception and planning tasks
need to be processed on the GPUs simultaneously. Field-
programmable gate arrays (FPGAs) are low-power devices
that are more suitable for embedded systems. Moreover, an
FPGA can be developed as a customized integrated circuit
that is able to perform massive parallel processing and data
communications on-chip. Hereby, FPGA is our chosen plat-
form that meets both computational capability requirement and
power consumption constraint.

In this paper, we present ChipNet as a CNN-based algo-
rithm and its FPGA implementation for real-time LiDAR data
processing. The contributions of our work can be summarized
as follows: (1) We introduce a new data organizing and
sampling method in spherical coordinate that improves the
usage of LiDAR points and creates a dense input tensor
for CNN. (2) We propose an efficient convolution block for
CNN that is both hardware friendly and extendable. (3) The
proposed approach of drivable region segmentation results
the state-of-art accuracy when evaluated using Ford dataset
and KITTI benchmark. We also labelled the Ford dataset
for training and evaluation. (4) An efficient and flexible 3D
convolution module is designed and implemented on an FPGA,
which can achieve real-time processing speed with limited
hardware resource and power usage.

The rest of the paper is organized as follows. Section II
introduces the related works on road perception task. The pro-
posed drivable region segmentation algorithm is described and
its performance on benchmarks are presented in Section III.

Section IV presents the FPGA architecture and hardware
implementation results. Finally, Section V concludes the
paper.

II. RELATED WORK

A. LiDAR Data Arrangement

There exists various methods of LiDAR data arrangement
on traffic scene perception. In Soquet et al. [32], Alvarez and
Lopez [1], Shinzato et al. [30] and Liu and Deng [24], LiDAR
point cloud was projected to image view and manually defined
features were applied based on evaluation measurements
with image patches. Similar image view was employed by
Han et al. [16] and Gu et al. [15] followed by fea-
ture extraction using histogram. González et al. [14] and
Xiao et al. [37] created a dense depth map from point cloud
and then combined the map with the camera data for their
machine learning based road boundary detector. Similarly,
the multi-view method [6] transformed point cloud into both
image and top views and then combined with camera data for
sensor fusion using a CNN. In addition, VoxelNet [40] and
3D-FCN [23] directly processed sparse LiDAR data in world
coordinate using convolutional neural network. LoDNN [3]
organized the point cloud into a top view and then fed it into
a CNN to generate a heat map representing the possibility of
drivable region in each 0.1m × 0.1m cell.

Beside road perception, several research works proposed
using CNN for LiDAR-based vehicle detection [6], [40].
To overcome the shortage of training samples, data augmen-
tation and coarse labeling methods were proposed to enlarge
the dataset. VoxelNet [40] augmented training data by rotating
and translating LiDAR points together with ground truth.
StixelNet [13] used LiDAR points to generate coarse labeling
automatically for pre-training.

B. CNN for Road Perception

Convolutional neural networks have become an active
approach for the task of road perception. Starting from Fully
Convolutional Network (FCN) [25], various network struc-
tures have been proposed to provide accurate road detection
and segmentation. SegNet [2] introduced an encoder-decoder
scheme to separate feature extractor and detector components.
It also added additional connections between the encoder and
decoder layers that improved the training of the first few layers
closer to the input. Oliveira et al. [26] followed the encoder-
decoder scheme and perceived near range and far range in
separate branches that resulted an increased accuracy of vision
based segmentation. RBNet [7] also followed the encoder-
decoder scheme but connected all encoder layer outputs to the
decoders. Other works introduced the CNN for salient object
detection in images [34] and videos [35]. Most recently, CNN
has also been introduced to LiDAR based road segmentation.
LoDNN [3], VoxelNet [40] and Multi-view [6] proposed
different techniques on LiDAR based perception.

C. Embedded Platforms for Road Perception

Considering the situations of automated driving or advanced
driver assistance system (ADAS), the processing time of road
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Fig. 1. A typical LiDAR frame. (a) LiDAR data matrix, (b) LiDAR points projected on corresponding image, and (c) LiDAR points presented on top view.

TABLE I

SUMMARY OF LIDAR DATA ORGANIZATION AS INPUT TO NEURAL NETWORKS

perception algorithms must fulfill the real-time requirement,
and thus are often implemented on embedded platforms
such as FPGA, ASIC or a mobile CPU/GPU processor.
Huval et al. [19] deployed a neural network on Jetson
TK1 mobile GPU platform. It detected lane markers based
on images and achieved 2.5 Hz running speed. Similarly,
the neural network proposed in [33] was able to segment
multiple objects including vehicles, pedestrian and pavements
at 10 Hz with image resolution of 320p on TX1 GPU platform.
Two FPGA based lane detection solutions were proposed
in [34] and [40] and their processing time were at 60 Hz and
550 Hz, respectively.

III. ALGORITHM DESIGN

In this work, a hardware friendly and extendable convolu-
tional neural network is proposed to segment drivable region
using LiDAR data. In this section, we first introduce the
LiDAR data preparation method as pre-processing of the CNN.
Next, the proposed network architecture ChipNet is described
in detail. Furthermore, we introduce a simulated quantization
scheme for CNN that transforms floating-point to fixed-point
operations, and thus speeds up the processing on hardware
considerably. Finally, a post-processing algorithm is developed
to generate a decision map denoting the drivable regions
from the CNN output. The proposed solution is evaluated
on Ford Campus Vision and LiDAR dataset and KITTI road
benchmark. The performance results are presented towards the
end of this section.

A. LiDAR Data Preparation

Typically a LiDAR device places a number of laser scanners
vertically and rotates them azimuthally to scan the surrounding
obstacles. Suppose a LiDAR device that contains N scanners,
measures M points per second and rotates at R rpm, then
it generates R

60 frames per second with 60M
R measure points

per frame at an azimuthal resolution of 360N R
60M . The polar

resolution is φ
N where φ denotes the vertical field of view.

For example, the HDL-64E LiDAR used in KITTI road
benchmark [12] has 64 scan channels and emits 1.33 million
points per second. By rotating at 600 rpm it updates 10 frames
per second with 0.133 million measurement points per frame
at 0.17◦ azimuthal resolution. By focusing on a 26.90◦ vertical
field of view, the polar resolution is 0.42◦. In practice, the
LiDAR sensor occasionally generates void measure points
when the laser beam emits to a low reflective surface.

Typically, a frame of data generated by the LiDAR modality
is a table as shown in Figure 1. In each row, the measurement
of a corresponding LiDAR point is listed in four columns,
including location coordinates x, y, z of the LiDAR view and
laser reflection intensity of the target surface r . By project-
ing all points to camera view and top-view, as presented
in Figure 1, LiDAR point cloud is sparse and has large varia-
tions of point density throughout the entire space. Therefore,
LiDAR data needs to be organized and re-sampled before
being fed to the convolutional neural network.

As mentioned in Section II, there is no unified method
to LiDAR point cloud data arrangement and sampling view.
Table I summarizes several research works that organized
LiDAR data in different forms. In Table I, we can see that
most of them divided the 3D space in Cartesian coordinates,
but they sampled the point cloud in different views, such as top
view [3], [6], front view [40] or 3D view [23]. We also find a
large percentage of LiDAR points are encoded in their region
of interest (RoI). However, the organized data as the input
to neural networks are sparse, which means that the majority
of computations in the first few layers of CNN actually deal
with zeros. That is very inefficient from the computational
perspective.

Therefore, we propose to organize the LiDAR data in
spherical view as if a LiDAR naturally scans the surroundings,
as shown in Figure 3. A region of interest is selected in
azimuth [−45◦, 45◦) and all 64 lines of scan points are
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Fig. 2. Data Flow of the proposed LiDAR processing approach.

Fig. 3. An illustration of the proposed LiDAR data preparation method.

involved in segmentation. On each line, scan points are
grouped by every 0.5◦ into cells. In total, all scan points in
the RoI fall into a 180 × 64 mesh. We use 0.5◦ because it
is 3 times of LiDAR azimuthal resolution so that in theory
at least 2 scan points are grouped in each cell. In practical
terms, there are some void scans when the reflect surface is
out of range or has low-reflectivity. Input tensor is built in the
same width and height as the scan point mesh, but contains 14
feature channels. In each cell, the first 7 features come from the
point nearest to the scanner, the next 7 features come from the
point furthest away from the scanner. These features include
Cartesian coordinates x, y, z, spherical coordinates θ, ϕ, ρ and
the laser reflection intensity r .

In Table I, we compare the LiDAR data preparation with
several related works. By sampling LiDAR points in spherical
view, our work not only has high LiDAR point usage in RoI
but also creates a dense input tensor that improves the accuracy
performance and makes the computations in the CNN much
more efficient.

B. ChipNet: A Hardware Friendly and Extendable
CNN Architecture

In this section, we introduce the ChipNet architecture and its
simulated quantization algorithm when training on a GPU. The
innovations of ChipNet are: (1) we designed a dilated block
equivalent to a 5×5 convolutional kernel but saves parameters
and calculations, (2) we designed an extendable CNN structure
using the dilated block, and (3) we proposed a simulated
quantization algorithm to obtain the fixed-point parameters

Fig. 4. ChipNet convolution block. (a) block architecture and (b) its
equivalent 5× 5 convolution kernel. The cells in blue, red and brown denote
the contributions of corresponding convolutional operations in a conventional
5× 5 convolution kernel.

for hardware implementations. The network is evaluated using
Ford dataset and KITTI road benchmark.

1) ChipNet Convolutional Block: The convolutional block
is a key component in ChipNet architecture. Each network
block contains three branches. The first one is an identity
branch that directly copies the input to the output. As analyzed
in [17], identity branch contributes the majority of gradient
in back-propagation and decreases the chance of gradient
vanishing and explosion during training. The second branch is
a 3×3 convolutional layer with 64 channel outputs. The second
branch is aimed to encode local features. The third branch is
a dilated 3 × 3 convolutional layer [38] to process features
in further pixels but takes less parameters and calculations.
As shown in Figure 4, after adding all three branches element-
wise, the block equivalents to a 5 × 5 convolutional layer
but has a stable gradient in back-propagation and fewer
parameters. Assuming the convolutional layer input size is
180 × 64 × 64 and output size is also 180 × 64 × 64, a
ChipNet block contains only 73,856 parameters and requires
802 million multiplications. In comparison, a conventional
5 × 5 convolutional layer employs 102,464 parameters and
requires 1,180 million multiplications. As a results, the pro-
posed ChipNet block reduce parameters by 28% and multipli-
cations by 32%.

2) ChipNet Network Architecture: The overall CNN archi-
tecture of ChipNet is shown in Table II. The first layer is a
local feature encoder aimed to encode the input LiDAR data
into a 64-channel feature tensor. After encoding, the proposed
ChipNet convolution block is instantiated repetitively in the
network to perform additional encoding and decoding. Since



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LYU et al.: ChipNet: REAL-TIME LiDAR PROCESSING FOR DRIVABLE REGION SEGMENTATION ON AN FPGA 5

TABLE II

LAYER CONFIGURATION OF THE CHIPNET ARCHITECTURE

the input and output of all ChipNet blocks are exactly in the
same sizes, the neural network can be conveniently extended
deeper by adding more layers. In our work, the ChipNet
block is instantiated 10 times as a trade-off between segmen-
tation accuracy and processing latency. For the output layer,
a channel-wise mapping is used to generate the final deci-
sion map showing the probability of corresponding drivable
regions. Compared to FCN and SegNet, the proposed network
is much simpler and more importantly it is extendable. The
repetitive network structure is best fitted for hardware reuse
in the FPGA design.

3) Simulated Quantization: Simulated quantization is essen-
tial to the training of networks on hardware. Fixed-point vari-
ables, weights and operations are widely used in FPGA design,
which often utilizes less hardware resources and memories and
results higher clock speed, if compared with the floating-point
implementations. However, CPU and GPU platforms generally
employ floating-point operations that have no quantization
error and can generate continuous gradients in the training
session. Practically, we can implement CNNs on an FPGA
for low-power embedded application. But we still heavily rely
on the high-performance GPUs to train the neural networks
in order to generate the parameters and weights, since a GPU
machine is capable of storing terabytes of training samples
and processing hundreds of threads simultaneously.

However, we cannot simply quantize all variables and para-
meters of a pre-trained neural network from floating-point into
fixed-point. Since quantization is a nonlinear operation, the
results would not be optimal for the fixed-point neural work.
In addition, direct quantization of variables and parameters
may result in a loss of gradients. Hereby, we propose a
simulated quantization method to train a neural network that
can produce the optimal parameters in fixed-point form. This
is an essential step to prepare a CNN before implement it on
an FPGA.

a) Simulated quantization of weights: : Quantization that
we refer here is not an simple operation of quantizing all
weights from floating-point to fixed-point numbers. Additional
training is needed to avoid negative impact on the accu-
racy. At the training stage, however, floating-point weights
are preferred because we want to avoid gradient exploding
and vanishing. In [20], a simulated quantization approach
was proposed in which weights and gradients are stored as
floating-point numbers during back-propagation training but
the quantized fixed-point numbers are used during forward
convolutional operations. The advantage was that the weights

Algorithm 1 Weight Quantization
Data Weights W, Gradients G
Parameter total_bits=N, fraction_bits=F

1: Fraction_scalar← 2F

2: Upper_bound←2N−1 − 1
3: Lower_bound← −2N−1

4: Ŵ ←W×Fraction_scalar
5: Ŵ ←round(Ŵ)
6: Ŵ ←max(Ŵ ,Lower_bound)
7: Ŵ ←min(Ŵ ,Upper_bound)
8: Ŵ ←Ŵ /Fraction_scalar
9: W ←W + StopGradient(Ŵ − W)
10: return {W, G}

Fig. 5. (a) Simulated quantization method as in [20] and (b) the proposed
quantization method in this work.

and gradients are updated in continuous space so that local
optimum due to quantization can be avoided. The disadvantage
was that several key functions need to be modified to support
this method. However, it is usually difficult to modify, maintain
and distribute customized components in a general machine-
learning platform such as TensorFlow.

In our work, a new weight regulator is defined and
added to the existing network. The regulator is described
in Algorithm 1. The key innovation is that the regulator quan-
tizes the weights during training and the fixed-point numbers
are used during forward operations. Meanwhile, the floating-
point weights are also stored in the memory that are used when
computing the gradients during back-propagation. However,
quantization function is not differentiable. Therefore, we intro-
duce the StopGradient function. The StopGradient function is
a built-in function in TensorFlow that force its gradient to be
zero for given input. By applying this function, the gradients
are kept the same as of floating point backpropagation, while
the weights are quantized. Hence, the proposed quantization
algorithm is imported to the TensorFlow platform as a plug-
in regulator. The proposed quantization algorithm and data
flow are shown in Figure 5 in comparison to the simulated
quantization in [20].

b) Simulated quantization of variables: Quantization of
variables is similar to the weights. Quantization of variables
is implemented as a new activation function so that it can be
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TABLE III

PERFORMANCE IMPACT OF QUANTIZATION
EVALUATED ON FORD DATASET

imported as a custom defined function rather than modifying
the body of an existing platform. As described in Algorithm 1,
if we convert a floating-point number to a N-bit fixed-point
number with an F-bit fraction, the operation is to shift to the
left by F bits and then round it to a N-bit integer, followed
by shifting back F bits to the right. To minimize negative
impact on the back-propagation training, the gradients are all
computed in floating-point.

c) Evaluation of quantization: To evaluate the influence
of quantization on accuracy, we first trained the ChipNet in
floating point using the Ford training set, and then quantized
and fine-tuned using the same training set. Both versions of the
ChipNet with and without quantization are evaluated on the
same dataset. The result listed in Table III shows that ChipNet
quantized to 18 or more bits has similar performance compared
to the floating-point model, which indicates that our proposed
quantization scheme does not cause accuracy degradation for
convolutional neural networks.

C. View of Drivable Region

The output of network denotes the possibility of drivable
region for each cell in spherical view. In post-processing, the
output is projected to the top view of a 20-meter wide and
40-meter long area in front of the vehicle. We choose topview
in post-processing because it matches the output data format
in KITTI benchmark [12], so we can compare our results with
others reported in the dataset.

The post-processing algorithm is described in Algorithm 2.
Suppose the possibility threshold of a drivable region is set
to T H R, then the reference point in each column j in the
network output Pi, j is determined by the nearest LiDAR point
in group

{
P|col= j, p<T H R

}
. After generating the reference

points, a contour of the drivable region becomes a polygon
that contains all reference points as vertices.

The post-processing scheme is implemented on CPU using
GridMap [11] that is an universal grid map management

Algorithm 2 Post-Processing of CNN Output as Segmentation
Results

Data Input tensor I={Ii, j }, output tensor P={Pi, j }
Parameter threshold T H R.

1: I ← T hreshold(I � T H R)
2: Î ← Get LargestConnectedComponent (I)
3: Î ← Dilation( Î, disk(1))
4: B← GetContour( Î)
5: ˜B← ProjectT oT argetV iew(B)
5: ˜A← Polygon( ˜B)
6: return ˜A

library. The GridMap library stores map data as Eigen matrix
and supports iterators for rectangular, circular, polygonal
regions and lines allowing convenient and efficient cell data
access. In post-processing, we initialize a grid map instance
with range setting of [6, 46] meters in x-coordinate and
[−10, 10] meters in y-coordinate. The resolution is set
to 0.05 meter per cell so that the grid map has 800 cells
in x-coordinate and 400 cells in y-coordinate. When the post-
processing node receives a network output frame, it stores the
frame as an Eigen matrix. In Algorithm 2, Step 1-3 is processed
on the matrix. In Step 4-5, the contour vertices are imported
to a polygon iterator instance and then the drivable region is
labeled cell by cell as the polygon iterates. The execution time
of post-processing is 5ms per frame on a typical CPU.

The post-processing affects the segmentation accuracy in
two parts: (1) After projected to the top view, LiDAR scans
are so sparse in far range that there exists distortion between
the projected LiDAR boundary and the real drivable region
boundary, and (2) Algorithm 2 assumes that the space inside
the polygon is drivable while the space outside is not, so there
exists an error if the drivable region has holes. We use
the KITTI training set to evaluate the effect quantitatively.
By projecting the ground truth in Spherical view to top view
using the post-processing algorithm and comparing with the
top view ground truth, we found that the F1 - score is limited
to 95.5% by the post-processing algorithm.

For visualization purpose, we also generate a drivable region
map on camera view by applying a similar post-processing
procedure.

D. Network Training and Evaluation

The training platform of ChipNet is a workstation with
Xeon 2.4 GHz CPU and NVidia K20 GPU. The software
environment is a Python based framework named Keras [9]
with TensorFlow 1.4 back end. The input of the network is
an 180 × 64 × 14 tensor and the output of the network is
an 180 × 64 × 1 tensor. The training speed on the platform
is 256 ms per frame. To evaluate the performance of the
proposed solution, a subset of the Ford Campus Vision and
LiDAR Dataset [27] and the KITTI road benchmark [12] is
used for training and testing purposes.

The original Ford Dataset described in [27] contains
3871 frames of LiDAR data recorded with synchronized cam-
era data. The LiDAR data are sampled at 10 Hz. The dataset
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Algorithm 3 Ground Truth Labeling for LiDAR Samples
Data Input tensor L={Li, j,k}, Ground truth image

B={Bi, j }

1: −→x1 ←
⎡

⎣
Li, j,1
Li, j,2
Li, j,3

⎤

⎦, −→x2 ←
⎡

⎣
Li, j,8
Li, j,9
Li, j,10

⎤

⎦

2: −̂→x1 ← Proj (−→x1), −̂→x2 ← Proj (−→x2)

3: Gi, j,1 ← [B(−̂→x1 ) > 0] × [B(−̂→x2 ) > 0]
4: return G

itself has no labels or annotations, so we created a subset and
labeled the drivable region manually. To reduce the overlaps
among the consecutive frames, we selected only 1 out of every
5 consecutive frames. Effectively the dataset is downsampled
to 2 frames per second. We also removed some off-road sam-
ples, such as vehicles on the parking lot, from the dataset since
we concentrated on road scenarios. Therefore, we generated
a 600-frame subset from the Ford dataset for training and
evaluation.

In the subset, the original image is cropped from the size
of 1243 × 1616 to 800 × 200 resolution that overlaps with
the LiDAR point cloud. The data is arranged as described
in Section III-A. In order to obtain the LiDAR ground truth,
a ray tracing approach is applied as described in Algorithm 3.
The projection method from LiDAR coordinate to camera
coordinate is described in Algorithm 4. In our labeled subset,
each sample includes a 180×64×14 LiDAR frame, a 800×200
color image, a 180× 64× 1 LiDAR ground truth frame and a
800×200 ground truth image. We randomly selected 400 sam-
ples for training/validation and the remaining 200 samples for
evaluation. Furthermore, we augmented the training samples
through rotating the field of view by (−10,−5, 0, 5, 10)
degrees from the LiDAR ground truth. Thus, we generated
a training set with 2000 samples.

Cross entropy was selected as the loss function and
Adam [21] method with default settings was selected as the
optimizer. We first trained the network without the quantiza-
tion plug-in for 30 epochs, at which time the training process
converged well. We then fine-tuned the network with the
quantization plug-in for 10 epochs to obtain the fixed-point
weights. The initial training took 4.5 hours and the fine-turning
took 1.5 hours. For each defined fixed-point bit-length format,
we applied the same simulated quantization procedure during
fine-tuning. The bit length resulted the least loss is chosen for
the FPGA implementation.

In the testing session, we selected F1 score (F1), average
precision (AP), precision (PRE), recall (REC), false positive
rate (FPR) and false negative rate (FNR) in image view
as the evaluating metrics. The metrics are computed as
in (1-4). Table III presents the evaluation results using different
bit length of fixed-point quantization. The result shows that the
proposed network quantized to 16 or more bits has comparable
accuracy to floating-point results, but accuracy drops sharply
if quantization is below 16 bits. In our work, 18 bits are
selected since it is the best choice supported by the target

Algorithm 4 Projection from LiDAR Coordinate to Camera
Coordinate

Data LiDAR point Pxi , yi , zi , ri

Parameter transform matrix K∈ R3×4

1:

⎡

⎣
x̂i

ŷi

ẑi

⎤

⎦← K

⎡

⎢
⎢
⎣

xi

yi

zi

1

⎤

⎥
⎥
⎦

2:

[
x̂i

ŷi

]
←

[
x̂i
ẑi
ŷi
ẑi

]

3: return
[

x̂i

ŷi

]

FPGA platform.

Precision = TP

TP+ FP
(1)

Recall = TP

TP+ FN
(2)

F1 score = 2 · Precision · Recall

Precision+ Recall
(3)

AP = TP+ TN

TP+ FP+ TN+ FN
(4)

We also evaluate our network in KITTI road bench-
mark [12]. The KITTI vision benchmark suite is a widely
used dataset that contains LiDAR, camera, GPS and IMU data.
In addition, the vertex transformation from LiDAR coordinate
to camera coordinate is provided. The road benchmark in the
suite includes 289 training samples and 290 test samples. The
point cloud was acquired by a 64-line Velodyne laser scanner
and the camera frames were recorded from a Point Grey
1.4 megapixels camera. For better sensor fusion, the LiDAR
point cloud is rectified at each time step and the camera frame
is cropped to a 375×1242 image. In addition, the data frames
from different sensors are synchronized to 10 Hz.

Different from the Ford dataset that evaluates on camera
view, the KITTI road benchmark evaluates the segmenta-
tion results on top view, in which the result is mapped to
a 400× 800 image. The mapped image represents the acces-
sibility of the region of 40 meters in the front (from 6 meters
to 46 meters) and 10 meters on each side (left and right).

In the training session, we first augmented the dataset
through rotating the field of view by (–10,−8,−6,−4,
−2, 0, 2, 4, 6, 8, 10) degrees from the corresponding LiDAR
ground truth. So, we obtained 3179 samples, among that
3000 randomly selected samples are used for training and
the other 179 samples are used for validation. We fine-tuned
the network with quantization plug-in for 10 epochs from
the weights trained in Ford dataset, and submitted the results
to the benchmark online evaluator. The training time was
2.05 hours.

A comparison with several existing results is presented
in Table IV. Typical results are shown in Figure 7. The red area
denotes the false drivable region (false positive), the blue area
denotes the missing driving region (false negative), the green
area denotes the correct drivable region (true positive), and
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TABLE IV

COMPARISON WITH EXISTING RESULTS ON KITTI ROAD BENCHMARK

Fig. 6. Examples of the segmentation results from Ford dataset.

Fig. 7. Examples of segmentation results from KITTI road dataset.

the rest area denotes the correct forbidden region (true neg-
ative) or don’t care region. We also evaluated ChipNet on
the front view as in [6] without quantization, which requires
significant more run time but results lower accuracy than
the spherical view. It implies that LiDAR data arrangement
spherical view reveals more features as input to the CNN.

Our proposed approach can provide highly reliable drivable
region segmentation with minor distortions around the road
boundary. For vehicles on the road, the segmentation boundary
matches the ground truth boundary or slightly distorts towards
the road center that is safe for automated driving. For the road
with sidewalk, the segment boundary matches the ground truth
if the sidewalk is above the road surface. However, if the
sidewalk is equal or below the road surface, the detected
drivable region sometimes extends 1 to 2 meters into the
sidewalk, which needs to be improved in future research. In
addition, our solution returns accurate drivable regions in poor
illumination scenarios such as inside tunnels or facing the sun
glare. In contract, vision based solutions rarely work well in
those scenarios.

IV. HARDWARE ARCHITECTURE

As described in Section III, the LiDAR data after pre-
processing has 14 channels and the input data size is 180×64.

Fig. 8. Hardware architecture of ChipNet convolutional neural network.

After the first layer of convolutional encoding, it becomes
a feature map with 64 channels. In the next 10 convolution
layers, the input and output feature map sizes remain the same
as 180 × 64 × 64. The final layer performs the channel-wise
mapping that produces an output map of 180× 64, each indi-
cating the possibility of drivable regions. The block diagram
of hardware architecture is illustrated in Figure 8. The system
consists of a 3D convolution unit, a ReLU block, a feature
map buffer and an intermediate buffer. 2D convolution and
adder trees are embedded in the 3D convolution block. Since
the feature maps in each stage of ChipNet have the same size,
this 3D convolution unit is used repetitively. A finite state
machine (FSM) is designed to control the iterative processing
steps.

A. Zero Padding

In order to properly process the information along the
boundaries, zero padding must be applied to the feature map
produced by the convolution layer output. In our system,
a dual-port RAM is implemented for automatic zero-padding.
In Figure 9, all memory locations are pre-loaded with zeroes.
Pixels of a feature map are written to the corresponding
address locations in the feature map buffer. When reading
the feature map from the feature map buffer in continuous
addresses, data are automatically zero-padded. The RAM
functions as the feature map buffer.

B. Convolution

As exhibited in Figure 10, the 3D convolution unit contains
64 pieces of 2D convolution slices. Each 2D convolution slice
is built with a line buffer and two 5 × 5 multiplier arrays.
The line buffer is designed using shift registers as shown
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Fig. 9. Automatic implementation of zero-padding in hardware.

Fig. 10. Block diagram of 3D and 2D convolution unit.

Fig. 11. Block diagram of the line buffer unit.

in Figure 11. It outputs a 5×5 window (outlined in red) as the
input to the multiplier arrays. The registers in green multiply
with the dilated 3 × 3 convolution kernel, and registers in
yellow multiply with the regular 3×3 convolution kernel, and
the register at the center multiplies with the coefficient sum
as shown in Figure 4.

In each 2D convolution block, the input data are fed from
the line buffer to two multiplier arrays, each followed by an
adder tree. The 2D convolution block is a pipeline architecture
that can process two convolution kernel operations in parallel.
Since each 2D convolution operation has 64 convolution
kernels, the same feature map is reloaded and processed for
32 times. All weights are stored in on-chip memory to avoid
the latency of off-chip memory access. The ReLU block is

Fig. 12. The overall system architecture with a LiDAR and FPGA accelerator.

implemented by a comparator and a multiplexer. If the input
value is larger than 0, it outputs the original value. Otherwise
the ReLU block outputs 0.

C. FSM Controller

Since the multiplier array in Figure 10 consumes a large
number of DSP slices on FPGA, reusing it for each convolu-
tion layer is a key consideration in the control logic design.
Thus, a cascaded finite state machine (FSM) is deployed to
control the iterative process. As shown in Figure 10, the
3D convolution unit can perform 2 kernel operations in paral-
lel. From Table II, each layer requires 64 convolutional kernel
operations. So, the inner FSM controls the 3D convolution unit
to perform the same operations 32 times, each with different
input of feature maps, while the outer FSM controls the order
of layers.

As is shown in Figure 8, during each layer of convolution,
the outer FSM first loads the input feature map into feature
map buffer. Meanwhile, the inner FSM starts to feed feature
map into the 3D convolution unit. The intermediate feature
maps are stored in intermediate buffer. When the inner FSM
completes the convolution of one layer, the outer FSM moves
the data from intermediate buffer to feature map buffer, and
then it starts the convolution of the next layer.

D. Implementation Results

The target hardware platform is Xilinx UltraScale
XCKU115 FPGA. An integrated test system is demonstrated
in Figure 12.

The LiDAR frames are transmitted into PC at 10 Hz via
UDP protocol. For each LiDAR frame, the PC pre-processes
it and sends an 18-bit feature map to the ChipNet neural
network in the FPGA. The feature map size is 64× 180× 14.
The parameters are ported using MATLAB HDL coder. Sys-
tem clock frequency is set to 350 MHz. Each convolution
block takes about 12,512 clock cycles to generate 2 feature
maps. The total processing time of this CNN architecture is
about 12.59 ms. Since normally LiDAR point cloud frame rate
is 10 Hz, this FPGA implementation fulfills the requirement
of real-time LiDAR data processing. When running ChipNet
in software on the Intel Core i5-5200U CPU, the processing
time is 549 ms; when running ChipNet using the NVidia
K20 GPU, the processing time is 162 ms. Thus, the FPGA
implementation gains 43× speed up over CPU and 13× speed
up over GPU.

As mentioned earlier, there are few FPGA implementations
of LiDAR processing using CNN at this time, performance
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TABLE V

RESOURCE USAGE ON THE FPGA IMPLEMENTATION OF CHIPNET

TABLE VI

POWER ESTIMATION OF FPGA DESIGN

and efficiency comparison with similar works on FPGAs is
not available.

The resource usage of our proposed neural network is listed
in Table V. The total power consumption of this design is
12.594 W, estimated by from Xilinx Vivado 2017.2 power
analyzer using post-implemtation simulation .saif (Switching
Activity Interchange Format) file. As illsutrated in Table VI, it
consists of dynamic power 9.747W and static power 2.848W.
We notice that most of the power is consumed by the on-chip
memories since they are always enabled except in idle mode.
We emphasize that the proposed FPGA solution takes only
11.8% power consumption of an NVidia K20 GPU, which
is 107 W.

V. CONCLUSIONS

In this paper, the problem of drivable region segmentation
is framed as a semantic segmentation task by processing real-
time LiDAR data using a convolutional neural network on
an FPGA. The LiDAR data is organized in spherical view
and sampled to a dense input tensor during pre-processing.
An efficient and extendable CNN architecture namely ChipNet
is proposed as the main processor. A reusable and efficient
3D convolution block is designed for FPGA implementation.
The proposed approach is trained using Ford dataset and the
KITTI benchmarks. Evaluations show the proposed LiDAR
processing algorithm can achieve state-of-art performance in
accuracy and also real-time processing in speed on the FPGA.
However, the FPGA implementation still consumes a large
amount of on-chip memory. For future work, we will consider
recurrent neural network for spatial-sequence decoding that
may reduce the on-chip memory usage. We also notice during
benchmark evaluation that sidewalk and railway are the main
causes of false positives. Sensor fusion of LiDAR and camera
data will be considered to further improve the accuracy.
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